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Abs t rac t  The stiffness that is measured at the hand of a 
multijoint arm emerges from the combined effects of the 
elastic properties of the muscles and joints, the geometry 
of the linkages and muscle attachments, and the neural 
control circuits that act on the arm. The effective stiffness 
of a nonlinear linkage such as a two-joint arm depends 
on the force acting on the system as well as the intrinsic 
stiffness of the actuators. This paper presents an analysis 
of the factors that affect limb stiffness, including the ef- 
fects of external forces. Three potential strategies for 
controlling the stability of the limb are proposed and 
demonstrated by computer simulations. The predictions 
from the simulations are then compared experimentally 
with measured stiffness values for human subjects work- 
ing against an external force. These experiments were di- 
rected toward understanding what strategies are used by 
the CNS to control limb stiffness and stability. The ex- 
perimental evidence showed that human subjects m u s t  in- 
crease the stiffness at the joints in order to maintain limb 
stability in the presence of applied external forces at the 
hand. In the process we identified a precise role for mus- 
cles which span two or more joints in the control of over- 
all limb stiffness. A local strategy may be used to achieve 
limb stability, in which the muscle stiffness increases 
with muscle force. Multijoint muscles are shown to pro- 
vide mechanical couplings which are necessary for the 
maintenance of stability. By utilizing these muscles, the 
neuro-musculo-skeletal system can control a global prop- 
erty of the system (stability) with a passive local strategy. 
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Introduction 

When constrained to act in the horizontal plane, the hu- 
man arm is known to behave at the endpoint like a two- 
dimensional spring (Hogan 1985; Mussa-Ivaldi etal .  
1985; Flash 1987). These elastic properties of the motor 
system are essential for maintaining posture - the estab- 
lishment of an appropriate mechanical impedance and 
equilibrium position for the limb is necessary to achieve 
stable limb postures and interactive behavior with the en- 
vironment (Colgate 1988; Colgate and Hogan 1988). Our 
experiments have been directed toward understanding 
what factors affect the stiffness of the limb and what 
strategies are used by the central nervous system (CNS) 
to assure stability. 

The specific function of multiarticular muscles in bio- 
logical systems has not been established previously. 
Multijoint muscles are not necessary for the produc- 
tion of arbitrary force vectors by a two-joint arm; the 
necessary torque could be provided by the single-joint 
muscles alone. On the basis of theoretical work, Hogan 
argued that double-joint muscles could generate an end- 
point stiffness of arbitrary shape and orientation (Hogan 
1985), where the "shape" of the hand stiffness tensor 
is defined as the ratio of maximum to minimum stiff- 
ness and the "orientation" is given by the direction of 
maximum stiffness (Mussa-Ivaldi et al. 1985). However, 
experimental work shows that human motor system does 
not take advantage of this mechanical opportunity. 
Human subjects are not able to significantly alter either 
the shape or the orientation of the stiffness field at 
the hand (Flash and Mussa-Ivaldi 1990). Theoretical 
studies have shown that optimal trajectory execution with 
a fixed joint stiffness requires the presence of a signifi- 
cant level of double-joint stiffness (Flanagan et al. 1989). 

The modeling and data described in this paper present 
a new view of the role of muscles which span two or 



more joints. The presence of these muscles allows for the 
mechanical coupling of torque and stiffness across joints. 
Our findings indicate that, to achieve a passive stabiliza- 
tion of the limb through muscle mechanical properties, 
multijoint muscles must be present. 

Stiffness and the control of posture 

The static relationship between position and force de- 
fines the elastic behavior of a mechanism coupled with 
its environment. The stability of many mechanical sys- 
tems can be assessed by examining this elastic behavior. 
The stiffness of a system can be described by the change 
in force exerted by the system on the environment in re- 
sponse to an externally imposed change in position at 
steady state. A system is stable if the induced force from 
the system has a component in the direction opposite to 
that of an imposed displacement. In contrast, a system is 
unstable if the induced force has a component in the 
same direction as the displacement. 

For a nonlinear mechanical system, the overall elastic 
properties are not determined solely by spring-like ele- 
ments of the system. Consider the example of a muscle 
spanning a single joint. As the joint is moved, the muscle 
is stretched or relaxed, changing the level of generated 
force. Thus, the muscle force is a function of the joint 
position. The torque produced by the muscle around the 
joint is a product of the force in the muscle times the 
moment arm of the muscle with respect to the joint. In 
general, the moment arm depends on the position of the 
joint. Thus, as the joint moves, the torque generated by 
the muscle will vary owing to the changing moment arm, 
as well as to force changes in the muscle itself. 

To illustrate this mathematically, we can define the 
joint torque ('c) as a function of joint position (0) and 
muscle force (/9- We can then calculate what the stiffness 
(k0) of the system is with respect to joint rotations. In 
this expression, the moment arm [j(0)] varies according 
to the joint angle: 

"c(O) = j(O)f(O) (1) 

/%= d"c 
dO (2) 

dj(O) df(O) (3) 
- -  dO f ( O ) + j ( O )  dO 

Thus, the overall stiffness has two components, one re- 
flecting the stiffness of the spring-like muscle and the 
other stemming from changes in moment arm depending 
on the joint position. This latter term depends on the ac- 
tual force in the muscle at a given moment. The system 
is stable with respect to joint rotations if the total stiff- 
ness (i.e., the sum of the two components) is negative. 

The concepts of stiffness and stability can be applied 
to a multidimensional mechanical system such as the hu- 
man arm. Here we will focus on the stiffness and stabili- 
ty of a two-joint model of the arm. Displacements of the 
hand cause rotations at the joints, while torques at the 
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joints produce linear forces at the hand. The mathemati- 
cal description becomes a bit more complicated (force 
and displacements are represented by two-dimensional 
vectors and the stiffness becomes a two-by-two matrix), 
but the analysis is essentially the same as for the one-di- 
mensional system described above - the overall stiffness 
of the system is determined by the nonlinear geometry of 
the mechanical linkage and the net force produced at the 
hand as well as the intrinsic elasticity of the muscles act- 
ing at the joints (see Appendix A). 

The fact that hand stiffness depends on the net force 
produced by the arm is illustrated in Fig. 1. A posture is 
stable in multiple dimensions if a small displacement of 
the hand results in a change in force that acts to restore 
the original position. Figure 1A shows how the stiffness 
at the hand can be represented. Graphically, the stiffness 
is depicted as a local field of forces. The location of each 
arrow represents a displacement of the system from the 
center position, the same distance in each of the eight di- 
rections. The size and direction of each arrow corre- 
sponds to the size and direction of the change in force 
caused by that displacement. For a stable stiffness, all of 
the arrows must point inward. Mathematically, a neces- 
sary and sufficient condition for postural stability is that 
the stiffness matrix be negative definite. That is, all of 
the eigenvalues of the matrix nmst be less than zero 
(Ogata 1970). Thus, we can see whether a certain limb 
posture is stable by examining the characteristics of the 
measured stiffness field. We can quantify the stability by 
computing the eigenvalues of the estimated stiffness ma- 
trix. 

Figure 1B shows the effect of a net force at the hand 
on the overall stiffness and stability of the system. We 
calculated what would be the stiffness at the hand for 
different net forces. (See the "constant joint stiffness" 
model in the Materials and methods section for details 
on this calculation.) The center field represents the stiff- 
ness of the endpoint for a particular value of joint stiff- 
ness operating against a zero force load. The surrounding 
fields illustrate what the measured endpoint stiffness 
would be for the arm in the same position with the same 
joint stiffness, but while producing a steady state force in 
the direction indicated by the large arrow. One can ob- 
serve that (a) loads which cause the band to pull (hand 
force directed toward either joint) tend to stabilize the 
limb, while (b) hand forces that push (away from the 
joints) tend to destabilize the limb. In fact, for this com- 
bination of force magnitude and joint stiffness, the hand 
stiffness is shown to be unstable for forces in certain di- 
rections (fields a and h). 

An intuitive understanding of the source of the insta- 
bility can be gained by comparing the two-joint arm 
system with a one-dimensional pendulum. Imagine a rig- 
id link connecting the hand in a straight line to a pivot 
point at the shoulder (Fig. 1C). An external force acting 
inward along this line (i.e., the hand is pushing outward) 
would cause the system to behave like an inverted pendu- 
lum, generating an instability around the pivot point. Ro- 
tation around this pivot results in lateral motion of the 
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Fig. 1A-C Stiffness and stability of a two-joint arm. A Represen- 
tations of two-dimensional stiffness. Stiffness can be represented 
mathematically by a matrix or graphically as a field of force vec- 
tors. Stability is determined by the eigenvalues of the stiffness ma- 
trix - for a stable system all eigenvalues must be negative. B De- 
pendence of endpoint stiffness on output force direction. The cen- 
ter field represents the stiffness at the hand for a two-joint arm at a 
particular position and for a particular joint stiffness. Surrounding 
fields represent the hand stiffness for the arm in the same position, 
with the same joint stiffness, while producing a hand force in the 
direction of the large arrow. Note that the stiffness field can be- 
come unstable for forces in certain directions (a, h). C Source of 
endpoint instability. An intuitive understanding of the endpoint in- 
stability caused by an external force can be achieved by imagining 
an inverted pendulum between the hand and shoulder 

endpoint. Thus, the effective stiffness generated by this 
geometrical effect produces instability at the hand per- 
pendicular to the line of force. An applied force directed 
toward the pivot at the elbow would have a similar effect. 
In contrast, an applied force directed outward on the two- 
joint arm would make the system equivalent to a down- 
ward-oriented pendulum. Following the same arguments, 
such an applied force would tend to stabilize the system. 

Control of stiffness and stability 

A number of hypotheses can be formulated about how 
the CNS avoids instability while maintaining hand pos- 
ture against force loads. Here we consider three possible 
control schemes: 

Constant joint stiffness. One simple strategy, at least 
from a robotics point of view, is that of maintaining a 
constant joint stiffness independent of the output force. 
This strategy implies that the hand stiffness will change 
with the direction and magnitude of the external force. 
However, it is possible that the joint stiffness is high 
enough to maintain endpoint stability for loads of rea- 
sonable size. While we would not expect to see such a 
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strategy in a biological system, where muscle and joint 
stiffness is known to vary with activation (Feldman 
1966; Rack and Westbury 1969; Kearney and Hunter 
1990), we tested this null hypothesis to see whether in- 
stability would be a problem in the absence of such stiff- 
ness variations. This analysis leads to insight as to why 
muscle stiffness may increase with muscle force. 

Constant endpoint stiffness. A more complex strategy 
would be to control the joint stiffness so as to maintain a 
constant (and stable) endpoint stiffness. In this way the 
response of the system to force perturbations would be 
constant, independent of the level of force produced by 
the limb. At the task level, motor planning would be sim- 
plified. However, to maintain a constant endpoint stiff- 
ness, it is necessary to modify the joint stiffness as a 
function of the force load. As we will show, this strategy 
requires the coordination of stiffness level across multi- 
ple joints. 

Passive stabilization. At each workspace location, a con- 
stant joint-stiffness strategy implies a predictable varia- 
tion of the hand stiffness in relation to the applied load. 
In contrast, a constant endpoint-stiffness strategy implies 
a predictable variation of the joint stiffness. We simulat- 
ed the two control strategies with a two-joint arm model. 
By comparing the results of the simulations to actual 
stiffnesses measures, we found that neither of these strat- 
egies captures the qualitative behavior of human subjects 
working against a static load. Therefore, we simulated a 
third control strategy, which we call passive stabiliza- 
tion, in which the hand stiffness is stabilized indirectly 
via the mechanical properties of the force-producing ele- 
ments. This strategy is based on two assumptions arising 
from known experimental observations: 

1. Muscle stiffness increases as the muscle force output 
increases (Feldman 1966; Rack and Westbury 1969; 
Hoffer and Andreassen 1981; Kearney and Hunter 
1990). 



2. Mul t i a r t i cu la r  musc les  are act ive even when  torque is 
p r o d u c e d  only  at a s ingle  jo in t  (Buchanan  et al. 1986; 
Jongen  et al. 1989). 

The  mot iva t ion  for  this apparen t ly  ad hoc s t ra tegy came  
f rom the output  o f  our  ear l ie r  s imula t ions  and wil l  be 
d i scussed  in a la ter  section. 

The  results  o f  these  s imula t ion  studies p rov ided  in- 
s ight  into i ssues  conce rn ing  the s tabi l i ty  o f  the h u m a n  
arm. These  ins ights  led us to deve lop  hypo theses  about  
how the CNS accompl i shes  this task. We tes ted these  hy-  
po theses  expe r imen ta l ly  by  measur ing  the response  o f  
human  subjects .  

Materials and methods 

We measured the stiffness of the human arm for subjects working 
against force loads, and we compared these measured responses 
with simulations of a two-joint arm. We measured the stiffness and 
stability for the arm in the horizontal plane and we limited our 
analysis to force loads acting in two directions along a single axis 
in the horizontal plane, as shown in Fig. 2. A positive force value 
corresponds to an outward push by the hand, while a negative 
force value signifies an inward pull. This position and force direc- 
tion were chosen because they accentuate the problem of instabili- 
ty at the hand. In this position, no torque needs to be generated at 
the shoulder to achieve forces in the desired direction. Stability, 
however, will be strongly affected by positive force loads. Note 
that forces in nearby directions would have a similar effect on 
limb stability (see Fig. IB). Thus, our results do not depend on the 
precise maintenance of this singular position. 

Stiffness values were computed for force values of various 
magnitudes and in both directions (positive values correspond to 
the hand pushing, negative value correspond to pulling). The stiff- 
ness of the hand is displayed both graphically, as a set of force/dis- 
placement vectors, and in a plot of stiffness eigenvalues versus 
force load. For each condition, the joint stiffness is divided into 
three independent components, corresponding ideally to the con- 
tribution of each of the shoulder single-joint, elbow single-joint, 
and double-joint muscles to the overall joint stiffness (Fig. 2). 
These components are plotted separately against the applied force 
load (Figs. 4-10). This decomposition of joint stiffness was based 
on the simplifying assumption that the muscles act with constant 
moment arms at the joints. Furthermore, it was assumed that the 
moment arms of the double-joint muscles are equal for each joint 
(rl/r2=l). The dependence of the results upon these assumptions 
will be discussed in a subsequent section. 
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Simulation methods 

Constant joint stiffness model. To simulate the response of a con- 
stant joint stiffness model, constant values were selected for each 
component of the stiffness matrix Ko. The equation 

K x = J < r ( O ) I K ~  DJr(O) F]  J - l ( O ) 0 0  (4) 

was then used to compute the resulting hand stiffness K x predicted 
for each applied force load, where F is the net force at the hand 
and J(| is the Jacobian of the coordinate transformation from 
joint angles to hand position. (See Appendix A for the derivation 
of Eq. 4 and a definition of all symbols.) 

Constant hand stiffness model. In this case the values of the hand 
stiffness matrix were selected and assumed to be constant. Joint 
stiffness values were computed from the specified hand stiffnesses 
by inverting Eq. 4: 

K o = Jr(O)KxJ(O) + ~ F  (5) 

Passive stabilization model. To simulate this strategy the muscle 
elastic response was modeled as an exponential relationship be- 
tween muscle length and muscle force. This relationship satisfies 
the assumption that stiffness (Of/Ol) increases with muscle force 
and is consistent with observed biological data (Feldman 1966; 
Rack and Westbury 1969; Kearney and Hunter 1990). While only 
an approximate representation of the force/length characteristics 
of muscle, the details of this relationship are not essential to the 
foregoing analysis. The important point is that muscle stiffness in- 
creases with muscle force. The torque required to produce a de- 
sired force output was distributed between the uniarticular and bi- 
articular muscles based on the relative stiffness values of each. 
This is also in agreement with experimental observations (Buchan- 
an et al. 1986; Jongen et al. 1989). 

The imposed force load was used to compute the required mus- 
cle force under each simulated condition. The relationship be- 
tween muscle force and stiffness was used to compute the result- 
ing joint stiffness matrix, and Eq. 4 was once again used to com- 
pute the corresponding hand stiffness. 

Experimental methods 

Three normal, healthy volunteers, aged 25-35 years, participated 
in these experiments. The stiffness of the human arm was mea- 
sured for each subject maintaining a specified posture against dif- 
ferent force loads. Stiffness was measured statically using the 
methods of Mussa-Ivaldi et al. (1985). To summarize briefly, the 
subject was seated in a straight-back chair in front a planar, two- 

Fig. 2 Definition of joint stiff- 
ness components and force di- 
rections. The joint stiffness ma- 
trix K o is partitioned into three 
components: k s, k e, and k a, cor- 
responding to the combined 
stiffness (including both flexors 
and extensors) of the shoulder 
single-joint, elbow single-joint, 
and shoulder to elbow double- 
joint muscles, respectively 

Positive Force 
Hand PusMng 

k s + -  7 

Negative Force k_ ~ x ~ ' ~  
H~nd Pulling e r 2 where k s ----- single joint shoulder stiffness, e 

r k e = single joint elbow stiffness, 

k d = double joint stiffness. 

r 1 
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Fig. 3 Raw data records for 
four displacements from a sin- 
gle stiffness measurement. 
Two-dimensional hand position 
(Px, Pv) and force (F x, Fy) are 
plottdd against time. The bars 
above each graph indicate the 
time periods over which the 
baseline and displaced data val- 
ues were averaged. The net 
change in force and position 
was computed as the difference 
between two corresponding 
means. The net changes col- 
lected from 30 such displace- 
ments were used to estimate the 
two-dimensional joint stiffness 
at the hand 
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joint manipulandum. A strap around the torso of the subject and 
the chair prevented lateral movements of the shoulder with respect 
to the apparatus and the test position. Subjects grasped the handle 
of the manipulandum, the end of which was free to move in the 
horizontal plane. The subject's elbow was supported by a sling 
suspended from the ceiling, thus restricting the movement of the 
arm to the horizontal plane. A splint attached by Velcro straps to 
the hand and forearm prevented flexion at the wrist. 

To initiate a trial, the subject was required to move the hand to 
the specified starting position 30 cm in front of and in line with 
the shoulder. This target location was indicated by a light-emitting 
diode (LED) suspended above the plane of the workspace. When 
the subject's hand was at rest within a small distance of the initial 
position, displacements were imposed on the hand through servo- 
control of torque motors acting at the two joints of the apparatus. 
Displacements of two different magnitudes and in eight directions 
were applied for each stiffness measurement. Actual displace- 
ments were measured by optical encoders at the joints of the appa- 
ratus and varied between 1 and 4 mm. The hand was gradually dis- 
placed over the course of 150 ms, held for 1.2 s, then released 
gradually over 150 ms. Subjects were instructed to not consciously 
intervene when the hand was displaced. 

The forces required to move and hold the hand at the desired 
displaced position were measured by a six-axis force/torque trans- 
ducer (Lord F/T series model 15/50; range _+66 N, resolution +0.05 
N) mounted on the handle of the manipulandum. (This is different 
from the original experiments by Mussa-Ivaldi et al. (1985), in 
which the forces were measured indirectly by the current in the 
servomotors). The force sensor was powered for at least 30 min 
prior to each experiment to avoid problems of thermal sensitivity. 
The subject was allowed to rest for several minutes between mea- 
surements at different loads and at any time he or she felt fatigued. 

An off-line, automatic procedure was used to determine when 
the hand came to rest (v<0.3 cm/s) following the initiation of the 
servo displacement (typically after 600 ms). The X - Y  forces and 
the actual achieved displacement from the the starting position 
were averaged over this period (300-800 ms). Linear regression of 
this data was used to compute a best fit, two-by-two matrix repre- 
senting the stiffness field at the hand (Mussa-Ivaldi et al. 1985). 
Figure 3 shows raw data records for four different displacements 
from a single stiffness measurement. 

The symmetric and antisymmetric components of the mea- 
sured hand stiffnesses were compared for each subject, confirming 
that for the loads applied in this study the antisymmetric compo- 
nent contributes negligibly to the stiffness field (Mussa-Ivaldi et 
al. 1985). Only the symmetric component of this matrix was used 
in the subsequent analysis. 

Force loads were generated by attaching various lead weights 
to the subject's hand via a cable and pulley arrangement, so as to 

produce a force along the line between the hand and the shoulder. 
The magnitude of the load was independently measured at the 
hand with a linear force transducer, to account for any friction in 
the pulley (which appeared to be negligible). While there was little 
or no intrinsic stiffness associated with the weight and cable, the 
geometry of the load apparatus generated a component of stiffness 
at the hand in the direction perpendicular to the direction of the 
cable (the cable/weight/pulley system is itself a nonlinear linkage). 
The stiffness of the load apparatus was computed for each force 
value and subtracted from the measured stiffness to get the intrin- 
sic hand stiffness: 

Kload =--rag 

( ! _ 4 )  x.y. ] 
(t  ) 7 -  / 

Xpyp (1 y2 h 13 j j 

(6) 

Kx=Krneasured-Kload (7) 

where (x ,  y ) is the location of the hand with respect to the pulley, 
l=[xZ+yZf '-(1~2) i s  the distance from the hand to the pulley, m is the 

P 
mass olVthe weight, and g is the acceleration due to gravity. Seven 
to twelve different load values were applied, ranging from -60  to 
+60 N, following the convention of Fig. 2. 

The actual joint stiffness matrix used by the subject was com- 
puted from each measured hand stiffness and force load by Eq. 5. 
Limb dimensions (interjoint distances) were measured simply with 
a ruler. Measured hand stiffnesses were plotted as vector fields, 
along with the stiffness eigenvalues and computed joint stiffness 
components for each measurement. (Not all of the measured stiff- 
ness values are plotted as vector fields.) 

The experimentally measured stiffness properties were com- 
pared with four different models of stiffness control. For each 
model and each subject we fit the free parameters of the model to 
the measured data and then used the model to predict the system 
behavior for various force loads. 

First, a constant joint stiffness model was computed, based on 
the joint stiffness computed from the measured hand stiffness for 
the subject at rest (zero force load): 

I~ o (F)=K o (0) (8) 

where I~ represents the values produced by the model. Equation 4 
was used to compute the model hand stiffness K x (F). 

A second constant joint stiffness model was also fit to each set 
of data, this time using the mean joint stiffness computed from 
measurements for all force loads. This produces the "best fit" 
constant joint stiffness model: 



I~o(F) = l i ~ K o (  ~ ) (9) 

where F~...F,, represent each of the tested force load values. 
A model of constant hand stiffness was fit to each set of data: 

= - - Z K x ( g )  (10) 
F/ i= l  

Equation 5 was used to compute the required model joint stiffness- 
es Ko (F) for each applied force. 

Finally, a model of increasing joint stiffness versus force load 
was tested. Linear regression was used to produce functions relat- 
ing the joint stiffness values to the magnitude of the applied load. 
Separate linear f}mctions^were fit for each of the joint stiffness 
components /c s, k~, and k d. The regression parameters for each 
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subject are presented in Appendix B. These components were then 
combined to produce the model joint stiffness matrix K o as in 
Fig. 2. 

The predicted output of the models was compared with the 
measured and computed data. The error between the predictions 
and the data is defined as: 

c=K x- I~  x ( 11 ) 

Defining the norm of a matrix to be equal to its largest eigenvalue 
(Strang 1989), the mean magnitude of the error matrices Ei for a 
given model was used as a measure of its fit to the data. 

Simulations and analyses were performed on a Symbolics 
3600 Lisp Machine using the algorithms described in previous 
publications (McIntyre 1990; McIntyre et al. 1989). 

Fig. 4 Simulation of constant 
joint stiffness control for low 
(solid) and high (dashed) levels 
of joint stiffness. The top line 
shows the effective hand stiff- 
ness as a function of force load, 
in a vector field representation. 
The middle graph shows the 
variation of the two hand stiff- 
ness eigenvalues as a function 
of force load (one line per ei- 
genvalue for each level of joint 
stiffness). The lower graphs 
show the values of each joint 
stiffness component. The ei- 
genvalues of the hand stiffness 
matrix can become positive, 
demonstrating that if the joint 
stiffness is held constant the 
hand stiffness can become un- 
stable at sufficiently high 
loads 
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Fig. 5 Simulation of constant 
endpoint stiffness control. 
Shoulder and double-joint mus- 
cles must stiffen in order to 
maintain a constant stiffness at 
the hand 
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Resul ts  

To gain insight into the control problem, we first consid- 
ered the simulations of the proposed control strategies. 
We then compared these models with the measured data 
from human subjects. 

Simulation results 

C o n s t a n t  j o i n t  s t i f f n e s s .  Figure 4 shows the hand stiff- 
nesses resulting from a constant joint stiffness control 
strategy for two different values of joint stiffness. The 

lower-magnitude joint stiffness is typical of a human 
subject acting against a zero force load. The endpoint 
stiffness was computed for conditions in which the limb 
maintains the same posture and joint stiffness while pro- 
ducing a desired output force. The fields along the top of 
the figure represent the predicted stiffnesses for nine dif- 
ferent specified force loads using the lower magnitude of 
joint stiffness. Below these figures is plotted a graph of 
the eigenvalues of the computed stiffness matrices. This 
plot shows that if the arm were to maintain a low con- 
stant joint stiffness (solid lines) the endpoint stiffness 
would become unstable at approximately 30 N force. 
The system can be stabilized to a greater magnitude of 
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Fig. 6 Arm stiffness for the 
passive stabilization strategy 
using an exponential model of 
muscle. Hand stiffness is not 
constant, but stability is main- 
tained 
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applied force if a higher constant joint stiffness is used 
(dashed lines). 

Constant endpoint stiffness. Figure 5 shows the joint 
stiffness values required to produce a constant endpoint 
stiffness. Looking at the plots of joint components versus 
force, this figure shows that the shoulder and double- 
joint stiffness components must vary with the hand force 
in order to maintain a constant hand stiffness. This is in- 
teresting, because, for force loads in these two direc- 
tions, there is no torque being produced at the shoulder 
(the line of force passes through the shoulder; see Fig. 
2). In order to maintain a constant endpoint stiffness, 

shoulder stiffness must increase in response to an in- 
crease in torque at the elbow. Equally significant is the 
fact that elbow stiffness need not increase in this case in 
order to maintain stability. 

Passive stabilization. The proposed passive stabilization 
strategy was based on the assumption of increasing mus- 
cle stiffness with muscle force, and the contribution of 
double-joint muscles to the production of torque at the 
elbow. The importance of these two conditions is appar- 
ent from the previous examples. Joint stiffness must in- 
crease (become more negative) with the force load in 
certain directions in order to maintain hand stability. Fur- 
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Fig. 7 Exponential muscle 
model without double-joint 
muscles. Without the stiffening 
action of the double-joint mus- 
cles, stability is not main- 
tained 
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thermore, torque production at one joint must be coupled 
with stiffness changes at another. As torque is produced 
to generate the desired force, increases in muscle stiff- 
ness would produce the necessary change in joint stiff- 
ness, while multijoint muscles would provide the re- 
quired interjoint coupling. 

Figure 6 shows the hand stiffness obtained from a 
system having muscles that stiffen proportionally with 
output force. Unlike the constant joint stiffness model, 
stability is maintained despite increases in force load. 
The mechanics by which the hand stiffness is stabilized 
are apparent in the plot of the joint stiffness components. 
As the force load increases, the torque at the elbow must 

increase. According to our assumptions (see Materials 
and methods, and Discussion), this torque load is shared 
by the single-joint elbow and double-joint muscles. The 
increase in double-joint muscle force generates an in- 
crease in stiffness at both joints. In addition, because the 
double-joint muscle produces torque at both the shoulder 
and the elbow, the single-joint shoulder flexors must be- 
come active in order to counteract the shoulder torque. 
The resulting increase in stiffness of the single-joint 
shoulder muscles further stabilizes the limb. 

In contrast to the constant endpoint stiffness model, 
the stiffness at the elbow also increases owing to the in- 
crease in elbow single-joint muscle activity. Further- 



Fig. 8 Stiffness data for sub- 
ject S.F.G. The dashed lines in- 
dicate the predicted response 
for the constant joint stiffness 
model. The solid lines show the 
response of the best-fit passive 
stabilization model 
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more, the double-joint stiffness increases for hand forces 
in the negative direction as well. Each of these effects 
tends to increase the overall stiffness of the hand. The 
endpoint stiffness will indeed change for different force 
loads, but the fundamental condition of stability will be 
satisfied. 

The double-joint muscles play a key role in stabiliz- 
ing the limb under this strategy. To emphasize this point, 
Fig. 7 shows the hand stiffnesses generated by a simulat- 
ed two-joint arm having only single-joint muscles. The 
stiffness at the elbow increases with the level of force 
output, but since the shoulder muscle generates no 
torque, there is no change in shoulder stiffness. The pat- 

tern of endpoint stiffness is different from the constant 
joint stiffness model, however the stiffness can still be- 
come unstable as the force level increases. 

Model  predictions. The predictions that can be made 
from these control models are summarized as follows: 
1. Maintaining a constant joint stiffness will yield a de- 

stabilization of the hand stiffness when operating 
against certain force loads, possibly to the point of in- 
stability. 

2. Stabilizing the hand stiffness requires the coupling of 
torque changes at one joint with stiffness changes at 
another. 
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Fig. 9 Stiffness data for sub- 
ject S.M.B 
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3. A local strategy in which muscle stiffness increases 
with output force can effectively stabilize the limb. 

4. Multiarticular muscles provide the interjoint coupling 
necessary to stabilize the limb. 
For nonlinear linkages, such as a two-joint arm, sta- 

bility depends on the force output. A system which con- 
trols such a linkage must take into account this depen- 
dence. We have examined how the human motor system 
controls limb stiffness under varying load conditions, 
and compared the response of the subjects with that of 
the proposed control models described above. 

Experimental results 

The stiffness parameters for each of the three subjects are 
plotted in Figs. 8-10. The measured hand stiffness did not 
become unstable for any subject under any of the force 
loads tested, as evidenced by the negative eigenvalues for 
each of the measured stiffness matrices. In fact, each sub- 
ject showed a trend toward increasing stability (more neg- 
ative eigenvalues) as the magnitude of the force load inr- 
eased. In all cases the magnitude of the double-joint stiff- 
ness component increased as a function of force load. 

Lines representing the simulated results for the con- 
stant joint stiffness control model are superimposed on 
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Fig. 10 Stiffness data for sub- 
ject J.L.M. The sensitivity of 
the joint stiffness calculation to 
changes of the assumed dou- 
ble-joint muscle moment arm 
ratios is also shown 
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the plots of the measured stiffness values. The simulation 
of a constant joint stiffness predicts a positive (unstable) 
hand stiffness eigenvalue for loads above approximately 
30 N. From these simulations one can see that a constant 
joint stiffness strategy would produce an unstable hand 
stiffness at force loads within the range achieved by sub- 
jects S.F.G. and J.L.M. Subject S.M.B. was not tested 
above the potentially unstable level of force, but showed 
no trend toward becoming unstable within the tested 
range. 

We wished to test the statistical validity of this result. 
For a single measured parameter, we would normally 
compute an ideal value at which the system would be- 

come unstable, then perform an appropriate statistical 
test to show that the measured values are significantly 
different from this threshold. We cannot, however, com- 
pute threshold values for each joint stiffness component, 
because the stability of the system depends on the partic- 
ular combination of all three. Instead, we tested the vari- 
ability of the joint stiffness values computed from mea- 
sured data, defined confidence limits for the true mean of 
these values, and then showed that, for joint stiffness 
components within these ranges, the system would be- 
come unstable. 

The hand stiffness was sampled on subject S.F.G. five 
times each at a load of 0 N and 2.5 N, and the mean of 
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Table 1 Comparison of control models 

Mean error for different control models 

Constant joint stiffness Constant Exponential 
endpoint muscle 

Rest stiffness Best fit stiffness model 

S.EG. 409 210 197 84 
J.L.M. 233 144 149 88 
S.M.B. 319 195 193 107 

each component of the hand stiffness was computed. As- 
suming a t-distribution of each joint stiffness component 
around the true mean, the 99% confidence interval for 
the true joint stiffness values can be computed: 

^ [--178 <Kxx< 4 5  5 <Kxv< 81 1 
Ko F=0 l 42 <Ky x < 94 -474 <Kyy < -154 

^ [--169 < K ~  < -120 -17 <Kxy < 45 ] 
Ko F=a,5 l --3 <Ky~ < 83 -515 <Kyy < -154 

. a  

We then allow each independent joint stiffness value 
(maintaining a symmetric matrix, as in our previous 
computations) to assume the most stable (most negative) 
value within its respective range, i.e., 

I~ _[-178 
O-L_17 ~51175 ] 

Computation of the hand stiffness using this joint stiff- 
ness levels shows that if the arm were to maintain a con- 
stant joint stiffness at this level, the hand stiffness would 
become unstable at one or more of the test force loads. 

The likelihood that the true mean for a given value 
would be more negative than its respective limit is less 
than 0.005 (one-tailed test). If measurement error in all 
four components varied independently, the likelihood 
that all four would reach this limit is very small (0.0054); 
however, we expect error in these values to covary, since 
we are computing four values from raw data having only 
two degrees of freedom (F x and Fy). On the other hand, 
even if errors in all four components covaried exactly, 
the odds that the true joint stiffness is this negative are 
still only 0.005. By this overly conservative estimate, we 
can be sure of the reliability of these results, 

The four control models produce different predictions 
for the hand and joint stiffnesses measured for different 
force loads. Table 1 presents the quantitative comparison 
of each of the simulated models with the measured data. 
For all three subjects the best model was that of increas- 
ing muscle stiffness with output force. 

Discussion 

It is immediately clear from the Cartesian representation 
of the measured stiffness that subjects did not become 
unstable under any of the force loads tested. This is dem- 
onstrated by the fact the the subjects were able to main- 

tain the required posture during measurement of the hand 
stiffness. Had they become unstable, it would have been 
impossible for the subject to perform even this simple 
task. The question is not whether but how the arm re- 
mains stable in the presence of a load. 

Our experimental results rule out the hypothesis that 
the CNS controls the limb so as to maintain either a con- 
stant joint stiffness or a constant endpoint stiffness. The 
constant joint stiffness model would predict a monotonic 
change in the effective hand stiffness with respect to the 
applied force, which would become unstable at suffi- 
ciently high loads. A model in which the endpoint stiff- 
ness is held constant would require a monotonic increase 
in shoulder and double-joint stiffnesses, and no change in 
elbow stiffness. None of these predictions are in agree- 
ment with the qualitative features of the observed data. 

The data are in better agreement with the passive sta- 
bilization model for the control of stability. Subjects 
maintain stability, demonstrating that coupling is occur- 
ring between the shoulder and elbow, since no shoulder 
torque is required. The fact that the elbow stiffness goes 
up dramatically with elbow torque, even though this is 
not required to maintain stability, is consistent with this 
model for the control of stiffness. Furthermore, the dou- 
ble-joint stiffness is seen to increase with hand force, in 
particular for forces in the positive (destabilizing) direc- 
tion. This supports the notion that the double-joint mus- 
cles are involved in the cross-joint coupling required for 
overall limb stability. 

The predictions of the passive stabilization model do 
not exactly match all the qualitative features of the mea- 
sured data. In the measured data the increase in stiffness 
seen for each of the joint components is asymmetric with 
respect to the direction of force. In fact, in some cases 
the shoulder and double-joint stiffness components ap- 
pear to be relatively constant for negative (stabilizing) 
forces. This is in contrast to the symmetric patterns of 
stiffness change predicted by the passive stabilization 
model (Fig. 6). In this model, however, torques and stiff- 
nesses were produced by ideal spring-like actuators act- 
ing at the joints, one for each of the joint components. In 
reality, the joint torques are produced by agonist/antago- 
nist groups of muscles. The torque produced in one par- 
ticular direction is generated by a different set of mus- 
cles than for torque in the opposite direction, e.g,, triceps 
is activated to generate a pushing force, while the biceps 
is used for pulling. Thus, it is reasonable to expect a dif- 
ferent stiffness versus torque relationship for forces in 
different directions. On the other hand, this may be evi- 
dence for stiffness adaptation according to the nature of 
the load. Shoulder and double-joint stiffness may be in- 
creased only for destabilizing loads. 

Flash, Mussa-Ivaldi and colleagues (Flash and Mussa- 
Ivaldi 1990) have previously investigated the hand stiff- 
ness and the joint stiffness of the multijoint arm in sub- 
jects who maintained the hand at a number of locations 
in the horizontal plane. In this study it was found that 
subjects have a limited ability to modulate either the 
shape or the orientation of the hand stiffness field. Only 
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the size varied in response to various force perturbations. 
The current results do not contradict these observations, 
even in the presence of high force loads. Neither the 
measured hand stiffnesses nor the passive stabilization 
model show a significant change in the shape or the ori- 
entation of the hand stiffness as the force increases, be- 
cause the eigenvalues of the stiffness matrix tend to 
covary. In contrast, however, passive stabilization with- 
out double-joint muscles would show a substantial 
change in the shape of the stiffness field. Thus, while 
subjects may not be able to exploit fully the two-joint 
muscles to produce arbitrary stiffness field shapes and 
orientations, the presence of double-joint muscles helps 
to provide more uniform hand stiffness properties. 

Role of double-joint muscles 

The current study presents a new view of the role of 
multijoint muscles. In terms of joint torques, the destabi- 
lizing effect of the endpoint force is a global property of 
the system resulting from the nonlinear nature of the 
linkage. The level of torque being produced at one joint 
can affect the stiffness required at the other. If either 
joint were studied in isolation, or if pure torque loads 
were used, the effects on stabiliy could not be observed. 
Yet the human motor system can adopt a local strategy 
for controlling stability. With multijoint muscles present, 
each muscle stiffness need be a function only of its own 
force output in order to maintain overall limb stability. 
The multiarticular muscles provide the necessary cou- 
pling between joints. This is an example of a mechanical 
design simplifying the control problem. 

Mechanical properties, reflexes and voluntary responses 

A third possibility exists: joint stiffness could increase 
through changes in the reflex feedback gains which con- 
tribute to the stiffness around the joint (Nichols and 
Houk 1976). In this case it would be the reflex gains of 
the shoulder single-joint muscles along with, perhaps, the 
double-joint muscles that would be expected to increase. 

Finally, we cannot rule out a voluntary response on 
the part of the subject, despite instructions to avoid them. 
Previous experiments in which electromyographic 
(EMG) signals were measured indicate that subjects in- 
deed do not respond "voluntarily" (Mussa-lvaldi et al. 
1985). Furthermore, the hand did come to rest at some 
distance from the target position when the displacement 
was applied to the hand. The subject could presumably 
cancel the imposed perturbation by a voluntary action, as 
the forces produced by the motors were not excessive. In 
any case, even if a voluntary response is involved, the 
control of the hand position still exhibits spring-like 
properties. A more fundamental issue is that of mechani- 
cal versus neuronal effects. 

Unfortunately, we are unable to distinguish between 
these possibilities, based on our experimental results. We 
can see from the fits of the passive stabilization model 
that shoulder stiffness increases for destabilizing loads in 
all subjects (shoulder stiffness vs force slopes are non- 
zero). This is consistent with all three hypothetical mod- 
els presented above. The measurement of force changes 
after the limb has come to rest prevents us from distin- 
guishing between muscle mechanical properties and re- 
flex effects. In the case of the passive stabilization mod- 
el, this increase in shoulder single-joint stiffness comes 
from the need to activate single-joint shoulder flexors to 
counteract the shoulder torque generated by the double- 
joint extensors. While not conclusive, the fact that dou- 
ble-joint stiffness increases more than shoulder stiffness 
favors the passive stabilization model. 

Our experiments have not addressed the question of how 
the changes in joint stiffness are achieved. A particularly 
elegant solution arises from the fact that muscles stiffen 
as the force increases (Hoffer and Andreassen 1981). In 
this way, stiffness control would be achieved with no ad- 
ditional intervention from the nervous system. This is the 
essence of the "passive stabilization" model that we 
have presented. 

One should note, however, that the" intrinsic stability 
arising from a fixed relationship between stiffness and 
output force is not adequate to solve all postural control 
problems. For example, Hogan (1984) found an experi- 
ental condition under which load stabilization was 
achieved through cocontraction at the ~ elbow. In, his sin- 
gle-joint task, no net change in torque-was required to 
support the change in load, so passive stabilization via 
increased force output: would not have been adequate to 
maintain stability. A similar strategy might be employed 
under the force conditions of the current study. External 
force loads might induce the subject to cocontract mus- 
cles at the shoulder to increase the joint stiffness., without 
a net generation of torque. 

Muscle length-tension properties 

In the simulations of the increasing muscle stiffness 
model, a linear force-stiffness relationship was used to 
model the muscle response. Other nonlinear relation- 
ships between stiffness and force would also be suffi- 
cient to guarantee stability, the key assumption is only 
that stiffness must increase with muscle force. From Eq. 
4 we can see that the overall stability of the limb is deter- 
mined by the sum of two factors, the stabilizing effect of 
the joint stiffness plus the potentially destabilizing effect 
of the load coupled with the nonlinear geometry of the 
mechanical system. The destablilizing effect of the ap- 
plied load increases linearly with the force magnitude, as 
does the joint torque required to counteract the load. If at 
any given force level the increase in stability provided by 
changes in joint stiffness is greater than the instability 
due to the nonlinear geometry and load, the system will 
remain stable. 

Data from Hoffer and Andreassen suggest that a lin- 
ear increase in stiffness versus force is characteristic of 
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areflexive muscle (Hoffer and Andreassen 1981). In the 
presence of reflexes, the increase in muscle stiffness is 
steeper for low levels of force and flattens out at high 
levels. This relationship between force and stiffness can 
still provide for stabilization of the limb, provided that 
the average rate of stiffness increase is sufficiently high 
for the entire useful range of muscle forces. 

Distribution of muscle activity 

For a given force at the hand, there is no uniquely de- 
fined set of muscle activations. In the simulations we as- 
sumed that the double-joint muscles contributed to the 
hand forces that were produced. Specifically, we distrib- 
uted the load proportionally according to the relative 
stiffness of each muscle. Passive stabilization of the limb 
through muscle mechanical properties does not imply 
necessarily this specific rule for the distribution of mus- 
cle activity, but it does require that the double-joint mus- 
cles participate in torques produced at either joint. Mea- 
surements of EMG signals during production of torques 
in the human arm support this assumption (Gielen and 
van Zuylen 1986; Jongen et al. 1989). 

The values estimated from measured data suggest that 
perhaps the rule we used in the simulations for distribut- 
ing muscle forces does not reflect what is done by the 
CNS. For stabilizing loads, the shoulder and double-joint 
stiffness components do not increase, in contrast to the 
model predictions. This may simply be due to different 
elastic properties for the flexor and extensor double-joint 
muscle groups, as noted above. On the other hand, it may 
reflect a difference in the relative activation of two-joint 
muscles depending on the destabilizing effect of the 
load. A refinement of the passive stabilization model 
might include a consideration of force direction in the 
distribution of muscle forces, predicting a higher partici- 
pation by multijoint muscles for destabilizing loads. 

Model parameters 

We now consider how these results are affected by the 
specific choice of mechanical parameters in our simula- 
tions and experiments. 

computed for subject LL.M. using three different values 
for the moment arm ratio. These values span the range of 
reasonable real values for the moment arm ratio. The 
change in ratio quantitatively affects the shoulder and el- 
bow components, but qualitatively the results are the 
same. The elbow stiffness continues to increase for forc- 
es in either direction. The values for the double-joint 
stiffness components are unaffected by the choice of the 
moment arm ratio. 

Constant moment arms. For the analysis of the measured 
data, we assumed that the muscles acted at the joints 
with constant moment arms and attributed observed 
changes in joint stiffness to changes in muscle stiffness. 
A muscle acting with a nonconstant moment arm around 
a joint would produce an effective joint stiffness compo- 
nent dependent on both the intrinsic muscle stiffness and 
the muscle force. Such an effective joint stiffness would 
depend very much on the position of the limb at the time. 
It is conceivable that the observed changes in joint stiff- 
ness can be attributed solely to this mechanical effect, 
but it is unlikely that it would be sufficient to stabilize 
the limb in all areas of the workspace. 

Nominal hand position and force direction. In these ex- 
periments we chose to study the effect of force loads that 
were directed between the hand and the shoulder. This 
singular configuration was chosen because it most 
strongly demonstrates the need for coupling between the 
two joints. This alignment of forces through the shoulder 
is not essential, however, as shown by Fig. 1. Loads over 
a wide range of directions have a destabilizing effect on 
the hand stiffness. Torques at the shoulder would in- 
crease only slightly for small deviations from this align- 
ment. For a 1-cm lateral deviation from this line, a 1-N 
load at the hand would require a 1-Ncm torque at the 
shoulder, and approximately a 22-Ncm torque at the el- 
bow. Thus, the shoulder torque will still be relatively 
small, while significant shoulder stiffening will still be 
required. Thus, our results are insensitive to small errors 
in the initial positioning of the hand and to the displace- 
ments imposed by the stiffness measuring procedure. 

Conclusions 

Equal moment arms. The computation of joint stiffness 
components was based on the assumption that the dou- 
ble-joint muscles act at each joint with equal moment 
arms (rJr2=l). This assumption can be relaxed without 
altering the conclusions, since neither the observed hand 
stiffness values nor the overall joint stiffness matrix is 
affected by this assumption. The conclusion that the sub- 
ject maintains neither a constant hand stiffness nor a 
constant joint stiffness are valid regardless of the value 
of q/r> 

Variations in the value of rl/r 2 affect only the relative 
contribution of each type of muscle to the overall joint 
stiffness. Figure 10 shows the joint stiffness components 

To adequately control the stability of a multijoint limb, 
the force being produced by the limb must be consid- 
ered. These experiments have shown that for human sub- 
jects joint stiffness must increase with force output in or- 
der to maintain stability at the hand. 

A model of stiffness control has been proposed in 
which limb stability is maintained through the intrinsic 
mechanical properties of the system. This strategy is bio- 
logically plausible and the competence of the model has 
been demonstrated by computer simulations. The stabili- 
ty of the limb is a global property of the motor system, 
depending on limb configuration and net output force. 
The proposed model, on the other hand, is entirely based 



on local processing of information, in which a muscle's 
stiffness depends only on that muscle's force output. The 
ability of this local strategy to stabilize the hand results 
from the mechanical coupling provided by the two-joint 
muscles of the arm, suggesting a precise role for multiar- 
ticular muscles in the control of limb posture. 

In human subjects, the CNS maintains neither a con- 
stant joint stiffness nor a constant endpoint stiffness 
when faced with different forces. Of the control models 
tested, stiffness control in human subjects is best de- 
scribed by the passive stabilization of the endpoint 
through increasing muscle stiffness and the action of 
multijoint muscles. 
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Appendix A: derivation of stiffness and stability 

Stiffness and stability can be defined as follows: for a one-dimen- 
sional system, if the force output of the device is described at 
steady state by the function 

f=g(x) (A1) 

the stiffness as a function of position is given by 

_ dg k(x) ---~- (A2) 

A system can be considered stable around a position x I if the value 
of the stiffness at that point is negative [k(xl)<0]; a positive stiff- 
ness means the system is unstable. Note that the stability of a non- 
linear system having zero stiffness at a given point cannot be de- 
termined by looking at the stiffness value alone (Ogata 1970). 

For multidimensional systems, the position of the system and 
the force acting on the system are described by n-dimensional vec- 
tors X and F. If the force acting on the system is described by a 
vector function G, 

F=G(X) (A3) 

the stiffness of the system is an elastic tensor represented by the n 
by n matrix 

[aF  3F11 ] 
< " < /  

K = i i ( A 4 )  

| 3z ,  3z, ! 
L a< ax,, j 

A necessary and sufficient condition for postural stability is that K 
be negative definite. That is, all the eigenvalues of K must be less 
than zero (Ogata 1970). 

For a two-joint arm we define the following symbols: | vector 
of joint angles; Ko, 2x2 joint stiffness matrix; "c, vector of joint 
torques; K X, 2x2 hand stiffness matrix; X Cartesian position of 
hand; J 2x2 Jacobian matrix; F Force output at hand. 

The relationship between hand and joint stiffness is derived as 
follows: 

Ko = ~z  ( A 5 )  
30 (A6) 

Similarly, the hand stiffhess relates the force to displacement vec- 
tors as measured at the hand: 
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Kx = 3F (A7) 
3X (A8) 

To show this dependence, we can mathematically derive the hand 
stiffness equation as follows. The position of the hand (X) is a 
function of the joint angle vector (| 

X=s (A9) 

The Jacobian matrix J(@) relates small changes in tip position to 
changes in joint angles: 

J (O)= 3s (A10) 
aO 

dX=J(O)dO (111) 

The torque required to produce a given tip force is (Brady et al. 
1983): 

z=Jr(O)F (A 12) 

The relationship between joint and hand stiffness can then be de- 
rived by differentiating Eq. A12 (see Mussa-Ivaldi et al. 1989): 

0"c 
K ~  alE) (AI3) 

- r  "--" OF 0Jr(O) 
= J  ( 0 ) ~  + ~ r  (A14) 

=J r (O)KxJ(O)  + ~ F  (A15) 

K x = J l r ( |  K(~ 0JT(|174 (116) 

The term 

0Jr(O) 
OO F 

reflects the effective stiffness resulting from the position depen- 
dence of the Jacobian. It is computed as follows: 

FOjT(O) F ] 3[Jr(| - w  32X • (A17) 
vu L--a-o-- ]u : 167 -k - 3o,1% 
From Eq. A16 it can be seen that the stiffness at the hand depends 
not only on the value of the joint stiffness K o but also on the posi- 
tion O and tip force F. 

Under the conditions of zero force load (F=0), Eq. A16 reduc- 
es to 

Kx=Jqr(O)KoJ *(| (A18) 

If K o is negative definite (has all negative eigenvalues and is 
therefore stable), then K x is also negative definite (stable) regard- 
less of the value of J(O) -1 (Strang 1980). 

In the presence of a force load, a stable joint stiffness is no lon- 
ger sufficient to guarantee limb stability. At high enough loads, the 
stiffness term 

O Jr(O) F 
O0 

of Eq. A16 can significantly affect the hand stiflhess tensor. For a 
two-joint limb, loads directed away from a joint center tend to sta- 
bilize the limb, while loads directed toward a joint have a destabi- 
lizing effect. 
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Appendix B: 
Best-fit model parameters 

Subject Constant joint 
rest stiffness 

Constant joint 
best fit 
Ko 

Constant endpoint 
stiffness 
G 

09 G] [%4 

-5.9 J.L.M [-15.4 -5.11] [-21.6 -11.2] [-145.7 -461.0 ]1 
[-5.11 -18.0] L-11.2 -38.91 L -5.9 

-3.8 G ]  d L-12.4 -43.9J - .  

Exponential 
muscle model 

~s=-0.183F-11.8 
ke=-0.583F-28.1 
kd=-0.284F-3.9 

~s=-0.111 F-9.4 
ke=-0.555F-16.0 
kd=-0.334F-6.70 

~s=-0.385F-4.6 
~=-~.38F-15.1 
ka=-0.774F-1.40 
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