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Summary. Previous immunocytochemical studies have 
shown a heterogeneous distribution of parvalbumin (PA) 
and calbindin (CB) in the rat hippocampal formation. 
The results of the present study showed a heterogeneous 
distribution of PA and CB in primate Ammon's horn. 
The density and intensity of immunoreactivity for both 
of these calcium-binding proteins was greatest in CA2 as 
compared to CA1 and CA3. CB-immunoreactivity was 
localized to the cell bodies, dendrites, and axon initial 
segments of pyramidal cells whereas PA-immunostaining 
was found in the axon terminals, dendrites and cell 
bodies of interneurons that have features similar to 
GABAergic inhibitory neurons. Based on previous stud- 
ies that have shown a protective role of calcium-binding 
proteins in neurons exposed to hyperstimulation, these 
results suggest that the resistance of CA2 pyramidal cells 
in temporal lobe epilepsy is due to the high concentration 
of CB and PA in this region of Ammon's horn. 
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Introduction 

In patients suffering from temporal lobe epilepsy a selec- 
tive pattern of hippocampal cell loss, referred to as 
"hippocampal sclerosis", is a well documented observa- 
tion (see review in Babb et al. 1984; Bruton 1988; Dam 
1982; Sloviter 1983). The major loss of neurons is ob- 
served in the CA1 and CA3 subfields of the Ammon's 
horn and in the hilus of the dentate gyrus. The granule 
cells, and according to a recent statistical analysis (Kim 
et al. 1990), more than 50% of the CA2, so called "resis- 
tant zone" pyramidal cells, are spared. A similar pattern 
ofhippocampal cell loss was reported for rats by Sloviter 
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(1983) after sustained electrical stimulation of the ento- 
rhinal cortex. It was suggested that the seizure-associated 
brain damage in rats is caused by excessive presynaptic 
release of excitatory transmitters that induces intracel- 
lular postsynaptic changes leading to cell death. 

In the past decade, the importance of calcium-binding 
proteins has been realized by the neuroscience communi- 
ty (see review by Celio 1990), The majority of these 
studies focused on the localization and function of these 
proteins in the rat. For example, Sloviter (1989) has 
plotted the immunoreactivity for calbindin (CB) and 
parvalbumin (PA) in the rat and speculated that these 
proteins have a protective function because neurons with 
intense immunoreactivity for calcium-binding proteins 
are not affected by intense stimulation used in his experi- 
mental paradigm. Furthermore, Scharfman and 
Schwartzkroin (1989) demonstrated that hyper- 
stimulated mossy cells in the hilus of the dentate gyrus 
became resistant to dying after they were intracellularly 
injected with a calcium chelator. This view of the protec- 
tive role of calcium-binding proteins has been further 
supported in that somatostatin- and neuropeptide 
Y-containing hippocampal neurons die in experimentally 
induced (Sloviter 1987) and temporal lobe epilepsy 
(deLanerolle et al. 1989), and colocalization experiments 
demonstrate that less than 6% of the somatostatin neu- 
rons of the rat fascia dentata contain PA (Nitsch et al. 
1990a). 

Studies in the primate hippocampus regarding the 
localization of calcium-binding proteins are sparse. Only 
the report of Braak et al. (1989) has indicated that 
GABAergic local circuit neurons in the human hippo- 
campus contain PA. Therefore, the present analysis ad- 
dresses the distribution of two calcium-binding proteins, 
PA and CB, in the primate hippocampus. We will dem- 
onstrate that the pattern of immunoreactivity for both of 
these protective proteins displays a dense concentration 
in the CA2 field of the Ammon's horn, whereas the other 
subfields, CA1 and CA3 are much less densely immuno- 
stained. 
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Material and methods 

Animals 

Three adult female (4.5-5 kg B.W) and two adult male (5.5-6 kg 
B.W) African green monkeys (Cercopithecus aethiops) kept on 
standard monkey pellets and tap water ad libitum, were used in this 
experiment. The animals were housed in large social cages in the St. 
Kitts Biomedical Research Foundation. Before the start of the 
experiment monkeys were placed in individual cages. The St. Kitts 
facility is in full compliance with all applicable U.S. regulations and 
the U.S.P.H.S. Guide for Use of Animals, and has provided an 
assurance of compliance no A3005 to O.P.R.R.R. The facility traps 
or breeds all of its own animals and has a complete 48 h veterinary 
service. 

Tissue processing 

After i.m. Ketamine anesthesia, the animals were sacrificed with 
sodium pentobarbital administered intravenously and transcardi- 
ally perfused with 1L of heparinized saline followed by 2-2.5 L of 
fixative containing 4% paraformaldehyde and 0.2 % glutaraldehyde 
in 0.1 M (pH 7.4) phosphate buffer (PB). The brains were rapidly 
removed and postfixed for 2 h at 4 ~ C in the same fixative, except 
that it lacked glutaraldehyde. After postfixation, the material was 
further stored at 4 ~ C in PB containing 0.1% NaNa and transported 
to the research laboratory at Yale University. 

Immunostainin 9 

After dissecting the hippocampal formation, vibratome sections 
(60 gm) were cut perpendicular to the longitudinal axis of the 
primate hippocampal formation, and sections were obtained from 
two representative areas, the body and head. The sections were 
washed several times in PB, transferred into a vial containing 0.5 ml 
of 10% sucrose in PB, rapidly frozen by immersing the vial into 
liquid nitrogen and then thawed to room temperature. Following 
several more PB washes, sections were incubated for 20 minutes in 
sodium borohydride (1% in PB) to remove unbound aldehydes 
(Kosaka et al. 1986). Consecutive sections were immunostained 
either for parvalbumin (PA) or calbindin (CB) by incubating the 
sections for 48 h at 4 ~ C in a monoclonal antibody directed against 
PA (Celio et al. 1988) or in a rabbit polyclonal antiserum raised 
against CB (Baimbridge and Miller 1982), respectively. The PA 
antibody was diluted (1 : 20,000) in PB containing 1% normal horse 
serum and 0.1% sodium azide. The CB antiserum was diluted 
(1 : 5,000) in PB containing 1% normal goat serum and 0.1% sodium 
azide. After extensive washing in PB the sections were further 
processed using the ABC technique of Hsu et al. (1981) and the 
Vectastain Elite Kit (Vector Laboratories, Buriingame, CA). The 
tissue bound peroxidase was visualized with a diaminobenzidine 
(DAB) reaction (14.5 mg DAB, 165 gl 0.3% HzOz in 25 ml PB for 
5-10 minutes). After several rinses in PB the sections were osmi- 
cated (1% OsO4 in PB), dehydrated in graded ethanol (the 70% 
ethanol contained 1% uranyl acetate) and embedded for electron 
microscopic sectioning. Ultrathin sections were cut on Reichert- 
Jung Ultracut-E and Sorvall MT-5000 microtomes, collected on 
Formvar coated single slot grids, contrasted with lead citrate and 
examined in both laboratories with Philips CM-10 electron micro- 
scopes. 

Controls 

Both the monoclonal PA antibody and the polyclonal CB antiserum 
used in this study are well characterized and extensively used im- 
munoreagents. However, to test the specificity of the immunostain- 
ing procedure, control experiments were performed. In these experi- 

ments, after replacing the primary antibodies with non-immune 
mouse or rabbit sera, no immunostaining could be observed. 

Results 

This work focused on the CA2 field of  the primate hippo- 
campus. However, other regions of  the primate hippo- 
campal formation were examined to determine the dif- 
ferences between the CA2 subfield and the other hippo- 
campal areas. Detailed light and electron microscopic 
analyses of  both parvalbumin- (PA) and calbindin- (CB) 
immunoreactive neurons located in other regions of  the 
primate hippocampal formation will be provided in a 
future manuscript. 

Anatomy of the CA2 subfield 

A heterogeneous structure, named CA1, CA2, CA3, and 
CA4 by Lorente de N6 (1934), appears in frontal sections 
of  the Ammon ' s  horn. The morphological differences are 
largely due to the very different appearances of  the pyra- 
midal neurons in the different regions. The CA2 subfield 
is clear in human (Braak 1980) and simian hippocampi 
(Amaral et al. 1984), but is not readily identified in some 
non-primate species (Blackstad 1956; Schwerdtfeger 
1984). The CA2 is composed of  large, ovoid densely 
packed somata, making the stratum pyramidale dense 
and narrow, in sharp contrast to CA1 (Braak 1980). The 
other neighboring area of  CA2, the CA3 subfield, corre- 
sponds to the curve, or genu of  Ammon ' s  horn where it 
enters the concavity of  the dentate gyrus. Its pyramids 
are similar to those in CA2 but their density is less 
marked. The two zones are often distinguished by the 
presence of  fine, unmyelinated fibers in CA3, the mossy 
fibers from the granule cells of  the dentate gyrus. These 
fibers are in close proximity to the pyramidal somata of  
CA3 where they are compressed between the strata ra- 
diatum and pyramidale, thus forming a supplementary 
layer, the stratum lucidum (Duvernoy 1988). 

Light microscopic observations 

Immunostaining for CB. The pyramidal cells in the CA2 
area exhibit a very strong immunoreactivity for CB 
(Figs. la and c). This dense pattern of  CB-immunostain- 
ing within cell bodies and dendrites is also observed for 
the granule cells in the dentate gyrus (including their 
axons, the mossy fibers) and some nonpyramidal cells in 
the CA3 area (Fig. la). In contrast, the majority of  CA1 
pyramidal cells do not show immunoreactivity for CB, 
and those that do are located mostly in the upper half of  
the stratum pyramidale and are lightly stained compared 
to the CA2 pyramids. Similar to CA3, several densely 
labelled CB-immunopositive nonpyramidal  neurons 
could be detected in the CA1 field. In contrast to the 
other subfields of  the Ammon ' s  horn of  which all layers 
contain numerous CB immunoreactive nonpyramidal  
cells and fine varicose axons and boutons, the CA2 area 
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Fig. l a d .  Light photomicrographs of 60 gm vibratome sections 
immunostained for calbindin (Panels a and e) and parvalbumin 
(Panels b and d) demonstrate identical areas of the primate hippo- 
campal formation, including portions of the fascia dentata (outlined 
by arrowheads in Panel b), CA3, CA2 and CA1 areas. Panels a and 
e show that in addition to the heavy calbindin immunolabeling of 
the granule cells (Gc) and mossy axons (Ma), the CA2 pyramidal 
cells (some of the more intensively immunolabeled neurons located 

on the surface of the 60 gm vibratome section are identified by 
arrows in e) and apical dendrites are also calbindin-immunoreac- 
rive. Note that immunoreactivity for parvalbumin is the strongest 
in the CA2 area (Panel b). The parvalbumin-immunoreactive fibers 
form baskets around the cell bodies of CA2 pyramidal cells (Panel 
d) and also surround their dendrites. Small arrows on Panels a and 
c indicate the same blood vessels. Final magnifications are for 
Panels a and b: x48; Panel e: x480; and Panel d: x 1,000 

conta ins  only  a few CB- immunopos i t i ve  n o n p y r a m i d a l  
neu rons  that  are located chiefly in the s t r a tum lacu- 
nosum-molecu la re ,  and  sparse fine varicose axons.  

Immunolabelin9 for PA. In  the p r imate  h ippocampa l  
format ion ,  the CA2 subfield displayed the greatest den- 

sity of  P A - i m m u n o s t a i n i n g .  Similar  to other  subfields of 
the A m m o n ' s  horn ,  the P A  immunopos i t i ve  cell bodies 
in CA2 are concen t ra ted  in the strata pyramida le  and  
oriens. M a n y  PA-posi t ive dendri tes  in the s t r a tum oriens 
r un  parallel  to the pyramida l  cell layer, whereas m a n y  
other  PA-posi t ive  dendri tes  pass th rough the s t ra tum 
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Fig. 2a-d. Electron micrographs taken from the monkey CA2 area 
show the result of immunostaining for calbindin (Panels a-c) and- 
parvalbumin (Panel d). Panels a-c demonstrate portions of a par- 
valbumin-immunoreactive pyramidal neuron. Panel a shows reac- 
tion product within a part of the eell body (CB) and axon initial 
segment (Ai) of this neuron. Panel b shows an axosomatie symme- 
tric synapse (arrowhead) between an unlabeled bouton (A) and the 
immunostained cell body (CB). Panel e is an enlargement of the 

axon initial segment (Ai). Symmetric synapses (pointed by small 
and large arrowheads on Panels a and e, respectively) are formed 
with the axon initial segment (Ai) by unlabeled axon terminals. 
Note that the immunostaining is more intense in the cell body than 
in the axon initial segment. Panel d shows parvalbumin immuno- 
stained axon terminals forming symmetric synapses (arrowheads) 
with an immunonegative axon initial segment (Ai). Scale 
bars = 1 I-tm 
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Fig. 3a, b. Electron micrographs taken from the parvalbumin im- 
munostained primate hippocampus. Panel a shows a segment of an 
apical dendrite (D) of a pyramidal cell, whereas Panel b demon- 
strates part  of a cell body (CB) of a CA2 pyramidal neuron. All of 
the synapses (black arrowheads) formed by parvalbumin im- 

munoreactive boutons are symmetric. Note that  only a few im- 
munonegative boutons establish symmetric synapses, both  with the 
dendrite (open arrow) and the soma (A), whereas the majority of 
synapses at these sites are formed by PA-positive axons. Scale 
bars = 1 ~tm 
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pyramidale and reach the stratum lacunosum-moleculare 
(Fig. lb). The vast majority of PA immunoreactive axon 
terminals are densely packed in stratum pyramidale 
where the densely labeled boutons form basket like 
plexuses with the somata of pyramidal cells (Fig. ld). 
Although PA-immunoreactive axonal baskets are 
present in the other CA subfields, the density of im- 
munostaining in axons, and their number, appeared to 
be far less than that in CA2. 

Another difference also exists between CA2 and the 
other CA subfields in the distribution pattern of PA- 
immunoreactive axons. In the CA2 area, a very dense 
network of PA-immunopositive axons and boutons is 
found in the stratum lacunosum-moleculare, whereas a 
less dense network is present in stratum radiatum. In 
other CA subfields the massive PA-immunostaining of 
the stratum lacunosum-moleculare is not present and the 
stratum radiatum displays a less dense pattern of PA 
immunoreactive axons (Fig. l b). 

Electron microscopic observations 

For this study, electron microscopic results will only be 
reported for the CA2 area. The findings from this ultra- 
structural analysis of both CB- and PA-immunostained 
structures confirm the light microscopic observations. 

Immunoreactivity for CB is homogeneously distribut- 
ed throughout the cytoplasm of cell bodies and dendrites 
of CA2 pyramidal neurons. Furthermore, CB- 
immunoreaction product is also present in the axon ini- 
tial segments of pyramidal cells (Figs. 2a and c). Al- 
though a few CB-immunoreactive axons are observed in 
the molecular layer of CA2, they appear to cluster in 
areas close to CA1 and CA3. A large number of CB- 
immunonegative axons form symmetric synapses with 
the somata (Fig. 2b), dendritic shafts, and axon initial 
segments (Fig. 2c) of CB-immunoreactive pyramidal 
cells. 

The electron microscopic analysis of the PA- 
immunostained sections revealed that the vast majority 
of axons that establish symmetric synapses with den- 
drites (Fig. 3a), cell bodies (Fig. 3b), and axon initial 
segments (Fig. 2d) of pyramidal cells in CA2 are im- 
munoreactive for PA. This finding correlates with the 
light microscopic observations of a dense PA-positive 
pericellular plexus in stratum pyramidale. Symmetric 
synapses between PA-immunonegative axons and pyra- 
midal cell somata (Fig. 3b) are also found but are less 
frequent. PA-immunonegative axons formed both 
symmetric and asymmetric synapses with pyramidal cell 
dendrites. Consistent with the light microscopic data, 
several PA-immunopositive non-pyramidal neuronal 
somata and dendrites are present in the CA2 area. The 
dendrites and somata of these cells form symmetric syn- 
apses with PA-immunopositive boutons. In addition, 
these dendrites and somata display numerous asymmet- 
ric synapses with PA-immunonegative axons. PA im- 
munoreactive neurons also display nuclei with deep in- 
foldings, nuclear rods, and sheets. 

Discussion 

The major observation of this study is the highly con- 
centrated distribution of calbindin (CB) and par- 
valbumin (PA), two important calcium-binding proteins, 
in the CA2 region of the primate hippocampal forma- 
tion. Calcium overload is one of the major factors in the 
pathophysiology of hypoxic or excitotoxic cell damage 
(Desphande et al. 1987; Sloviter 1989). Recent studies 
(Scharfman and Schwartzkroin 1988) have shown that 
the injection of calcium chelators into neurons devoid of 
these two calcium-binding proteins protects these cells 
from deterioration during prolonged stimulation. Other 
experimental data suggest that hippocampal neurons 
equipped with calcium-binding proteins are protected 
against this calcium overload (Nitsch et al. 1989; Sloviter 
1989), whereas some hippocampal neurons, such as 
somatostatin-containing cells that lack calcium-binding 
proteins (Nitsch et al. 1990a), are highly susceptible to 
hypoxia and overexcitation (Johansen et al. 1987, and 
1989; Sloviter 1987). 

In this respect, the CA2 subfield of Ammon's horn 
seems to be unique among the CA areas of the primate 
hippocampal formation. First, the CA2 pyramidal cells 
contain a very strong immunoreactivity for CB, whereas 
none of the CA3 pyramidal neurons did and only a few 
pyramidal cells located mostly in the upper part of the 
pyramidal cell layer in CA1 demonstrated a faint stain- 
ing. Second, in comparison to CA1 and CA3 subfields, 
PA-immunopositive axons forming pericellular baskets 
around pyramidal cell somata in CA2 appeared more 
frequent and these axons, as well as those terminating on 
pyramidal cell dendrites exhibited a much stronger im- 
munoreactivity. This more intense immunostaining may 
represent a greater concentration of PA. Finally, in con- 
trast to other hippocampal regions, the CA2 area PA- 
immunoreactive boutons were found throughout the api- 
cal dendritic zone of the pyramidal neurons where they 
formed synapses (Fig. 3a). It remains to be shown where 
the cells of origin of these PA-immunoreactive boutons 
arise, especially those that give rise to the numerous 
axons in the outer stratum lacunosum-moleculae of CA2. 

The PA-immunopositive axons that terminate on the 
pyramidal cell somata and axon initial segments, in all 
certainty, are processes of PA-containing basket- and 
chandelier cells, respectively (Nitsch et al. 1990; Ribak 
et al. 1990). The morphology of these axons is similar but 
the frequency of PA-positive boutons in CA2 of the 
monkey is greater than the 32-38% frequency observed 
in the rat hippocampal formation (Ribak et al. 1990). 
Recent studies have demonstrated that PA is colocalized 
with GABA in a population of nonpyramidal neurons 
(Celio 1986), including basket and chandelier cells 
(Kosaka et al. 1987; DeFelipe et al. 1989; Zipp et al. 
1989; Soriano and Frotscher 1990). The structural 
characteristics of these neurons (Katsumaru et al. 1988 ; 
Nitsch et al. 1990b) are similar to those described in 
immunohistochemical studies of hippocampal GABAer- 
gic basket and chandelier cells (Ribak et al. 1981 ; Ribak 
and Seress 1983; Seress and Ribak 1990; Somogyi et al. 
1985; Soriano and Frotscher 1989). Therefore, the PA- 
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positive axon  terminals p robab ly  mediate  GABAerg i c  
inhibit ion at their synapses. 

The h ippocampa l  basket  and  chandelier  neurons  are 
highly effective inhibi tory neurons  because their axon  
terminals are located at strategically opt imal  places to 
depress the firing rate o f  the CA2 area pyramida l  cells. 
A l though  these inhibi tory cells could be overst imulated 
dur ing seizures, the presence o f  P A  in high quantit ies (as 
detected with immunocytoehemis t ry )  m a y  effectively 
protec t  them f rom dying. This view is suppor ted  by the 
observat ion that  some GABAerg i c  neurons  are preserved 
in the h ippocampus  o f  animals with experimental  ep- 
ilepsy (Sloviter 1987), as well as in the h u m a n  epileptic 
h ippocampus  (Babb et al. 1989; de Lanerol le  et al. 1989). 

In  conclusion,  the results o f  this s tudy suggest tha t  
CA2 pyramida l  cells are resistant to excitotoxicity f rom 
hypers t imulat ion due to their own protective calcium- 
binding prote in  content ,  as well as their very dense in- 
nervat ion with calc ium-binding prote in  conta in ing 
GABAerg i c  inhibi tory interneurons.  This distinct chemi- 
cal n e u r o a n a t o m y  in the pr imate  CA2 area involving 
these two calcium-binding proteins,  and  perhaps others,  
may  explain the relatively reduced vulnerabili ty o f  CA2 
area neurons  in the tempora l  lobes o f  epileptic patients 
(Kim et al. 1990). A n o t h e r  fac tor  tha t  m a y  also play a 
role in the resistance o f  CA2 pyramida l  cells is their 
relative lack o f  excitatory afferents in tha t  the mossy  
fibers, which innervate CA3,  do no t  enter CA2 in pri- 
mates  (Houser  et al, 1990), and  the extent o f  Schaffer col- 
laterals f rom CA3 cells m a y  not  be as large as tha t  in 
CA1. Thus,  no t  only m a y  the chemical  n e u r o a n a t o m y  o f  
CA2 be responsible for  its resistance to epileptic damage,  
but  its relative lack o f  excitatory input  m a y  also be 
involved. 

Acknowledgements. The authors gratefully acknowledge the expert 
technical assistance of Marya Shanabrough and Yashoda Jhurani, 
and the technical support of the St. Kitts Biomedical Research 
Foundation. The Calbindin antiserum was kindly provided by Dr. 
K.G. Baimbridge. This study was supported by NIH grants 
NS 26068 (C.L.) and NS-15669 (C.E.R.) 

References 

Amaral DG, Insausti R, Cowan WM (1984) The commissural 
connections of the monkey hippocampal formation. J Comp 
Neurol 224:307-336 

Babb TL, Brown WJ, Pretorius J, Davenport C, Lieb JP, Cran- 
dall PH (1984) Temporal lobe volumetric cell densities in tempo- 
ral lobe epilepsy. Epilepsia 25:729-740 

Babb TL, Pretorius JK, Kupfer WR, Crandall PH (1989) Gluta- 
mate decarboxylase-immunoreactive neurons are preserved in 
human epileptic hippocampus. J Neurosci 9:2562-2574 

Baimbridge KG, Miller JJ (1982) Immunohistochemical localiza- 
tion of calcium-binding protein in the cerebellum, hippocampal 
formation and olfactory bulb of the rat. Brain Res 245 : 223-229 

Blackstad TW (1956) Commissural connections of the hippocampal 
region in the rat, with specific reference to their mode of ter- 
mination. J Comp Neurol 105:417-538 

Braak E, Stortkamp B, Braak H (1989) Identification of non-pyra- 
midal cells in the adult human hippocampus by means of anti- 
parvalbumin immunostaining. Soc Neurosci Abstr 15:1249 

Braak H (1980) Architectonics of the human telencephalic cortex: 
studies of brain function, Vol 4. Springer, Berlin 

Bruton CJ (1988) The neuropathology of temporal lobe epilepsy. 
Oxford University Press, New York 

Celio MR (1986) GABA neurons contain the calcium binding 
protein parvalbumin. Science 232 : 995-997 

Celio MR (1990) Calbindin D-28k and parvalbumin in the rat 
nervous system. Neuroscience 35:375-475 

Celio MR, Baier W, Scharer PA, DeViragh PA, Gerday C (1988) 
Monoclonal antibodies directed against the calcium-binding 
protein parvalbumin. Cell Calcium 9:81-86 

Dam AM (1982) Hippocampal neuron loss in epilepsy and after 
experimental seizures. Acta Neurol Scand 66:601-642 

DeFelipe J, Hendry SHC, Jones EG, Schmechel D (1989) Variabil- 
ity of the terminations of GABAergic chandelier cell axons in 
the monkey sensory-motor cortex. J Comp Neuro1321 : 364-384 

de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippo- 
campal interneuron loss and plasticity in human temporal lobe 
epilepsy. Brain Res 495:38~395 

Desphande JK, Siesjo BK, Wieloch T (1987) Calcium accumulation 
and neuronal damage in the rat hippocampus following cerebral 
ischemia. J Cereb Blood Flow Metab 7:89-95 

Duvernoy HM (1988) The human hippocampus: an atlas of applied 
anatomy. JF Bergmann, Munich, p 9 

Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Del- 
gado-Escueta AV (1990) Altered patterns of dynorphin im- 
munoreactivity suggest mossy fiber reorganization in human 
hippocampal epilepsy. J Neurosci 10:267-282 

Hsu SM, Raine L, Fanger H (1981) The use of avidin-biotin- 
peroxidase complex (ABC) in immunoperoxidase techniques: a 
comparison between ABC and unlabeled antibody (peroxidase) 
procedures. J Histochem Cytochem 29 : 577-590 

Johansen FF, Tonder N, Baimbridge K, Zimmer J, Diemer NH 
(1989) Reversible loss of parvalbumin immunoreactivity in the 
postischemic rat hippocampus. Eur J Neurosci Suppl 2:149 

Johansen FF, Zimmer J, Diemer NH (1987) Early loss of somato- 
statin neurons in the dentate hilus after cerebral ischemia in the 
rat precedes CA1 pyramidal cell toss. Acta Neuropathol 
73:110-114 

Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Im- 
munocytochemical study of GABAergic neurons containing the 
calcium-binding protein parvalbumin in the rat hippocampus. 
Exp Brain Res 72:347-362 

Kim JH, Guimaraes PO, Shen MY, Masukawa LM, Spencer DD 
(1990) Hippocampal neuronal density in temporal lobe epilepsy 
with and without gliomas. Acta Neuropathol 80:41-45 

Kosaka T, Katsumaru H, Hama K, Wu JY, Heizmann CW (1987) 
GABAergic neurons contain the CaZ+-binding protein par- 
valbumin in the rat hippocampus and dentate gyrus. Brain Res 
419:119-130 

Kosaka T, Nagatsu I, Wu JY, Hama K (1986) Use of high con- 
centrations of glutaraldehyde for immunocytochemistry of 
transmitter synthesizing enzymes in the central nervous system. 
Neuroscience 18 : 975 990 

Lorente de N6 R (1934) Studies on the structure of the cerebral 
cortex. II. Continuation of the study of the ammonic system. 
J Psychol Neurol 46:113-177 

Nitsch C, Scotti AL, Sommacal A, Kalt G (1989) GABAergic 
hippocampal neurons resistant to ischemia induced delayed 
neuronal death contain the calcium-binding protein par- 
valbumin. Neurosci Lett 105: 263-268 

Nitsch R, Leranth C, Frotscher M (1990a) Most somatostain- 
immunoreactive neurons in the rat fascia dentata do not con- 
tain the calcium-binding protein parvalbumin. Brain Res 
528 : 327-329 

Nitsch R, Soriano E, Frotscher M (1990b) The parvalbumin- 
containing nonpyramidal neurons in the rat hippocampus. Anat 
Embryol 181:413-425 

Ribak CE, Nitsch R, Seress L (1990) Proportion of parvalbumin- 
positive basket cells in the GABAergic innervation of pyramidal 
and granule cells of the rat hippocampal formation. J Comp 
Neurol 300:449-461 

Ribak CE, Seress L (1983) Five types of basket cell in the hippocam- 



136 

pal dentate gyrus: a combined Golgi and electron microscopic 
study. J Neurocytol 12:577-697 

Ribak CE, Vaughn JE, Barber RP (1981) Immunocytochemical 
localization of GABAergic neurons at the electron microscopic 
level. Histochem J 13:555-582 

Scharfman HI, Schwartzkroin PA (1989) Protection of hilar cells 
from prolonged stimulation by intracellular calcium chelation. 
Science 246: 257-260 

Schwerdtfeger WK (1984) Structure and fiber connections of the 
hippocampus: a comparative study. In: Advances in anatomy, 
embryology and cell biology, Vol 83. Springer, Berlin, p 74 

Seress L, Ribak CE (1990) Postnatal development of the light and 
electron microscopic features of basket cells in the hippocampal 
dentate gyrus of the rat. Anat Embryol 181 : 547-565 

Sloviter RS (1983) "Epileptic" brain damage in rats induced by 
sustained electrical stimulation of the perforant path. I. Acute 
electrophysiological and light microscopic studies. Brain Res 
Bull 10:675-697 

Sloviter RS (1987) Decreased hippocampal inhibition and a selec- 
tive loss of interneurons in experimental epilepsy. Science 
235: 73-76 

Sloviter RS (1989) Calcium-binding protein (Calbindin-D28k) and 
parvalbumin immunocytochemistry: localization in the rat 
hippocampus with specific reference to the selective vulnerabil- 
ity of hippocampal neurons to seizure activity. J Comp Neurol 
280:183-196 

Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, 
Chubb IW (1985) Identified axo-axonic cells are immunoreac- 
tive for GABA in the hippocampus and visual cortex of the cat. 
Brain Res 332:143-149 

Soriano E, Frotscher M (1989) A GABAergic axo-axonic cell in the 
fascia dentata controls the main excitatory hippocampal path- 
way. Brain Res 503:I70-174 

Zipp F, Nitsch R, Soriano E, Frotscher M (1989) Entorhinal fibers 
form synaptic contacts on parvalbumin-immunoreactive neu- 
rons in the rat fascia dentata. Brain Res 495:161-166 


