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A b s t r a c t  Functional MRI (f-MRI) is a non-invasive 
technique developed to permit functional mapping of the 
brain with a better temporal and spatial resolution than 
that offered by PET techniques. In our study, f -MRI was 
performed using blood oxygenation level dependent 
(BOLD) contrast imaging based on the magnetic proper- 
ties of hemoglobin. This method relies on changes in the 
blood supply to the brain that accompany sensory stimu- 
lation or changes in cognitive state. All the images were 
obtained at 1.5 T on a Signa GEMS without ultrafast im- 
aging. The vestibular stimulation was cold irrigation of 
the external auditory meatus (caloric stimulation). A 
population of normal healthy volunteers without a histo- 
ry of vestibular dysfunction was studied. The hippocam- 
pal formation as well as the retrosplenial cortex and the 
subiculum were activated by vestibular stimulation, sug- 
gesting that this activation may be related to spatial dis- 
orientation and a sensation of self-rotation experienced 
by the subjects during vestibular stimulation. The other 
results are similar to those obtained using PET. 
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Introduction 

The existence of cortical vestibular projections in hu- 
mans has been postulated on the basis of  electrical stim- 

E. Vitte ( ~ )  
Department of Otolaryngology and Anatomical Laboratory. 
CHU Piti&Salpatri~re, 87 Bid de l'H6pital, F-75013 Paris, France 

C. Derosier �9 Y. Caritu - D. Soulid 
Department of Neuroradiology, H.I.A. Val de Grace, 
F-75005 Paris, France 

A. Berthoz 
LPPA-Coll~ge de France, F-75006 Paris, France 

D. Hasboun 
Department of Neurology and Anatomical Laboratory, 
CHU Piti~-Salpetri~re, F-75013 Paris, France 

ulation (Penfield and Rasmussen 1957) and clinical stud- 
ies on epileptic patients (Smith 1960). Measurement of 
cerebral blood flow with xenon-133 after unilateral ca- 
loric stimulation revealed a vestibular projection proba- 
bly localized in the superior temporal gyrus and posteri- 
or to the auditory area (Friberg et al. 1985). Another 
study (Bottini et al. 1994), using positron emission to- 
mography (PET), has identified areas activated by cold 
vestibular stimulation in the temporo-parietal junction, 
the posterior insula, the putamen, the anterior cingulate 
cortex and in the primary sensory cortex contralaterally. 
These projections, with the exception of the putamen, are 
similar to those first described in the monkey (Grtisser et 
al. 1990). 

In this report we show for the first time, with func- 
tional magnetic resonance imaging (f-MRI), that caloric 
vestibular stimulation induces activity in the human hip- 
pocampal formation. 

Methods 

In our study, f-MRI was performed by using blood oxygenation 
level dependent contrast imaging based on the magnetic properties 
of hemoglobin (Ogawa at al. 1992). Imaging was carried out on a 
1.5-T GE Signa MRI system without ultrafast imaging. Conven- 
tional gradient-echo three-dimensional Tl-weighted [slice thick- 
ness 2 mm, field of view (FOV) 22 cm, flip angle 20 ~ separation 
0, repetition time (TR) 23 ms, echo time (TE) 9 ms, matrix 
256x256] localizer scans were first performed. Functional images 
were acquired in Spoiled GRASS Gradient Echo sequences 
(SPGR) (slice thickness 5 mm, FOV 32 cm, flip angle 40 ~ separa- 
tion 0, TR 70 ms, TE 60 ms, matrix 256x128). 

The vestibular stimulus was unilateral irrigation of either the 
right (one of ten subjects) or the left external auditory meatus (ca- 
loric stimulation) with 30 ml of cold water (12~ Functional im- 
ages were recorded 30 s after the end of the irrigation (correspond- 
ing to the maximum of the vestibular-induced nystagmus). Sub- 
jects were asked to fixate a target inside the magnet during vestib- 
ular stimulation and during f-MRI acquisition. 

Three axial-oblique slices parallel to the longitudinal hippo- 
campal axis defined by the line tangential to the ventral border of 
the subiculum (hippocampal axial plane, HAP) (Bronen and Che- 
ung 1991) were analyzed. Three sagittal planes at Talairach coor- 
dinates (Talairach and Tournoux 1988) a-b (G.21, D.20), b (G.25, 
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D.24) and b-c (G.33, D.30) and three coronal planes at Talairach 
coordinates E (-16), E-F (-24) and F (-32) were studied. Since 
we did not use ultrafast imaging, f-MRI acquisitions were per- 
formed plane after plane. We used a standard GEMS head coil and 
the head of each subject was immobilized with a neck support and 
a forehead restraining band. 

The anatomical images, which are in exact registration with the 
activation images, were later used as the bases images on which to 
overlay activation maps. 

Calculation and image manipulation were carried out on a 
SPARC 10 workstation (Sun Microsystems). The analysis was car- 
ried out using the mathematics of vector spaces. Because single 
simple image subtraction can neglect useful information contained 
in the time response of the activation-induced signal change and, 
therefore, be ineffective in differentiating artifactual from activa- 
tion-induced signal change enhancement, a thresholding technique 
has been developed to analyze the signal. This technique compares 
the shape of the response of a pixel with the shape of a reference 
waveform as the decision criterion. This thresholding technique 
suppressed the noise and also the spurious correlation in pixels 
with very large signal changes arising from vessels. This method 
of image processing involves thresholding by shape as character- 
ized by the correlation coefficient (C) of the data with respect to a 
reference waveform followed by formation of a cross-correlation 
image (Bandettini et al. 1993; Derosier et al. 1994) after removal 
of the linear drifts of the signal with respect to time. The correla- 
tion coefficient is a measure of the correspondence of the shapes 
of the reference waveform and the functional waveform: 

N 
2(f i -  Pf) (ri- gr) 

n=l (1) 
C ---- N 1/2 N 11/2 

where fi is the time-course function in a given pixel and can be 
considered to be an N-dimensional vector. A reference waveform 
or vector is denoted by ri. The average values of vectors f and r 
are flf and fir, respectively. The reference waveform is a square 
wave ideal vector. The delay between the induced signal enhance- 
ment and neuronal activation is taken into consideration by adjust- 
ment of the phase of the reference waveform. The signal process is 
the same as averaging all images during the interleaved "on" peri- 
ods and subtracting the averages of all images during the inter- 
leaved "off" periods. 

To be significant, only the pixels of regions activated by the 
vestibular stimulation with a correlation coefficient C exceeding 
0.66 were selected. The measured MRI signal changes are shown 
in Fig. 1. A percentage signal change exceeding 2.3% was consid- 

Fig. 1 Example of the recording of a functional (f-MRI) signal in 
successive sequences during caloric stimulation and rest. For each 
level of slice, the paradigm of the f-MRI sequence was as follows: 
ten acquisitions (blank sequence), unilateral irrigation of the exter- 
nal auditory meatus with 60 ml of cold water (12~ during 30 s, 
ten acquisitions 30 s after the end of the irrigation (corresponding 
to "the active sequence" at the culmination of the vestibular in- 
duced nystagmus), ten acquisitions 90 s later (blank sequence). 
During the active sequence the subjects were asked to fixate a tar- 
get in the magnet and were observed during the task. This para- 
digm was repeated twice for each level of slice. A total of 50 im- 
ages per slice was collected 

ered as significant. The areas activated by the vestibular stimula- 
tion were then superimposed on the anatomical images. There was 
no significant artifact due to any motion that could produce false 
activation patterns in f-MRI. 

Ten healthy volunteers without a history of vestibular dysfunc- 
tion or motion sickness susceptibility underwent the f-MRI after 
informed consent. The experiments were conducted according to 
the rules of the ethics committee in the Neuroradiology Depart- 
ment of the Val de Grfice Hospital. All subjects experienced true 
vertigo after vestibular stimulation (i.e., cold water irrigation). To 
avoid vestibular induced nystagmus, the f-MRI was recorded 
while the subject was fixating a visual target. 

R e s u l t s  

As described previously (Friberg et al. 1985; Bottini  et 
al. 1994), we found that cold caloric s t imulat ion induces 
activity in Brodmann ' s  areas 39, 40, 41, 42 and in the 
posterior insular  cortex most ly  contralaterally to the 
st imulation.  In  our study the pu tamen was activated 
main ly  ipsilaterally to the s t imulat ion (seven subjects). 
Furthermore,  B rodmann ' s  area 7 in the superior parietal 
lobe on the convex surface of the brain  was activated as 
well as the retrosplenial  cortex (isthmus of the c ingulum)  
but ipsilaterally. These activations will  be described in a 
further publicat ion.  The present  report focuses on the 
f indings concern ing  the hippocampal  formation.  

Activi ty in the hippocampal  format ion was main ly  lo- 
calized (eight subjects) ipsilateral to the side receiving 
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Fig. 3 Hippocampal axial plane. Activity is located in the body of 
the left hippocampus 

the vestibular stimulation and was reproducible (three 
subjects underwent f-MRI three times with similar re- 
sults). The activity in the hippocampal formation was 
present when the subject was fixating a target, showing 
that this activation was not due to ocular movements. 
The complex shape of the hippocampal formation (Duv- 
ernoy 1992), including the dentate gyrus and the hippo- 
campus (cornu ammonis), requires careful morphologi- 
cal analysis of the activated regions (Naidich et al. 
1988). Given the precision of our technique, this activity 
was restricted to the hippocampus (cornu ammonis) 
and/or the subiculum (Fig. 2). The mean of the correla- 
tion coefficient of the activated pixels of the hippocam- 
pal formation was 0.75+0.05. Compared with the thresh- 
old correlation coefficient (i.e., 0.66) this activity was 
statistically significant, with P=0.001. The mean per- 
centage signal change was 3.2_+0.8 for the ten subjects. 

Discussion 

Our finding of activation of the hippocampal formation 
during caloric vestibular stimulation is consistent with re- 

Fig. 2A-C Morphology of the hippocampal formation (Naidich 
et al. 1988). A The hippocampal fissure separates the subiculum 
inferiorly from the hippocampus peripherally. B The subiculum 
and the hippocampus are localized respectively interferiorly and at 
the edges of the hippocampal fissure. C Three-dimensional (3D) 
reconstruction of the head. The anatomical images were acquired 
using gradient-echo 3D Tl-weighted sequences. The activation 
images were acquired in exact registration with the anatomical im- 
ages. After left cold caloric stimulation, activity is clearly shown 
in the left subiculum (delineated area) 
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cent neurophysiological evidence in animal studies show- 
ing an influence of vestibular activity on these structures. 

In the rat the hippocampus is known to be activated 
by multisensory cues in spatial tasks and, in addition, fir- 
ing of the cells of the hippocampus is modulated by ves- 
tibular stimulations (review in Eichenbaum et al. 1989; 
Wiener and Berthoz 1993; MacNaughton et al. 1994; 
Sharp et al. 1995; Wiener et al. 1995). In addition, hip- 
pocampal theta wave activity has recently been shown to 
be increased during whole-body rotation (Gavrilov et al. 
1995). Structures belonging to the hippocampal complex 
such as the postsubiculum contain head-direction cells 
that are probably influenced by vestibular and visual in- 
puts (Taube et al. 1990a,b) and receive inputs from the 
anterior thalamus to signal head direction (Blair and 
Sharp 1995). These cells code for the direction of the 
head in space irrespective of where the animal is in a 
room. This head-direction system seems to be very de- 
pendent upon active exploration of space. 

In the nonhuman primate, hippocampal cells recorded 
during whole-body motion and responding to whole- 
body motion even in the absence of visual cues appeared 
to be driven by vestibular inputs (O'Mara et al. 1994). 

The anatomical pathways for vestibular-evoked hip- 
pocampal activation are not clear; however, in the mon- 
key (Grfisser et al. 1990) vestibular information may 
reach the hippocampus through the subiculum via pro- 
jections from the parietotemporal cortex (PIVC), the cin- 
gulate cortex and the posterior parietal cortex. 

In humans, recent studies concerning hippocampal ac- 
tivation studied by PET during visual memory tasks (Ka- 
pur et al. 1995) have revealed a dissociation between the 
left and right side and have suggested an involvement of 
right hippocampal regions in processing of faces and of 
left hippocampal regions when explicit memory for faces 
is required. However, no data are available concerning 
vestibular evoked activity. Because the above data on an- 
imals suggest a role of vestibular cues in the updating of 
spatial coding during whole-body motion, the f-MRI ac- 
tivity in the hippocampal formation could be due to a ro- 
tational vertigo and spatial disorientation experienced by 
the subjects after a vestibular caloric stimulation, which 
may in turn induce a need to re-establish spatial coher- 
ence and activate several structures involved in the repre- 
sentation and memory of spatial orientation. It is of par- 
ticular interest that lesions of the perihippocampal re- 
gions and subiculum have been found to produce topo- 
graphical disorientation (Habib and Sirigu 1987). 
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