
Molecular and Cellular Biochem&try 157: 23-30, 1996. 
© 1996 KluwerAcademic Publishers. Printed in the Netherlands. 

Signalling by cGMP-dependent protein kinases 

Arie B. Vaandrager and Hugo R. de Jonge 
Department of Biochemistry, Cardiovascular Research Institute COEUR, Medical Faculty, Erasmus University Rotterdam, 
The Netherlands 

Abstract 

The second messenger cGMP is a major intracellular mediator of the vaso-active agents nitric oxide and natriuretic peptides. 
The principal targets ofcGMP are (i) phosphodiesterases, resulting in interference with the cAMP-signalling pathway, (ii) cGMP- 
gated cation channels, and (iii) cGMP-dependent protein kinases (cGKs). Only two mammalian isotypes of cGK have been 
described so far: type I cGK, consisting of an ct and a [3 isoform, presumably splice variants of a single gene, and identified as 
the most prominent cGK isotype in the cardio-vascular system; and type II cGK, expressed mainly in the intestine, the kidney 
and the brain. High levels of cGK I are found in vascular smooth muscle cells, endothelial cells and platelets. In these cells, 
cGK I is thought to counteract the increase in contraction provoked by Ca-mobilizing agonists, to reduce endothelial perme- 
ability and to inhibit platelet aggregation, respectively. Relatively low levels ofcGK I are found in cardiomyocytes. In this cell 
type, cGK is implicated in the negative inotropic effect of cGMP, presumably through modulation of Ca channels and by di- 
minishing the Ca-sensitivity of contractile proteins. (Mol Cell Biochem 157: 23-30, 1996) 
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Introduction 

Cyclic GMP (cGMP) was discovered in the early 1960s as 
the result of a search for analogs of the second messenger 
cyclic AMP (cAMP) [ 1]. In contrast to cAMP, however, 
cGMP remained rather obscure because initially no clear 
physiological function of cGMP could be established. This 
was largely due to the lack of selective agonists of guanylyl 
cyclases, the enzymes which convert GTP into cGME The 
interest in cGMP signalling changed with the discovery in 
the 1970s that NO-donating vasodilators, like nitroglycerin 
and nitroprusside relax smooth muscle by activating a soluble 
form ofguanylyl cyclase [2]. Furthermore, cGMP was found 
to be the intracellular mediator of severe secretory diarrhoea 
provoked by heat-stable enterotoxins (STs) secreted by 
certain enteropathogenic bacteria [3]. The subsequent discov- 
ery of endogenous activators of the cGMP-signalling path- 
way, i.e. natriuretic peptides, guanylin and, most importantly, 
nitric" oxide (NO), led to the recent appreciation of the im- 
portance of cGMP in the (patho)physiological regulation of 
numerous cellular processes [4, 5]. 

In this article we will briefly review the synthesis and func- 
tion ofcGMP in the cardio-vascular system and the molecular 

mechanisms of cGMP-signalling. We will focus on the role 
of cGMP-dependent protein kinases (cGK) in mediating the 
effects of cGMP, although other intracellular cGMP recep- 
tors, including ion channels and phosphodiesterases, may also 
play a role and may contribute to the complexity of signal 
transduction by cGME 

Regulation of cGMP synthesis and biological functions of  
cGMP 

Natriuretic peptides and guanylin 
The fist natriuretic peptide discovered was purified from an 
atrial extract and was therefore named atrial natriuretic pep- 
tide (ANP) [6, 7]. ANP is a low molecular weight peptide 
derived from a larger precursor protein (ANF) synthesized 
predominantly in atrial cells. It is released upon a volume load 
of the heart and has profound hypotensive activity [8]. The 
blood pressure lowering effect of ANP is a consequence of 
vascular smooth muscle relaxation and an increased natriu- 
resis in the kidneys, as a result of direct effects of ANP on 
smooth muscle and kidney cells as well as indirect effects 
through interference with the sympathetic neuronal system, 

Address for offprints: A.B. Vaandrager, Department of Biochemistry, Medical Faculty, Erasmus University Rotterdam, EO. Box 1738, 3000 DR Rotterdam, 
The Netherlands 



24 

the renin-angiotensin system and the release of aldosterone 
and vasopressin [8, 9]. 

Besides ANP two other natriuretic peptides were identi- 
fied, BNP and CNP, which likewise have hypotensive actions 
[ 10, 11]. Being isolated originally from brain tissue, BNP and 
CNP are now known to be more ubiquitously expressed [9]. 
As discussed below natriuretic peptides exert most of their 
effects through stimulation of membrane-bound guanylyl 
cyclases and an increase in cGMP levels. However a minor 
part of their biological actions may be mediated by the so- 
called natriuretic peptide clearance receptor, NPR-C [12], 
which is not coupled to guanylyl cyclase, but might signal 
through interaction with adenylyl cyclase or phospholipase 
C or by lowering the concentration ofnatriuretic peptides in 
the circulation [9]. 

Recently, another low-molecular weight peptide, named 
guanylin, was isolated from intestinal mucosa, and was found 
to elevate cGMP levels in intestinal epithelial cells [13]. 
Guanylin was shown to stimulate the intestine-specific mem- 
brane-bound guanylyl cyclase (GC-C) identified previously 
as a target for microbial heat-stable enterotoxins [9, 13]. Until 
recently, guanylin is considered primarily as a physiological 
regulator of intestinal water and salt transport [ 13,14]. How- 
ever the presence of proguanylin in serum, and the discov- 
ery of uroguanylin, a guanylin-related peptide in urine hint 
at a more general role of this class ofcGMP-linked hormones 
in mammalian physiology [14]. 

Nitric oxide 
A short-lived endothelium-derived relaxing factor (EDRF), 
which is produced in endothelial cells in response to Ca- 
mobilizing stimuli like acetyl choline and shear stress, was 
subsequently identified as the free radical NO, a known 
stimulator of  soluble guanylyl cyclase [15, 16]. NO is 
generated from L-arginine by the enzyme NO-synthase 
(NOS) [5]. Two general classes of NOS can be distinguished, 
a constitutive (cNOS) form, which is stimulatable by Ca/ 
calmodulin, and an inducible form (iNOS), whose expression 
is upregulated by cytokines and endotoxins, eNOS is ex- 
pressed in a wide variety of cell types throughout the cardio- 
vascular system, and its activity can be modulated by various 
vaso-active hormones [5, 17]. Conceivably therefore, this 
isoenzyme is responsible for the physiological activation of 
the NO-cGMP signalling pathway in the cardio-vascular 
system. In contrast, massive amount of NO produced by 
iNOS after its induction in white blood cells by cytokines is 
thought to play a role as a defence mechanism against patho- 
gens by virtue of its cytotoxicity as a free radical. In some 
pathological cases, however, iNOS can be induced in cells of 
the cardio-vascular system cells by endotoxins and cytokines. 
The overflow of NO generated by it may cause a septic shock 
by hyper-activation of the vascular NO-cGMP system caus- 

ing a sometimes lethal hypotension [17-19]. The dramatic role 
of iNOS in septic shock was demonstrated by the beneficial 
effects ofNOS inhibitors in patients [ 18], and by observations 
in transgenic mice lacking iNOS, which were more suscepti- 
ble to certain pathogens, but resistant to endotoxin-induced 
shock [19]. 

Evidence has been obtained recently that another gaseous 
molecule, carbon monoxide (CO), generated by heme oxy- 
genase, is also able to activate soluble GC, and to function 
as a cGMP-linked neuro-hormonal agent signalling through 
cGME The observation that vascular smooth muscle cells can 
generate CO in response to specific stimuli, suggests a role 
for a CO-cGMP pathway in addition to the NO-cGMP path- 
way in cardiovascular homeostasis [20]. 

Guanylyl cyclases 
Guanylyl cyclases (GC) can be divided into two general 
groups, soluble GCs and membrane GCs (See Fig. 1) [9, 21 ]. 
Soluble GCs (GC-S) are expressed in almost all cell types in 
the cardiovascular system, including cardiomyocytes, vascu- 
lar smooth muscle cells, endothelial cells and platelets [9]. 
GC-S functions as a heterodimer composed of an (z and a 13 
subunit. At least two ct and two 13 isoforms are identified by 
molecular cloning [9], but the physiological relevance of the 
various isoforms is as yet unknown. Soluble GCs contain a 
prosthetic heme group, which functions as receptor for NO 
and CO, the putative physiological activators [21]. 

Membrane GCs combine both ligand binding and catalytic 
activity in a single poly-peptide chain which consists of a N- 
terminal extracellular receptor domain, a transmembrane 
segment, a domain homologous to protein kinases and a C- 
terminal catalytic domain [9, 21]. The enzyme probably func- 
tions as a homotetra or- trimer stabilized by interactions 
between the receptor domains [21, 22]. After binding of the 
ligand (natriuretic peptides or guanylin) a conformational 
shift is induced resulting in an interaction between two of the 
catalytic domains (internal dimerization), which in the ab- 
sence of ligand is probably prevented by the kinase homol- 
ogy domain [21, 22]. Six isoforms have been cloned so far 
[9, 21, 23]. GC-A and GC-B (also termed NPR-A and NRP- 
B) were shown to function as natriuretic peptide receptors, 
and preferentially bind ANP/BNP and CNP respectively (See 
Fig. 1). Both GC-A and GC-B are distributed widely in the 
body [9], but the relative contribution of the ANP/BNP-GC- 
A route versus the CNP-GC-B pathway to cardiovascular 
homeostasis is not fully elucidated. The first system seems 
more important, functioning as a classical endocrine pathway; 
ANP and BNP are derived predominantly from the heart and 
affect distant targets like blood vessels and kidneys [8, 9]. 
The second system might act more locally as CNP was de- 
tected in endothelial cells, and was shown to relax vascular 
smooth muscle preparations by stimulating GC-B [9, 24]. 
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Fig. 1. Guanylyl cyclases and their ligands. Soluble guanylyl cyclases (GC- 
S) are heterodimers and contain a prosthetic heme group functioning as a 
receptor for nitric oxide (NO) and carbon monoxide (CO). The membrane 
GCs (GC-A, GC-B and GC-C) consist of two to four monomers, which 
each consists of an extracellular receptor domain (rec) and an intracellular 
protein kinase homology (PKH) and guanylyl cyclase (GC) domain. 

GC-C was identified as a receptor for guanylin and heat- 
stable enterotoxin and localized predominantly in intestinal 
epithelium [9, 25]. Conceivably, the (uro)guanylin-GC-C 
pathway may have a small effect on blood volume by regu- 
lating water absorption in intestine. GC-D is found in olfac- 
tory tissue, whereas GC-E and GC-F seem retina-specific 
[23]. For these three GCs no ligands have been found, but 
their enzyme activity is regulated by internal Ca [21, 23]. 

General mechanisms of cGMP function 
Apart from its natriuretic and vasodilative effects mentioned 
above, cGMP was shown to inhibit platelet aggregation, to 
reduce the permeability of endothelial layers and to exert a 
negative inotropic effect on cardiomyocytes [5, 26, 27]. In 
general cGMP seems to counteract the effects of  vaso- 
constricting and platelet aggregating hormones e.g. endo- 
thelin, angiotensin II, adrenaline and thrombin, and thus to 
protect the organism against hypertension and excessive sym- 
pathetic activation of  the heart. Furthermore cGMP was 
shown to inhibit the proliferation of smooth muscle cells [28]. 

cGMP may exert its regulatory functions by interacting with 
various cGMP receptor proteins as summarized in Fig. 2. 
1. In most cell types, including those of the cardio-vascular 

system the effects of cGMP are mediated mainly by a 
specific cGMP-dependent protein kinase (cGK). We will 
discuss cGK and its mechanism of action in more detail in 
a later session. 

2. When accumulated in relatively high concentrations (> 5 
~tM), cGMP is able to cross-activate the cAMP-depend- 
ent protein kinase. For example, in colonic T84 cells, which 
do not contain detectable amounts of cGK, cGMP was 
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Fig. 2. Potential pathways by which cGMP may exert its physiological 
effects. 
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shown to mediate the heat-stable enterotoxin-provoked C1 
secretion by stimulating cAK [29]. Sofar, this mechanism 
is less well documented in the cardio-vascular system, but 
is suggested to be involved in the anti-proliferative effects 
ofcGMP [30]. The opposite mechanism, i.e the cross-ac- 
tivation of  cGK by cAMP, is thought to account at least 
partially for the relaxing effects of  cAMP in smooth mus- 
cle [31]. 
A more common pathway by which cGMP utilizes the 
cAMP pathway is initiated by binding of cGMP to spe- 
cific classes of phosphodiesterases (PDE), the enzymes 
responsible for the breakdown of cAMP and cGME Both 
a cGMP-stimulatable PDE (type III) and cGMP-inhibitable 
PDE (type II) are present in various cells, where they can 
cause a decrease or an increase of  cAMP levels respec- 
tively in response to cGMP [26, 32]. 
In some tissues cGMP is known to regulate ion channels 
by direct allosteric interaction. The gating by cGMP of  
cation channels is well documented in the visual and ol- 
factory system [26, 32]. A cGMP-gated channel was re- 
cently detected in heart and also in kidney, where it may 
contribute to the cGMP-mediated natriuresis [33, 34]. 

cGMP-dependent protein kinases 

General properties 
cGMP-dependent protein kinases (cGKs) belong to the large 
superfamily of protein kinases [26, 32, 35, 36]. These enzymes 
regulate the activity of numerous proteins by catalyzing the 
transfer of the y-phosphoryt group of ATP, to the hydroxyl 
group of serine, threonine, or tyrosine residues of an acceptor 
substrate protein. Within the protein kinase superfamily cGK 
is most closely related to the cAMP-dependent protein kinases 
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(cAKs). Similar to cAK, cGK phosphorylates serine and threo- 
nine residues. The canonical cAK phosphorylation site Arg- 
Arg-X-Ser is also used by cGK, however differences between 
cAK and cGK in the affinity for various substrate peptides are 
observed [37, 38]. As discussed above, cGK and cAK are also 
related that both can be activated by cAMP as well as cGMR 
albeit with different Ka values. Various analogues of cGMP 
can also interact with cGKs and were used to map the cGMP 
binding sites [26, 36]. The potent and lipophilic cGK-activa- 
tors 8-Br-cGMP and 8-paraehlorophenylthio-cGMP (8-pCPT- 
cGMP) are widely used in intact cell studies to investigate the 
involvement ofcGK in physiological processes, since they are 
membrane permeant, relatively resistant against PDEs and do 
not crossreact with cAK except at very high concentrations 
[39]. Similarly, the recently developed cGK antagonists Rp- 
8-Br-cGMPS and Rp-8-pCPT-cGMPS can be used as selec- 
tive inhibitors ofcGKs in intact cells [40]. 

Isotypes and tissue distribution 
Two isoenzymes ofcGK have been identified in mammals [26, 
32, 35, 36]. Both isotypes have been cloned [41-44], and were 
shown to exhibit a sequence homology of more than 50%, and 
a similar structural organization. The in vitro substrate 
specificity of both cGKs for various substrates seems also 
very similar [25], but an interesting functional difference was 
noted in their capacity to activate the cystic fibrosis trans- 
membrane conductance regulator CFTR-C1 channel [45]. This 
channel is expressed predominantly in epithelial cells of sev- 
eral organ systems, including the lung, pancreas, liver and in- 
testine, but has been detected also in non-epithelial cells 
including cardiomyocytes [46], and lymphocytes [47]. Non- 
functional, mislocated, or absent CFTR-C1 channels are the pri- 
mary cause of the genetic disease cystic fibrosis. The channel 
is universally activated by cAMP and cAK in all tissues, but 
may additionally be activated by cGMP in some tissues, either 
through cross-activation of cAK (lymphocytes, and T84 
colonocytes; [29, 47]), or through the cGMP-cGK II pathway 
(intestine: [48]). A specific role of type II cGK in CFTR- 
channel activation was supported by a recent patch clamp study 
showing that type II, but not type I cGK was able to activate 
CFTR-C1 channels in excised membrane patches [45]. 

Furthermore, cGK I and II also differ in cellular and sub- 
cellular distribution. Type I cGK is predominantly a cytosolic 
protein, but may be targeted to specific anchor proteins of the 
cytoskeleton, e.g. vimentin [49]. In contrast cGK II is tightly 
bound to the plasma membrane by both hydrophobic inter- 
action and by its association with the cytoskeleton [50]. N- 
terminal myristoylation is likely to play an important role in 
the membrane-binding of cGK II (Vaandrager et al., unpub- 
lished observation). At the tissue level, type I is more gener- 
ally expressed than type II. Notably, high levels ofcGK I have 
been found in platelets, tracheal, gastro-intestinal and vas- 
cular smooth muscle cells, Purkinje cells in the cerebellum 

[26, 32, 35, 36], and recently also in aortic and pulmonary 
artery endothelial cells, but not in umbilical vein endothelial 
cells [51]. Furthermore, low levels of cGK I were observed 
in cardiomyocytes [52]. Type II cGK is highly expressed in 
intestinal epithelial cells [44, 48], but mRNA for cGK II was 
also found in brain and kidney [43, 44]. These localization 
studies suggest that type I is the primary isotype mediating 
the cGK effects in the cardio-vascular system, whereas type 
II is involved in ion transport regulation in the intestine and 
perhaps in kidney and brain. 

Recently, two isoforms of type I have been distinguished, 
designated Ia and I13 [26, 32, 35, 36]. These isoforms differ 
only in the first 89 (Iet) or 104 (II3) amino acids, and presum- 
ably represent splice variants. Although both isoforms have 
identical cGMP-binding domains (see below), cGK Iet has 
an approximately ten fold lower Ka for cGMP (0.1 gM) com- 
pared to cGK I[3 (1.3 IaM). However the membrane permeant 
cGMP-analogue 13-phenyl- 1-NR-etheno-cGMP (PET-cGMP) 
can activate both isoforms with a similar, relatively low Ka. 
Both cGK I isoforms are present in vascular smooth muscle, 
whereas type let was found predominantly in lung, heart and 
cerebellum [53]. It has been suggested that the low-affinity 
cGK II3 is expressed in vascular muscle to dampen the physi- 
ological effects of the large short-term increases in cGMP 
provoked by the NO-GC-S system [53], or alternatively that 
it mediates the cAMP-induced relaxation in this tissue, since 
it has a relatively low preference for cGMP over cAMP [32]. 

Molecular structure 
Mammalian cGKs are dimers with a monomeric mass of 76, 78, 
and 86 kDa respectively for the let, I13 and II isozymes [26, 43, 
44]. Although type II was originally described as a monomer 
[50], recent studies showed that recombinant rat cGK II ex- 
ists in a dimeric state under physiological conditions 
(Vaandrager, unpublished results). By analysis of their pri- 
mary structure, similar functional domains can be recognized 
in cGK I and II, as depicted in Fig. 3. 

A N-terminal leucine zipper motif is likely to be responsi- 
ble for the dimerization of both isotypes. In cGK kz, but not 
in cGK II3 and II, the dimer is stabilized by an interchain 
disulfide bridge. Conceivably, the dimers are oriented in 
parallel, facilitating interactions between the C-terminal do- 
mains. A pseudo-substrate region located in close proximity 
to the autophosphorylation sites in the N-terminal domain 
may serve to inhibit the catalytic activity in the basal state. 
This auto-inhibitory site is thought to interact with the sub- 
strate-binding site on the catalytic domain, thus preventing 
it from binding to exogenous substrates. 

Two cGMP binding sites are present per monomer ofcGK. 
In type Iet cGK, high affinity binding to site 1, located more 
distally to the N-terminus, seems to depend on cooperative 
interaction between site 1 and the low affinity site 2. The 
cGMP binding domains are structurally related to the cAMP 
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Fig. 3. Domain structure ofcGMP-dependent protein kinases. Amino acid 
numbers at the boundaries of  the various domains are taken by comparison 
& t h e  domain structures o fcGK Ia and GK II isotypes from refs [36, 43, 
44]. The primary sequence ofcGK I13 is identical to that ofcGK Ic~ except 
for the first 89 amino acids which are replaced by a different N-terminus of  
104 residues in cGK IJ3. 

binding domains in the regulatory subunit of cAK and to the 
cyclic nucleotide binding site of the cGMP or cAMP activated 
ion channels, but not to the allosteric cGMP binding site in 
PDE II or III. 

The catalytic C-terminal domain is the most conserved 
region between the type I and II cGK (66% homology). It is 
also displays a relatively high homology to the catalytic 
subunit of cAK. However, in cGK the regulatory and cata- 
lytic domains are covalently linked, whereas in cAK each 
domain is encoded by a different gene. 

Functions of cGKs 

Relaxation of smooth muscle cells 
Smooth muscle contraction has been shown to depend on 
phosphorylation of the regulatory light chain of myosin, by 
a specific myosin light chain kinase (MLCK). Since MLCK 
is activated by Ca/calmodulin, smooth muscle contraction is 
initiated primarily by a rise in intracellular free Ca level, as 
provoked by many contractile agents [54]. The cGMP-induced 
reduction of intracellular Ca, observed in many studies is 
therefore considered an important mechanism of cGMP-me- 
diated relaxation. A major role for cGK in the Ca-lowering 
action of cGMP in smooth muscle cells was deduced from 
studies using cGK-specific analogues, the finding of a corre- 
lation between cGK levels and the effect ofcGMP on Ca lev- 
els, and from the ability of exogenous cGK I to reconstitute 
some of the cGMP effects in cGK-deficient cells [30, 32]. 

cGK is proposed to modulate intracellular Ca levels by af- 
fecting a variety of Ca-regulating processes [26, 30, 32, 35, 
36], including: (i) Inhibition of the phospholipase-C (PL-C) 
mediated generation of the Ca-mobilizing messenger inositol 
1,4,5 trisphosphate (IP3); the target ofcGK in this process is 
not clear but might be the G protein that couples the hormone 
receptor to PL-C; accordingly, an increased phosphorylation 
of Gcti was observed in 8-Br-cGMP-triggered CHO-cells ex- 
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pressing recombinant cGK Ic~ [55]; (ii) activation of Ca-AT- 
Pase activity in the plasma membrane as well in the sarco- 
plasmic reticulum (SR); phosphorylation ofphospholamban 
might play a role in the cGK-mediated modulation of the Ca- 
ATPase in the SR; (iii) activation of Ca-activated K channels, 
causing a hyperpolarization of the cell membrane, which in- 
hibits Ca influx through voltage-operated Ca channels (VOC). 
cGK was suggested to activate the K channels directly by 
phosphorylation [56] or indirectly by activating a phos- 
phatase, which subsequently activates the channel [57]; (iv) 
direct inhibition of VOC; (v) stimulation of the Na/Ca ex- 
changer; (vi) inhibition ofIP 3 receptor activity involved in Ca 
mobilization from internal stores (see Fig. 4). The relative con- 
tribution of the processes mentioned above in the Ca-lower- 
ing effect of cGK may differ considerably dependent on 
smooth muscle type, species, and contractile stimulus. 

Furthermore cGK was also shown to relax smooth muscle 
by decreasing the Ca-sensitivity of the contractile proteins, 
conceivably by stimulating dephosphorylation of MLC 
through activation of a phosphatase [30]. 

Inhibition of platelet activation 
The cellular events leading to inhibition ofplatelet activation/ 
aggregation by cGMP were shown to be mediated primarily 
by cGK [26]. This model was supported by studies ofcGK- 
deficient platelets from patients with chronic myelocytic 
leukemia, showing an impaired response to NO and cGMP- 
analogues [58]. A major mechanism of cGK action, as dis- 
cussed earlier for smooth muscle cells, is the inhibition of an 
agonist-provoked rise in intracellular Ca by a blockade of the 
PL-C/IP 3 pathway [26]. Interestingly, in the platelet the 
effects ofcGK on Ca are mimicked by cAK, suggesting that 
both protein kinases share a common target. Indeed, a pro- 
line-rich, microfilament- and focal adhesion-associated pro- 
tein termed VASP was shown to be phosphorylated in vivo 
by both cGK and cAK and may serve as a convergence point 
for the cAMP and cGMP pathway in platelets [59, 60]. The 
recent identification of VASP in a variety of other cell types, 
including cardiomyocytes, where it was found in association 
with the intercalating discs [60], and in endothelial cells [51 ], 
suggests a more general role of this protein in cyclic nucle- 
otide-regulated processes. 

Decrease in endothelial permeability 
Vasoactive substances, including thrombin and histamine 
increase endothelial permeability, and in this way stimulate 
vascular leakage and edema. The decrease in endothelial 
barrier function is considered to result from contraction of 
endothelial cells by a mechanism similar to smooth muscle 
cell contraction, involving Ca-induced phosphorylation of 
MLC [61 ]. cGMP was shown to inhibit the agonist-induced 
increase in endothelial permeability by different mechanisms, 
depending on the tissue source [62]. In human umbilical vein 
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Fig. 4. Possible targets of cGK involved in intracellular Ca homeostasis 
in smooth muscle cells, cGK may decrease the level of intracellular Ca 
through modulation of: voltage operated Ca channels (VOC), receptor 
mediated activation ofphospholipase C (PL-C), inositol 1,4,5 trisphosphate 
receptor Ca-channels (IP3 R), Ca ATPases (pump), Na/Ca exchangers 
(exch), and Ca activated potassium channels (K ch). 

endothelial cells, showing no or very low expression o f cGK 
I [51 ], cGMP signals through the cAMP/cAK-pathway by 
inhibiting PDE III [62]. In contrast, in cultured human aor- 
tic and microvascular endothelial cells, which were found 
to express relatively high levels o f c G K  I (150--500 ng/mg 
protein), the cGK-selec t ive  cGMP-analogues  8-pCPT- 
cGMP and 8-Br-cGMP were shown to block the thrombin- 
induced increase in permeabil i ty by inhibiting a rise in 
intracellular Ca [51, 62]. The focal-adhesion protein VASP 
(see above) was phosphorylated by cAK in umbilical vein 
endothelial cells and by cGK in aortic and microvascular 
endothelial cells, suggesting that it may play a role in the 
cyclic nucleotide-mediated modulation of  permeability, 
probably through a mechanism different from inhibition of 
Ca-mobilization, as the latter was observed only in cGK 
containing cells [51]. 

Negative inotropic effect on cardiomyoeytes 
One of  the main targets o f  cGMP-regulat ion of  cardiac 
contractility is the Ca-current (Ica) mediated by the L-type Ca 
channel, which is responsible for the initiation of the intrac- 
ellular Ca transient leading to cardiac contraction [63]. The 
cAMP/cAK-mediated increase in Ica plays a key role in the 
positive inotropic effects of  cAMP-raising agents [64]; in 
contrast, cGMP was shown to decrease Ica in frog cardio- 
myocytes by stimulation of  PDE II resulting in lowering of 
cAMP levels. However, in rat cardiomyocytes, which con- 
tain low but measurable levels o fcGK 1, the cGMP-triggered 
decrease in cAMP-stimulated Ica was shown to be mediated 
mainly by cGK, since it was mimicked by cGK-specific agonists 
and by intraeellular perfusion with a constitutively active frag- 

ment o fcGK I [52]. Other studies in rat cardiomyocytes indi- 
cated that cGK may also exert a negative inotropic effect by 
reducing the myofilament response to Ca [65], suggesting that 
cGK in cardiomyocytes, like in smooth muscle cells, affects 
multiple processes. Furthermore, cGK was reported to inhibit 
gap junction channels and Na-K-CI cotransporters in cardio- 
myocytes [66, 67]. The latter process induces cell shrinkage, 
while the former may decrease electrical coupling and the 
exchange of nutrients between cells. However, the physiologi- 
cal consequences of  both processes for cardiac contractility 
are as yet not clear. 

Conclusion 

As is evident from the data summarized in this review, the 
information in the field of  cGMP and NO has grown expo- 
nentially in recent years. Both messengers appear to play a 
major, and often beneficial role in cardiovascular physiol- 
ogy as a result of  their anti-hypertensive, anti-thrombolytic, 
and anti-proliferative action and their protective effect on 
endothelial barrier function. Further elucidation of  the mo- 
lecular mechanism involved in cGMP metabolism and its 
signalling function in the cardio-vascular is therefore likely 
to lead to new pharmacological and molecular biological ap- 
proaches for the prevention and cure of  cardiovascular 
diseases. 
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