
Journal of Heuristics, 2: 55-85 (1996)
0 1996 Kluwer Academic Publishers

Case-Based Reasoning for Repetitive Combinatorial
Optimization Problems, Part I: Framework

DAVID R. KRAAY
Kmnnert School of Management, Put&e University, U&t Lajbyette, IN 47907
e-mail: akmay@mgmt.pu&e.edu

PATRICK T. HARKER
Department of Systems Engineering, Schaol of Engineering and Applied Science, University of
Pennsylwnia, Philadelphia, PA 191046315 e-mail: harker@eniac. seas.upenn.edu

Abstmct

This article presents a casebased reasoning approach for the development of learning heuristics for solving repetitive
operations research problems. We first define the subset of problems we will consider in this work: repetitive
combinatorial optimization problems. We then present several general fbrms that can be used to select previously
solved problems that might aid in the solution of the current problem, and several different techniques for actu-
ally using this information to derive a solution for the current problem. We describe both fixed forms and forms
that have the ability to change as we solve more problems. A simple example for the O-l knapsack problem is
presented.

Key Words: artificial intelhgence, combinatorial optimization

Mathematical modeling consists of three major steps: model creation, solution, and ap-
plication. Many early models were relatively easy to create, so much of the effort was con-
centrated on the solution process. As people became more familiar with the area, models
became more realistic but also more complicated. The model creation process became very
difficult, but many recent works in the area of modeling languages and model management
systems (MMS) will help to make this process easier. One type of model that has many
current applications is integer programming or combinatorial optimization problems (COP).
The power to model logical decisions has led to many applications, especially in manufac-
turing and transportation. Many of these problems are operational decisions, which need
to be made much more often than strategic or one-shot decisions. Very similar problems
may need to be solved every day, every hour, or even more often. We shall refer to this
combination of model type and frequency as repetitive combinatorial optimization prob-
lems (RCOP) .

If a problem needs to be solved very frequently, we are also going to be very limited
in the amount of time available for the entire modeling process. If the problems are related,
a modeling language or MMS should allow for relatively easy modification of previous
models to create a model for the current problem. In this article, we will concentrate on
the second step, solving the model. The choice of our technique also has bearing on the

56 KRAAY AND HARKER

application of the solution. Most COP models are very difficult to solve, and if the prob-
lems are large and need to be solved frequently and quickly, standard mathematical pro-
gramming solution techniques will be too slow. One idea is to use previous problems’ in-
formation to help solve the current problem, especially if we are solving a large number
of related problems. This idea was first presented in the artificial intelligence (AI) literature
as case-based reasoning, but most of the previous applications have been in areas that have
much less structure than mathematical programming problems.

Since we are opening a new domain for case-based reasoning and developing a new,
general heuristic technique for mathematical models, we start at a very basic level. We
start with a detailed discussion of the different ways we could use the information from
previous problems to help solve the current problem when we are dealing with RCOPs.
We are not attempting to come up with a better heuristic for standard COP problems, since
this is a first try at implementing these techniques and well-established domain-specific
techniques already exist. Rather, we are trying to define a technique that might work well
across a variety of problems, including actual applications that are much more likely to
be repetitive in nature. This technique may also provide significant advantages in explanatory
power and human interaction over standard mathematical programming techniques. Since
people often make decisions based on their past experience, it should be much easier for
them to understand the proposed solution algorithm than some complicated numerical solu-
tion process. It might be possible to have a person interact with or help guide the case-
based reasoning process, since it consists of two relatively simple steps. Also, if users can
understand the solution process, they may be better able to verify whether the solution can
really be applied, which is always a consideration since a mathematical model cannot con-
sider every detail of the actual problem. This technique also has an advantage over other
AI techniques that have been applied to mathematical programming problems. It requires
significantly less domain-specific knowledge since knowledge is stored explicitly in the
previous problems, though if such knowledge is available it can be used to improve the
process. This may be especially important for newer, more difficult applications where
there is no expert for solving the problem, which is often why a mathematical model is
being used for the problem. Finally, this technique has the possibility of changing and learn-
ing over time, which most standard mathematical heuristics cannot do.

The following is a detailed outline of the remaining sections of this article. Section 1
presents a formal mathematical description of a repetitive combinatorial optimization prob-
lem, which is one possible method for defining a series of related mathematical program-
ming models.

The main discussion of methods for using the additional information that is present when
we are solving a series of related problems is presented in Section 2. We start with a brief
review of case-based reasoning and a few of the previous applications areas. Following
the philosophy behind case-based reasoning, the method for RCOPs is also divided into
two steps. The first step is deciding which of the previous problem’s information might
be most useful for solving the current problem. This may take into account similarities
between the two problems and possibly other information such as the solution to the old
problem. We describe both fixed methods and methods that can change over time, using
genetic algorithms as one possible means for varying the method. We then discuss the possi-
ble methods of using the information from the previous problem(s) to solve the current

CASE-BASED REASONING 57

problem. We define several possible ways of adapting the old problem solution to the cur-
rent problem, once again describing both fixed forms, and methods that might vary over
time. Finally, we discuss several of the problems associated with implementing this type
of methodology in Section 4, including how we might form a set of previously solved prob-
lems if such a set did not exist at the time of implementation.

Section 4 will present a brief description of some of the other AI and standard solution
techniques that have been applied to COPS. Most of these are traditional solution methods;
there is very little work in the area of applying information from past problems to the solu-
tion of the current problem. Some basic comparisons are given between these methods
and the techniques described in this article.

In Secton 5, we present a small example of how these ideas might be applied to one
combinatorial optimization problem, the O-l knapsack problem. An approximate perfbr-
mance measure is derived for one simple adaptation and selection process. We conclude
by listing some of the other COPS to which this technique may be applied and future research
areas.

1. Repetitive combinatorial optimization problems

In this section we present the most general form of the repetitive combinatorial optimiza-
tion problem (RCOP) with which we have chosen to work. We have chosen RCOPs for
several reasons. First, we chose not to look at linear programming and convex nonlinear
programming (the two other main types of mathematical programming models besides com-
binatorial optimization) because the state of the art in solving these problems is relatively
advanced compared to COPS. Thus, even though the method we will present would prob-
ably work well for continuous optimization, this might not present a great contribution
to the solution of these types of problems. Also, COPS (which include both integer and
mixed-integer programs) allow us to model a much larger range of problems, since many
actual applications involve logical or discrete decisions that usually cannot be modeled
accurately without using integer variables. The major reason for considering repetitive prob-
lems is that in actual practice, a given user of mathematical programming models will often
be solving a series of related problems, rather than one single problem. One reason for
assuming this is that the use of such models is often very costly (considering not just the
solution time but also the costs of model definition and validation) and hence will more
likely be used for problems that need to be solved repeatedly rather than one-shot deci-
sions. Another reason that we believe repetitive problems are common is the large interest
in the areas of modeling languages and model management systems. These types of systems
are useful for defining a series of related models or problems, and several of these have
been designed specifically for mathematical prog ramming models. Given these systems,
we will not describe the process by which the user defines the related problems but instead
concentrate on the solution process.

We start by giving a description of the variables involved and the basic structure of the
problem. We then describe some various forms that these problems might actually take.

58 KRAAY AND HARKER

1.1. Problem dejhition

First, the set of variable definitions are:

Z the set of indexes of the continuous decision variables (this set may be empty);
xi a continuous decision variable, i E I;
Ci the objective function’s coefficient value of Xi, which takes on random values from

some probability density fci;
Ui upper bound on Xi, which takes on random values from some probability density fpi

(there may be lower bounds on the variables, but by basic techniques the problem
can always be translated into this standard form);

Pi an indicator whether variable Xi exists in the current problem, it takes on the value
of one with some probability pi and the value zero with probability 1 - pi ;

.Z the set of indexes of the discrete decision variables, we assume that this set is nonempty;
Y;: a discrete decision variable, j E .Z;
dj the objective function’s coefficient value of q, which takes on random values from

Qj
some probability density fdj;
an indicator whether variable 5 exists in the current problem, it takes on the value
of one with some probability pj and the value zero with probability 1 - pi ;

K the maximal set of constraints in the problem;
a~ the coefficient of the variable 1 E Z U .Z in the row k of the constraint matrix, it takes

on random values from some probability density fau;
Rk an indicator whether constraint k exists in the current problem, it takes on the value

of one with probability pk and zero with probability 1 - pk;
bk the right-hand side value for constraint k, which takes on random values from some

probability density fbk.

None of the probability densities listed above is assumed to be known (unlike the prob-
abilistic combinatorial optimization problem in Bertsimas, 1988) and might be functions
of many different things, including the number of problems solved or even previous realiza-
tions of the variables.

The general formulation is then

ti 2 PiCiXi + C Qjdjyi,
iEI jcJ

subject to

c Pi&xi + c Qjab I;. 5 & ’ bk
I

vk E K
iEI jCJ

(1)

(2)

0 I Xi I Ui Vi E Z

I; E (0, 1) Vj E J.

(3)

(4)

CASE-BASED REASONING 59

The overall goal is to solve a sequence of these problems where each problem is a realiza-
tion of all the different probability distributions listed above. We will denote these problem
instances 6,, where m is the index of the problem (the mth problem to be solved). In
actual practice, we may have in addition to the current problems, a set of me previously
solved problems generated from the same sets of probability distributions.

To summarize, we are interested in solving a series of deterministic combinatorial op-
timization problems, each of which is a reuZ&ztion of a general problem class. As long
as the general structure of the objective and constraints is known, we don’t actually need
the property that the parameters are realizations of probability distributions, the probabil-
ity distributions are just a convenient method for describing related problems. The key
property is that we are able to identify the corresponding variables, parameters, and con-
straints between problem instances.

Note that these problems are very similar to the probabilistic combinatorial optimiza-
tion problems (PCOP) described by Bertsimas (1988), with two major differences. The
first is that the PCOP must be solved a priori, and the solution must be kept (or adapted
in some fixed manner) for all occurrences of the problem; whereas, we are solving each
problem as it occurs. The other major difference is that in the PCOP it is assumed that
all of the probability distributions are known exactly, and this information is used to solve
the problem, whereas we do not assume we know these distributions and must therefore
base our algorithm on just the problem occurrences.

1.2. Specific fom

The model given above is a very general description of a RCOP. In many actual problem
applications, some of the above distributions may be constant. Often, costs or profits that
are part of the objective function will remain constant over considerable periods of time.
Likewise, technical constraint values (represented by ukl> will often remain the same for
many problems. The probabilistic combinatorial optimization problems listed in Bertsimas
(1988) have both sets of these values constant, the only random variables are the indicators
whether a particular variable is present in any problem instance. The most important case,
which we will consider in some detail, is the values for Rk.

Before deciding the likely values for Rk, we must consider what constraints in
mathematical programs typically represent. In most cases, these constraints represent
physical limitations present in the problem being modeled. Some examples of these might
include the capacity of a truck in a vehicle routing problem, a department’s capacity in
a production problem, or the requirement that the solution f&m a tour in a traveling salesman
problem. If we consider these types of constraints, it would be fairly unlikely that Rk would
ever take on a value other than one. It is much more likely that a physical constraint might
change (through the values of a and b) rather than suddenly cease to exist. The only case
where a constraint would probably no longer hold is if none of the variables in that con-
straint were present, which would be represented by having all of the appropriate P and
Q indicators taking on values of zero. In this case, the entire left-hand side is zero, so we
would set the value of Rk to one so the constraint can be ignored.

60 KRAAY AND HARKER

In summary, most problems whose constraints map to actual physical limitations will
probably have all of the R variables always constant at a value of one. Also, in many prob-
lems, some or all of the continuous parameters may have constant values.

The Wowing small mathematical program presents a problem that we will use throughout
the rest of this article to explain how the concepts we are discussing can be related to a RCOP:

mm Q1,3Y1, + Qti& y2 + 4mY3m9 (5) *hl *zm *3m

subject to

Qlm YI, + Q2, Y2m + Y3m 5 2

where

(6)

(7)

m is the number of the problem being solved;

p(Ql, = 1) = 0.5, 0 otherwise;

p(Q2, = 1) = 0.5, 0 otherwise;

fd2n' fd3m - N(3, 0.5).

2. A case-based approach for mathematical programming

In this section, we present the framework that will be used when developing learning or
case-based reasoning heuristics for repetitive combinatorial optimization problems (RCOPs).
The two basic steps of case-based reasoning are finding relevant cases and then adapting
their solutions, as defined by Riesbeck and Schank (1989). The case-based approach pro-
vides several advantages over more standard mathematical programming techniques. The
solution process is much closer to how humans solve problems than standard mathematical
programming techniques. Therefore, it should be easier to understand how the solution
was derived and to modify either the solution or the solution process if necessary. Models
are usually imperfect descriptions of the real-life problem they are trying to represent, so
an optimal solution to a model may not be the best solution for the problem. Obviously,
if an optimal or very specialized heuristic technique aheady exists for a COP, then the
objective function values for the case-based heuristic will probably not be as good. The
advantages of the case-based heuristic arc the better explanatory power and interaction
capabilities, and the ability to develop heuristics for models for which it is very difficult
to come up with a standard mathematical search technique, which will probably be true
for a large number of real-life applications.

As described in Riesbeck and Schank (1989), most case-based reasoning applications
have been in problem domains where there is often significant difficulty in determinng
whether two problems are analogous, such as legal reasoning in Ashley (1987), Rain (1986)

CASE-BASED REASONING 61

Rissland and Ashley (1986), or generating plans of various types (recipes in Hammond,
1989, or football plays in Collins, 1987). The advantage of working in a domain where
the problems are well defined, such as combinatorial optimization, is that it is usually not
difficult to determine analogies between the problems, especially given the increase in in-
terest in the areas of mathematical modeling languages and model management systems
such as Bhargava and Kimbrough (1990), Bhargava and Krishnan (1990), and Fourer (1983).
The disadvantage is that the problems are usually much larger and more complicated than
the standard domains to which case-based reasoning (and many other artificial intelligence
techniques) have been applied. There has been some work in the application of case-based
techniques to more structured problems such as Chaturvedi (1993) and Koton (1989), but
no formal framework has been proposed for applying case-based reasoning for these types
of problems. Because of the differences between these domain types, we present new tech-
niques for the selection and adaptation processes in case-based reasoning. For each of these
two steps, we first present the simpler possible forms these steps could take, and then we
discuss how some additional techniques can be used to help determine better possible
methods for performing these steps.

A solution procedure for a RCOP can be defined as a set of steps (actions) performed
on a problem instance to arrive at an answer. One assumption is that the actions taken
are a function of at least the problem instance. If the answer is only a function of the cur-
rent problem instance, then we have what we consider a standard solution procedure. The
first possible learning prospect occurs when the steps taken can be a function of more than
the current problem instance. The next important step is to look at what other information
can be used in the solution procedure.

The most general case would be when each solution step and the answer to problem
m are a function of

l The current problem,
l Previous solution steps to the current problem,
l Previous problems,
l Previous problems’ solution steps,
l Previous problems’ answers,
l m (procedure may vary with time),
l Other sources (such as human input), and
l Random variables

The ultimate goal would be to find, for any given RCOP, which of the eight items listed
above should be used and what function of them should be used for each solution step.
Unfortunately, determining the best possible function will probably be more difficult than
solving the problem in the first place.

We will describe some various ideas and techniques that might make the process described
above feasible in a situation where there is a significant limit on computational time or
power. It is important to remember as we are discussing these ideas that when implement-
ing them careful thought should be given as to whether the ideas are appropriate for a
particular RCOP being studied. The problem of deciding which types of techniques are
best for which types of problems is a metaquestion that probably cannot be answered until

62 KRAAY AND HARKER

some of the techniques have been explored and tested. The other thing to keep in mind
is that it may not be possible to consider some of these techniques in isolation on many
problems because of interactions in their implementation. We will give some idea of the
possible interactions when they are not obvious.

2.1. Choosing the old instances

At some point, if we have solved many problem instances belonging to a particular RCOP,
we may not wish to have the solution to the current problem be a function of all past in-
stances. There are several possible reasons to limit these functions. First, the computa-
tional time involved in computing the function of the past instances might take longer than
we have to solve the problem. A second reason is that many of the past instances may
not be useful in solving the current problem instance. This brings up one of the major
problems associated with this type of system, defining which previous problem instances
are most likely to be helpful in the solution of the current problem. If we solved exactly
the same problem before, then we could always use that information. The important ques-
tion is how do we determine if this problem is similar, in some useful sense, to any previous
problem instances and then how to zue that information. We start by addressing which
old instances to use. We will give a more detailed discussion on methods for using the
information from previous problems in Section 2.2.

2.1.1. Fixedfunctions for the selection pmcess. In this section we describe some possible
methods for choosing which previous problem instance(s) should be used to help deter-
mine the solution to the current problem. There are a tremendous number of possible ways
to choose these instances, so in this section we describe the basic forms these choices may
take. For the purposes of this section, we assume that the method that we use for choosing
the instances is determined and fixed before we observe any problem instances. In the next
section, we will describe extensions of these methods that would allow the selection method
to change as a function of the problem instances. For the remainder of this section we
will use the singular, choosing a previous instance, but there is no reason that these tech-
niques could not be used repeatedly if more than one instance could be used for the solu-
tion process (Section 2.2).

The first possible mapping is to take the current problem instance and look for any pre-
vious problem instance that consisted of the same sets of variables-that is, the indicator
variables Pi(N) and Qj(V~) being the same for the two problems. In the example prob-
lem, this would imply (with h being the previous problem and m being the current prob-
lem) Qv, = Q, and Qu, = Qti. In this way we have a solution value for each variable
in the current problem. If the sets Z and .Z are large and we have not solved many problems
previously, then such an instance may not exist. In this case, we could take the previous
problem that had the largest intersection for the Pi and/or Qj sets with the current prob-
lem. In the example problem, this would be

QM x Qlm + Qzh X Q2,. (8)

CASE-BASED REASONING 63

We might also choose problems for which the intersection of Rk for the old and current
problem is the largest, but for most problems these are identical (with value one) for all
of the problem instances (the reason for this assumption was described in Section 1.2).

We next consider the other random parameters, the objective function coefficients, the
constraint matrix and right-hand-side coefficients and the upper bounds on the variables.
Given the nature of these values, they will usually take on continuous rather than logical
or discrete values. The most common exception would be a constraint

(9)

where the 5 are the discrete variables, and bk might take on integral values (such as max-
imum number of plants to be opened, trucks to be run, and so on). For this case, we operate
as if bk iS taking on COUtiUUOUS VdUeS. If there are a SigUifiCaM number of coefficients
that took on logical (0, 1) values, then we may need to defme a discrete measure similar
to the ones in the previous paragraph. Returning to the continuous valued coefficients, we
can define a continuous function of the differences between a previous problem’s coeffi-
cients and the current problem’s coefficients for the parameters that the two problems have
in common. There are many possible choices for these functions, some of the most ob-
vious being the standard mathematical L-norms, such as Lt = the sum of the absolute dif-
ferences, & = the sum-squared of the differences, or even L, = the largest absolute dif-
ference. In the example problem, we might choose the previous problem m for which the
value of

is minimized for the current problem m. Even more specialized functions could be used,
such as having a weighted summation of the difference of the constraint matrix variables,
in which the weights are a function of the objective function coefficients. Obviously, there
are many possibilities, so the final choice will have to be determined considering the RCOP
being solved.

Up to this point, we have only considered previous problem selection based on the prob-
lem instance. But we may also want to base our choice on the answer to the previous prob-
lem or even on the solution steps we chose to solve that problem. The latter case is likely
to be specific to a particular RCOP, so we will just discuss basing our choice on the previous
problem’s answers. The most obvious idea is that we might want to choose a previous prob-
lem that had a very good objective function solution if all of the previous problems were
not solved to optimality. This might be either an absolute measure or a relative measure
of the problem data, depending on the problem being studied. The other possibility is to
have the choice be a function of the values of the variables in the solution. We will discuss
this specific choice in Section 2.2.

Another very important possibility is that the person designing or using the RCOP might
have some knowledge as to the relative importance of certain variables or parameters of
the problem. Perhaps certain variables or coefficients are known to be very important for

64 KRAAY AND HARKER

deriving a good solution to the problem. We might want to place more weight on the
“closeness” of these particular values in the selection function. Deciding the relative weights
could either be done manually or by using some idea similar to the ideas described in Sec-
tion 2.1.2.

One additional problem we may face is deciding whether to compare the current prob-
lem instance to all previous problem instances or only a subset of them. Obviously, if the
number of past instances grows very large, as it might in some operational decisions that
are made daily or even more often, at some point comparing to all past instances is going
to become expensive relative to the possible returns. There also might be some storage
limitation if the problem instances are large. Two possible solutions that could be used
separately or in conjunction with one another are (1) to store only a representative subset
of the past problem instances and (2) to subdivide the possible problem instances into subsets
and compare only within a given set. The latter would probably be used to take advantage
of some structure in a given domain. For an example using daily cyclicity in the train in-
dustry, see Kraay (1993). The former can be done in several possible ways. One simple
heuristic would be to keep track of how often a particular instance is used and keep only
those instances that are used frequently. This might be the most appropriate method if there
were long-term changes or trends in the underlying problem being modeled. It might also
be possible to use cluster analysis or other methodologies for grouping very similar in-
stances for which the same or similar solution procedures were used.

We have described just a few of the many possible methods for choosing an instance
or set of previous instances from which to use the information when solving the current
problem. In many RCOPs, several of these functions may need to be combined to form
a good selection procedure. So far, all of the methods we have discussed assume that we
have fixed the functions a priori, before the realization of any of the problem instances.
In general, it might be possible to have the selection function and adaptation process also
be a function of the realizations of the problems. In Figure 1 we present a continuum rep-
resenting the possibilities for having the selection and adaptation processes be functions
of the problem instances. The dependence on instances listed toward the right of the con-
tinuum might also take on many forms. This could range from a direct functional relation-
ship with values of the problem instances to an indirect relationship such as how well the
function has pertbrmed on the chosen instances. For most problems, functions further toward
the left would be easier to implement, whereas those further to the right have the potential
for producing higherquality solutions. In the following section, we will describe one possible
method for implementing a selection function that is not fixed a priori.

2.1.2. Changingfunctions for the selection process. There are three major reasons why
it may be desirable for the methods of comparing instances to change over time. The first
reason is that for many RCOPs we may not be able to determine the best possible method
of comparison a priori, especially if the selection function must combine several of the
functions listed in the previous section or if we do not have enough knowledge about the
probability distributions of the RCOP. The second reason is that as the number of previously
solved instances increases, we may want to consider a different selection function. For
example, if we had a large number of similar instances, we might want to choose the one
with the best objective function value if the previously solved instances were not solved

CASE-BASED REASONING 65

Function
fixed

a priori

Form fixed
a priori but

function depends
on instances

Punction
depends

completely
on instances

Figure 1. Continuum of possible selection and adaptation functions.

to optimality. The third possible reason is that the RCOP itself may be changing over time
(the underlying probability distributions being time-dependent), which would almost cer-
tainty require the comparison method to change over time. We will concentate our discus-
sion on the former cases, though many of the techniques we describe will also be applicable
to the latter.

For large-scale problems, it will probably not be possible to choose a comparison
methodology that is a function of all of the different parameters of the problem. Therefore,
we are looking for a function that will perform well over a number of different problems
that are realizations of the probability distributions in the case of the RCOP. We are look-
ing for a selection method that will perform well in an expected value sense, not just for
a particular instance of the problem. Each time the method is applied we are creating a
realization of the method, which is going to depend on the previous problems and the cur-
rent problem. Another point we have not previously discussed is that we will be applying
this procedure multiple times for a number of new, related problems. After we have solved
a given problem, we will usually choose to add that problem to the set of previously solved
problems. An exception to this might be the case where we were unable to come up with
a satisfactory solution using the adaptation process. Therefore, the future applications of
the selection process will be a function of the current application of the selection (and adap-
tation) process. These two properties may have major implications on how we choose to
design a changing selection methodology.

Since our problem domain consists of well-structured problems (mathematical program-
ming models), we choose to limit our discussion of solution methodologies to mathematical
comparison functions of the problem and variable values. For domains where the problems
are not as well structured, other methods such as rule generalization in Riesbeck and Schank
(1989) or explanatory coherence in Thagard (1989) might be more appropriate, but an
attempt to apply these methods to the RCOP domain is beyond the scope of this article
since these would require significant modification to be applicable to the domain we have
chosen. The remainder of this section will be devoted to describing some possible methods
for finding good selection functions.

The problem of finding the best or better functions to use in the selection process is
a more general problem than choosing a previous problem instance, which is an upplicu-
tion of the selection function. Finding a good selection function can be viewed as an op-
timization problem (with the special features noted above), and hence there are many possible
methods for performing this task. The number of available choices decreases significantly

66 KR4AY AND HARKER

when we consider a few features of this problem. The first, which we mentioned above,
is that unless the form is a function of all the variables and coefficients, then an application
of the function is only a single sample point from the distribution of the applications of
the function. This means that if we were to attempt to optimize (in the mathematical pro-
gramming sense) this function, we would have to solve a stochastic program over all of
the possible distributions of previous instances and current problems and require a closed
form solution for the process of using the information for the current problem. Both of
these restrictions make this impractical for any but the most trivial RCOPs. So we are limited
to some heuristic methods (in the sense that they do not guarantee an optimal solution)
that might give us a very good function for selecting instances.

The simplest heuristic is simple simulation or other random search methods. Even if
we were to limit our search to certain functional forms with unknown numerical (weighting)
values, it might take too long to find the best function using simulation, since each step
would involve generating instances, performing the comparison process, and using the in-
formation to form a solution. Even more limiting, random search would require that we
know all of the probability distributions a priori (at least approximately), an assumption
we don’t otherwise need to make. Neural networks are another possible method for defm-
ing this function. One of the major requirements is that we have a set of training problems
for which we know the correct solution. We would have to use the set of previous problems
as the training problems, which might lead to some difficulty if these were not enough
to initialize the network, plus we may not be able to calculate the best selection function
for a given problem instance. One possible exception is if the set of previously solved prob-
lems were permanently fixed, and the selection function simply had to choose which prob-
lem from this set to use. This model would be extremely limiting, not being able to learn
as we gain more problems and hence will not be considered in this work. If there is more
research in the area of adaptive neural networks-that is, having the weights in the net
and the number of alternatives constantly changing as the network is used, then this might
become a reasonable alternative for choosing a selection function. The last possible method
we will consider is genetic algorithms, which we discuss in some detail as this seems to
have the most promise for finding good selection functions.

Genetic algorithms (GA) are a mathematical search technique based on the biological
model of the “survival of the fittest.” Strings of numbers represent genes, and multiple
generations are tested and “bred” to find which are the best suited for a particular objec-
tive function. We now look at a few of the properties of GAS and why these properties
make them especially well suited for the problem of finding a good selection function (for
further references and descriptions of genetic algorithms, see Section 4.1). The most im-
portant property of GAS that makes them appropriate for choosing a good selection func-
tion is that they work only with objective function information and not derivatives or other
forms of knowledge. This is important since it would be very difficult to derive a
mathematical model of the selection and adaptation process (as described above). Also,
GAS usually lead to a global rather than local optimum, which may be important since
we may not be able to determine beforehand whether any local optima, other than the global
optimum, may even exist. Second, GAS may often provide much better interim perfor-
mance than more deterministic methods (we will discuss this further below). Finally, GAS
have been found to be fairly robust, working well across a large range of problems. This

CASE-BASED REASONING 67

last observation will be severely tested given the use to which we will be putting the GA
methodology. We now give one example of how GAS could be used to help determine a
good selection function for choosing old instances.

As discussed under the area of fixed functions, there are several possible numerical
measures that might be appropriate for choosing old instances. Assume that we are using
the example problem from Section 1.2 and considering using the two functions given before,
equations (8) and (10). Since one of these is a maximization and one a mmimization, let
us redefine equation (10) as

10 - (l4h - d2ml + l4h - 4ml) (11)

(ten was chosen as an arbitrary value for which the function would probably not take on
negative values). Then we could consider as a possible combined selection function

a * (QM - Qlm + Q2h * Qz,n> + (1 - 4 * [lo - tld2h - d2,1 + l& - 4mb1, (12)

where cx takes on a value zero and one. In general, there could be more than one o-for
example, we could weigh each variable or parameter separately if we had some reason
to believe that they might have different degrees of importance in the problem. But for
the simple illustration of this section, we will include only one weighting parameter. So
the problem for the genetic algorithm (or any method we might choose) is to determine
the value of (Y for which the selection function and some adaptation process have the best
chance of giving a good solution for the new problem instance. In this simple case, we
could encode the parameter (Y as a binary string, preferably with a gray code where adja-
cent values change only by one bit. A string evaluation consists of the following opera-
tions. First, we decode the binary string to an (Y value between zero and one. Next, we
calculate the value of the selection function, in this case equation (12), for the current in-
stance m with each previous instance h. We then select the old instance h, which max-
imizes the selection function, and apply whatever adaptation process we have chosen to
come up with a solution to problem m. Finally, we give the string a fitness measure that
is some function of the heuristic solution to problem m. We now discuss several important
problems and properties of this procedure.

The first point is that an evaluation of a particular string involves choosing a previous
instance, based on the current problem and the selection function. Since the set of previous
problems and the current problem are both just possible occurrences of a larger set of prob-
lems, this evaluation is equivalent to a single point estimate. So to obtain an accurate evalua-
tion of a given string, we would actually need to evaluate it many times (either for many
new problems or for sets of different old problems if these were available). There are studies
on how GAS perform when the functions are noisy (e.g., Dejong, 1975; Greffenstette and
Fitzpatrick, 1985), but to the best of our knowledge no one has tested a GA where the
evaluation is simply a single point chosen out of a large sample space. Specific research
into the design of GAS for this type of problem will need to be done before a well-designed
system can be built.

The second point we must consider is whether we are performing the string evaluations
as we are actually solving the RCOP, or separately. The advantage of the latter is that when

68 KRAAY AND HARKER

we are ready to use the selection function, we will probably have a better function. Unfor-
tunately, it may be very expensive to perform these additional evaluations. De Jong (1975)
found that through careful selection of problem parameters, one could produce reasonably
good results for the case where you actually use the function evaluations. This is referred
to as on-line performance. Jn addition, evaluating the strings as we are using the selection
function implies that the GA will be able to adjust if the underlying RCOP distributions
are time dependent. We probably will not see the standard convergence that would be
achieved in GAS where the evaluation functions are not time dependent. There is one other
very important thing to consider when implementing the GA evaluation. Jf we are evaluating
the GA strings as we are actually solving the problem, then after we have chosen an old
instance and determined a solution to the new problem, we will probably want to add the
new problem to the list of previously solved problems. This would imply that hnure func-
tion evaluations will be dependent on previous function evaluations through the possible
selection of a previous instance that was itself the selection function chosen by another
string, a case that has never been considered before in the GA literature.

Jn this section we discussed how the selection function could change over time, using
genetic algorithms as one particular method that seems to be well suited to guiding this
process. The first advantage of this would be to help us determine what is a good selection
function, since this will probably be very difficult to determine given just the description
of the RCOP, especially if we do not have much information about the probability distribu-
tions. The second advantage is to allow the function to change if the RCOP distribution
functions are time dependent. We now turn to the question of what to do with the informa-
tion associated with the old problem instance or instances we have selected.

2.2. Using the information

Jn this section, we describe possible methods for using the information from a previous
problem instance or instances that we have chosen using the techniques described in Sec-
tion 2.1. We follow the same format as before, first describing solution procedures that
are chosen to be of some predetermined form and then describing solution procedures that
may vary with the problem instances.

2.2.1. Fixed forms for the adaptation process. Many of the ways of using information
discussed here will be directly related to the functions used to select the previous instances
whose information we are going to use. Descriptions of the appropriate selection functions
are located in Section 2.1. We will attempt to start with the simplest choices and progress
to those that are more sophisticated (and will probably be more successful).

The first case is if we have selected a previous instance whose answer is of the right
form for the current problem-that is, it has all of the same variables. Jn this case, we
could simply propose this as the answer to the current problem. Untktunately, unless the
solution space were very small or the old problem was very similar, this would probably
not be a very good answer for the current problem (it might even be infeasible if the con-
straint sets were not the same!). Also, as discussed previously, it is unlikely for many RCOPs
that there would be a problem with exactly the same set of variables, so some form of

CASE-BASED REASONING 69

adaptation is probably going to be necessary to get a solution (or a good solution) for the
current problem. We will divide the discussion of the remaining adaptation techniques into
two basic classes. The first class consists of adaptation techniques that leave the variables
unchanged that the problems have in common, and just set the values for variables that
are in the new problem and not in the chosen old instance. The second class of adaptation
techniques is those that can change the values of all of the variables, depending on the
problem instances.

If we do not have values for all of the variables, one possibility is to actually solve the
remaining mathematical program for these variables. Even though we are working with
COPS, if there were only a handful of integer variables for which we needed values, in
the worst case we could probably do complete enumeration. If we had the values for all
of the integer variables, then it would usually be easy to solve for the continuous variables
using a standard mathematical programming technique. Many mixed-integer programming
problems will have the property that the problem is convex in the continuous variables
after we have fixed the values of the integer variables. If we could not actually solve for
the remaining variables, we may be able to use some type of heuristic, either general or
domain specific, to set the values of the remaining variables. Another possibility would
be to use the information from more than one previous problem instance. For example,
we could take a second instance, perhaps the one for which the selection function had the
second highest value, and use this solution to set any variable values that did not exist in
the first instance chosen. In this case we might also want to have a different selection func-
tion for choosing the second closest instance, perhaps concentrating on the undecided
variables but also considering the fact that we might want the decided variables to be rela-
tively close to their corresponding values in the solution to the second chosen problem
instance. The relative importance of these might be found with a changing form as described
in Section 2.2.2. Also, when using more than one previous instance, we might need to
change some of the values from the first previous instance.

For many reasons, we may not be able to or want to keep the same variable values for
the current problem as we had in the previous problem instance(s). If the old problem
instance and the current problem have significantly different values for some of the con-
straints or right-hand-side coefficients, or if there are additional constraints or variables
in the new problem instance, then the old solution might be infeasible for the current prob-
lem. Even if it were feasible, if the objective or constraint matrix coefficients are suffi-
ciently different, then the solution may no longer be a good solution (the objective function
value being significantly below the best value for the current problem). There is also the
case that we described above, where we choose to use multiple old instances to find values
for all of the variables, but there are conflicts for certain variable values that lead to prob-
lem infeasibility. We now describe some techniques that might allow us to adapt these old
solution values to get feasible or better solutions to the current problem.

The easiest type of change to consider is the situation in which there is a significant
difference between one or more of the old and new problem’s objective function coeffi-
cients. If these changes affected continuous variables, we could fix the integer variables’
values, and either calculate a new solution using a dual simplex algorithm or at least gain
information by considering the dual prices and attempting to adjust the values of the con-
tinuous variables in the correct direction. For instance, we could use a greedy heuristic

70 KRAAY AND HARKER

where we start with the largest objective function coefficient difference and attempt to change
the value of the corresponding continuous variable as far as possible in the direction of
a better solution. We might also try a similar procedure for a change in a binary decision
variable’s objective value, except we would just change it to the opposite value (0 to 1 or
vice versa) to try to obtain a new feasible solution. Many other types of local search
heuristics, as appropriate to the RCOP, could also be used with the additional information
of the probable direction of improvement. The more difficult case might be if the con-
straint or right-hand-side coefficients have changed. If the solution is feasible, then we
could try to improve the solution as just discussed. If the solution is now infeasible, we
first might try some form of local search to regain feasibility (such as dual simplex). This
may be very difficult if logical decision variables are present in the violated constraint(s).
For this case, we may consider checking to see if there is another previous problem in-
stances that is also similar to the current problem and then either use that solution directly
(if it is feasible and gives a good solution) or as an indicator as to what the integer (and
perhaps continuous) variable values should be to give a feasible solution. In fact, we might
even want to choose this previous problem instance as the one that has the property of
having the most similarity between its constraint set and the violated constraints in the
current problem. One could continue to invent better adaptation procedures both for general
classes of RCOPs and for specific ones, so we will defer this discussion until several of
these techniques are tried on some specific problems.

2.2.2. Changing forms for the adaptation pmcess. Given the variety of possibilities dis-
cussed in the previous section on fixed-form adapation, it would be very difficult to list
all of the possible combinations of techniques that might be combined to form adaptation
techniques that change over time. So we will just discuss the general form of these types
of techniques.

The problem of determining the best method to adapt the solution of old problem in-
stance(s) has the same difficulty as we discussed under variable form selection functions-
namely, it is a very complicated stochastic problem so we can usually only get point esti-
mates. In addition, the point estimates are expensive to calculate and can be found a priori
only if we know all of the distributions. If we store solutions as we find them, then subse-
quent adaptations will be functions of the current adaptation and the selection functions.
Unlike the selection function, it would be hard to imagine a case where we could take
the weighted sum of two or more adaptation functions, but it might be possible if they
could be applied sequentially. In this case we might implement a genetic algorithm similar
to the one discussed in Section 2.1. If we were just selecting from a set of adaptation func-
tions, then it might be more natural to choose the best adaptation procedure using a neural
network. An example of choosing a heuristic for a problem using neural networks is pre-
sented by Nygard, Juell, and Radaba (1990). We could use this same type of scheme except
the heuristic would be the adaptation process. The disadvantage of this scheme is that we
would have to evaluate each of the adaptation schemes on each problem instance to develop
a set of training problems. With the genetic algorithm approach we would evaluate only
one function but might require more problem instances to achieve convergence. The best
scheme would probably be a function of the number of instances available and how much
the instances change over time.

CASE-EASED REASONING 71

Up to this point, we have mostly considered the selection function and adaptation pro-
cess as separate steps, but in actuality they may be tightly linked. This means we might
get totally different answers if we find the best selection function for a fixed adaptation
process and the beat adaptation process for a fixed selection function, or if we simulruneously
find the best selection function and adaptation process. Fortunately, through careful definition
of the string structure in GAS, it should be possible to have both of these searches occur
simultaneously. The only remaining question is whether it will take too many generations
(that is, too many strings and problems) before we are able to find the best heuristic. It
might also be possible to combine neural networks to form a complete search process if
that was the methodology chosen.

3. Implementation considerations

In this section we first describe some of the features that may make a problem amenable
to the types of learning heuristics described in previous sections. We will also discuss what
steps we might take if we do not have a set of m. previously solved problems when we
want to start the comparison and adaptation processes or if the answers to those problem
instances are not necessarily good solutions.

One property that would lead to an improvement in the learning process would be hav-
ing the optimal solution space (or good solution space) be a relatively smooth function
of the values of the inputs of the instances. For example, in a linear program the solution
will be a linear function of the right-hand-side coefficients and the objective function coef-
ficients over a given range and a smooth function of the matrix coefficients until a new
variable enters the basis. Unfortunately, having to make logical decisions in the problem
will probably imply that there are more discontinuities. Even a problem with a large number
of logical decisions could still be relatively smooth if these jumps are close to regular (in
the sense that in a regression, the sum-squared of the errors would be relatively small).
Next we will look at another property of the solutions that may improve the chance of
the learning heuristic working well.

We start by assuming that there is some probability distribution on the set of possible
instances. We will consider only the set of instances that have solutions. If necessary, we
can normalize the probability distribution so it only covers the instances with solutions.
The other simplifying assumption we make is that each instance has only one optimal solution
(or that there is some known probability distribution on the multiple optimal solutions).
Given these assumptions, we have a probability distribution on the optimal solutions for
the possible instances. If our past instances are not solved to optimality, we can use the
same argument substituting good solutions. Given this distribution, there are two possible
cases to consider.

The first possibility is that the distribution of the solution is very nonuniform. In this
case it would probably take fewer previous instances to increase the probability that the
optimal (or good) solution to the current instance has already been found in a previous
instance. The only problem in this case would be to determine which of the solutions is
the best one for this instance. If the problem/solution mappings were relatively smooth
(as described above), this should not be too difficult to determine.

72 KRAAY AND HARKER

Unfortunately, for many types of problems, almost every optimal solution will be opti-
mal for only one instance. This is definitely the case if the descriptions of the instances
have different dimensions (or number of dimensions). In this case, what we would like
to find is some feature of the answers that is nonuniform. For instance, the optimal route
might be different for every instance of a set of traveling salesman problems, but there
might be an arc or set of arcs that are in a large subset of the answers (and probably another
set of arcs that may appear in very few or only one). This implies we may be able to design
a learning scheme based on the arcs of the problem, realizing we may have to modify the
solutions to get a feasible answer for the given instance. This nonuniform feature may enable
us to identify the key to the mapping from old instances and answers to the answer for
the current instance.

When we are first implementing this case-based reasoning approach, and we have not
solved this type of problem before (not as an RCOP but as a set of separate problems),
then we may not have a set of previous instances to work with. This may be the case for
many real-world COPS, especially if the model for the problem is relatively new. One possible
method is to use some other type of solution procedure (either exact or approximate) to
solve the first few problems and then to use this other method and the learning method
described in this work simultaneously, until a significant number of problems have been
solved. One possible measure for the number of previous problems needed might be when
the learning heuristic is performing almost as well or better than the other technique, depend-
ing on how expensive it is to perform the more standard solution process. Unfortunately,
there is no other easy way around this problem, and so exploration into good standard
solution procedures may still be necessary. A good standard solution technique might also
be important if there is a significant amount of off-line computing time available that could
be used to attempt to improve the solution found by the learning heuristic for use as a previous
instance for future problems. For example, a given model may need to be solved in less
than an hour, but we could look for improved solutions using an additional computer before
it is used as a previous instance, which might not occur for a relatively long period of
time, especially if there is any cyclicity in the underlying problems.

The above discussion leads to the question of how the solution is affected if the previously
solved problems were not solved optimally. One problem may be that as we use the leam-
ing heuristic over a period of time, the solutions may degenerate or we may find the answers
converging to a local optimum. If there is no off-line computing time available to allow
us to try to improve previous solutions, then it will probably be even more important to
allow for a changing solution form (as with GAS). If the changing form allowed random
factors, this might allow us to change strategies occasionally, thus possibly avoiding the
local convergence problems. This is a very important question that we must consider more
for any actual RCOP implementation.

Both of the previous two problems-not having enough old instances and nonoptimal
previous solutions-could possibly be reduced through the incorporation of expert knowledge
or including a human in the overall solution process. Even if there is a totally new model
for a problem, usually the problem was solved by a human before the model was developed.
Though the previous solutions may not have been particularly good, they could provide
an initial set of instances. It may also be possible for the person who solved the problem
in real time to significantly improve on his solution given the benefit of hindsight. This

CASE-BASED REASONING 73

same hindsight might also help to improve problem solutions frm the learning heuristic.
If a problem solution was implemented and did not work very well, a human expert can
often diagnose what was wrong with that particular solution. In this case, the solution could
be modified before being added to the set of previous problem instances. If there seemed
to be a general deterioration or problem with the learning process, the user might be able
to suggest new factors to be considered in the selection and adaptation processes.

In Section 5, we illustrate some of the principles described in this chapter for a par-
ticular RCOP, the O-l knapsack problem. Extensive numerical results will be presented
in Kraay and Harker for three of the more standard combinatorial optimization problems,
the knapsack, traveling salesman, and simple plant location problems. These problems allow
us to test several of our ideas and allow us to compare the efficiency of our algorithm since
optimal solution algorithms exist for these problems. We will implement a very basic ver-
sion of the heuristic that uses as little domain-specific information as possible. This will
help us to determine how the algorithm may perform on a variety of problems. If we were
to specialize the heuristic for a particular problem at some point in the future, then the
heuristic performance should only improve.

4. Comparison with other techniques

In this section we give a description of some of the other artificial intelligence and related
techniques that might be used for the RCOPs described in Section 1. There are many more
possible techniques than we can describe here. For a general description as to how ar-
tificial intelligence and integer prog ramming can be linked, see Glover (1986).

We now give a brief description of three different techniques: genetic algorithms, neural
networks, and expert or rule-based systems. We will start by giving a very basic descrip-
tion of each technique and then describe how they might be applied to the RCOPs. We
also discuss some of the advantages and disadvantages of the techniques, as compared to
the learning (case-based reasoning) approach described previously in this article. It is im-
portant to note that we are comparing these methodologies with the selection and adapta-
tion idea, not which technique is best for coming up with the best selection and adaptation
functions (this was discussed in the appropriate sections above).

Finally, one other combination approach-target analysis and TABU search-also uses
information from previous problems to guide the search for an answer to the current prob-
lem as described in Glover and Laguna (1991) and Glover (1989, 1990). Target analysis
invests more time initially fmding very good solution and then uses these solutions as a
basis for analyzing and improving the strategies applied by the current solution method.
Another example of target analysis combined with a branch-and-bound solution technique
is presented in Glover, Klingman, and Phillips (1989). Target analysis could be viewed
in the context of this article as a more advanced method of using previous solutions to
modify the solution or adaptation procedure than those suggested in Section 2.2.2. Future
research into possible ties using the selection techniques presented in this article and target
analysis for solution adaptation might provide even better solution procedures.

74 KRAAY AND HARKER

4.1. Genetic algotithms

The first of the three approaches that we describe is the work in genetic algorithms (GAS).
Genetic algorithms are search procedures that are based on the ideas of natural selection
and genetics. The first GA application was presented by Bagley (1%7). The primary descrip-
tion of GAS was presented in Holland’s Aabpmion in Natuml and Artificial Systems (1975).
We will present a very simple idea of how GAs operate and present some of the references
for applications to the area of mathematical programming.

The first step in a GA is to define the problem in terms of string structures. Starting
with an initial generation (set of strings), a series of new generations are created. In each
generation a new set of strings is created using some random weighted (by some fitness
function) selection of strings that are then combined using various functions and that may
undergo some random mutations. The major differences between GAS and more standard
optimization procedures are. that GAS work from a set of strings @&us), have probabilistic
transition rules, and use only objective (payoff) information and not derivatives or other
knowledge.

A complete survey of the work in GAS is presented by Goldberg (1989). We will just
point out a few of the applications GAs related to mathematical programming to which
GAs have been applied. Work on applying GAs to the traveling salesman problem is presented
in Goldberg and Lingle (1985), Greffenstette et al. (1985), and Wetzel (n.d.). Ideas for
solving bin-packing and graph-coloring problems and job-shop scheduling problems are
presented by Davis (1985a) and David (1985b). The blind knapsack problem was considered
in Goldberg and Smith (1986). These are just a small sample of the problems to which
genetic algorithms have been applied.

In Section 2.1.2, we described how GAS could be used to help aid in determining the
best selection and adaptation functions, so in the remainder of this section we just consider
the case of using GAS directly to solve the problem. We will not discuss the difficulty of
modeling continuous variables with GAS, which could be a serious problem if we had a
large, mixed-integer problem, but rather discuss the more general ideas related to the com-
binatorial optimization.

As described above, GAS use only objective function information in determining the tran-
sition between generations. This works very well for unconstrained problems, but there
is some difficulty when dealing with constrained optimization. There are many possible
methods for dealing with the constraints; we describe three of the most obvious here. The
simplest (but perhaps least effective) method for dealing with a constrained problem is
to just give an evaluation value of negative infinity (or zero, if scaled fitness values are
used) to any string that does not evaluate to a feasible solution. This would probably re-
quire a large generation size and mutation rate to ensure that we are left with a large, viable
number of strings. We might have a good feasible solution and an infeasible solution very
close, thus violating the assumption of having short-ordder strings define important features
of the problem. Another possible method would be to form a relaxation of the problem,
similar to the Lagrangian relaxation of mathematical programming, where there is some
penalty weight for violating a constraint. This might be appropriate for problems where
the constraints are relatively soft or there is some possible measurement error in their
specification. However, if some or all of the constraints represent physical or logical

CASE-BASED REASONING 75

requirements of the solution (such as having a “tour” in a traveling salesman problem),
then this method may not yield feasible solutions. A third technique would be to define
the strings and the crossover and mutation operators such that they would always take feasible
strings and convert them to other feasible strings. Since this approach seems the most
reasonable for the types of structured problems discussed in this article, this is the techni-
que we will compare with a case-based selection and adaptation approach.

The difference in difficulty involved in designing a genetic algorithm approach instead
of a case-based reasoning heuristic will probably depend greatly on the problem class.
For most problems, the design of an appropriate selection function should not require a
large amount of domain-specific knowledge. We are dealing with related problems where
the correspondence in variables is known, so we do not have to consider the variable map-
ping. The domain-specific difficulty lies in the choice of adaptation processes or, in the
case of genetic algorithms, string operators that maintain feasibility. If the problem struc-
ture (constraints) are fairly simple, then designing an operator to maintain feasibility may
be relatively easy. But if the constraint structure is large or complicated, then this may
be a more difficult task than coming up with an adaptation process to gain feasibility, The
reason for this is that the adaptation process is not limited to the set of operators dealing
with the string representation of the problem, which is necessary for genetic algorithms,
but can use other techniques such as mathematical programming or other local search tech-
niques. Unfortunately, deciding which of these techniques would be most effective is very
difficult without devising implementation methodologies for a variety of domains.

Finally, the case-based reasoning process might provide more explanation to the user
than a GA algorithm. Many people use previous experiences to determine how to solve
a new problem; very few people solve problems using random search. For case-based reason-
ing, we can tell the user which old instance(s) we have chosen and what adaptation process
we are using to solve the problem. Since the GA proces uses probabilistic transition rules,
it is much more difficult to explain to a person how the technique arrived at the chosen
answer.

4.2. Neural network

One type of learning system, connectionist learning systems (also called neural networks
or parallel distributed system), has recently received much attention. Neural networks
typically consist of many simple neuron-like processing elements called units that interact
using weighted connections. Each unit has a state or activity late1 that is determined by
the input received from other units in the network. The more recent networks have layers
of hidden units between the input and the output units. These multilayer networks can com-
pute much more complicated functions than the networks that lack hidden units, but the
learning is much slower as described in Quinlan (1986). Connectionist learning procedures
can be supervised, which require a teacher or test problems to specify the desired output
vector, or unsupervised, where an internal model is constructed that captures the regularities
in the input vectors. Learning in these procedures consists of readjusting weights on a net-
work via different learning algorithms, such as Boltzmann or backpropagation.

76 KRAAY AND HARKER

A more complete introduction is provided in McClelland and Rumelhart (1987) and
Rumelhart and McClelland (1986), and several related papers are available in Shavlik and
Dietterich (1990). One article that is more closely related to our work is the paper by Nygard,
Juell, and Kadaba (1990), where one of several various vehicle routing heuristics was chosen
as best for a specific problem by a trained neural network. How this type of technique
might be used in our current work was discussed in Section 2.2. The major drawback in
using neural networks is that it typically takes thousands or even millions of training prob-
lems for an actual problem of realistic size. As more work is done in both neural networks
and case-based reasoning, there may be more possibilities in combining these two power-
ful but different techniques.

4.3. Rule-based and expert systems

We include a brief discussion of rule-based and expert systems for the sake of completeness,
as there have been some attempts to use these methods for well-structured domains, and
these types of approaches might seem attractive given that we are solving a series of related
problems. An introduction and overview of expert systems is presented by Waterman (1986)
and many similar texts.

Despite the relative frequency with which expert systems are now appearing, there are
still several problems with trying to use them for the types of mathematical programming
problems described in this article. One problem is that for many of these difficult prob-
lems, there is no human expert capable of solving the problem. Jn fact, this is often one
of the reasons the problem is being modeled as a mathematical program. Jn this regard,
expert systems require much more domain-specific knowledge than the learning approach.
Another possible problem is that expert and particularly rule-based system have difficulty
handling constraints containing continuous variables. These are sometimes approximated
by discretizing the continuous variables, but for large problems this will require a tremen-
dous number of values, and the relatively inefficient (compared to mathematical program-
ming algorithms) search algorithms of expert systems may require too much time to find
a reasonable answer. One additional problem relates to tire aspect of learning. Earlier in
this article, we describe how we may be able to add to our knowledge base each time a
problem is solved. This might correspond to adding rules to a rule-based system, but to
perform this activity often might lead to large costs to maintain consistency and to deal
with the other problems of maintaining a large expert system.

Expert systems’ approaches do offer advantages for general problem solving. One of the
major advantages is often referred to as explanation facility--that is, an expert system can
explain to the user how it came to the answer it did and why it implemented certain steps
along the way. This is more information than is often available from more standard op-
timization methods. The method described in this article falls somewhere between the two
approaches, since it can provide information such as which previous instance is being used
for adaptation. The adaptation process may be more difficult to explain than a set of rules,
depending on the problem domain. Also, it is much easier to design a full decision support
system using an expert system than an optimization code, though this may be partially off-
set through the advent of model management systems. As with the explanation facility, the

CASE-BASED REASONING 77

learning technique would probably be toward the middle, allowing the user to interact with
the system in various ways. One possibility would be to have the selection function present
the user with a subset of the old instances to choose from, along with the selection func-
tion measures, and allow the user to choose on which old problem to base the solution.
It may also be possible to allow the user to help guide the adaptation process, depending
on the domain and the degree of difficulty involved in this process. In conclusion, it seems
that a good implementation of the case-based approach described in this article could have
some of the important user capabilities that are present in expert systems.

5. The repetitive knapsack problem

One of the simplest integer programming problems is the zero-one knapsack problem (we
will omit the “zero-one” when referring to the problem for the remainder of the section).
Nemhauser and Wolsey (1988) contain some discussion on the problem, and Dudzinski
and Wahrkiewicz (1987) provide a review of exact methods for the knapsack problem and
its generalizations. The mathematical programming formulation is (using one of the stan-
dard mathematical notations for this problem, which does not exactly correspond to the
RCOP notation in Section 1, most notably we use x instead of Y as a binary decision variable

subject to

ICY=, Wixi I b

Xi E (0, l} Vi,

where

(13)

n = number of items to choose from,
xi = whether item i is chosen,
ci = the value of item i,

wi = the weight of item i,

b = the capacity of the knapsack.

In this section we describe how we are generating related random knapsack problems
and two possible ways to apply the learning technique discussed in the previous section.
This analysis is an attempt to determine some of the basic properties of the heuristic when
applied to this simple problem. The learning heuristic we are using is very general and
will probably require both more of the types of structures found in real-life problems than
randomly generated theoretical problems and specialized domain knowledge before it can
come close to the solution values given by a standard mathematical programming technique.

78 KRAAY AND HARKER

It is slightly difficult to define what types of random knapsack problems would belong
to the same group (as defined in Section 1). We start with a relatively straightforward case,
which has the advantage of being generalizable to many other types of integer program-
ming problems. We will start by generating a large set of items, N, containing items x1
to x,, having objective function values cl to c, and weights w1 to w,. A given instance m
will consist of a subset of items I,,, G N, with each item xi E N having a probability p
E (0, 1) of being in Z,. So all of the coefficients, including the size of the knapsack, b,
are unchanged for different problem instances; the only random variables are which items
are available for a particular problem.

5.1. Fixed-form selection and adapration

The next step is to define how we can apply the learning heuristic to these randomly generated
knapsack instances. We start by assuming that we hve a set Zm,, of instances for which we
have obtained and stored the optimal solution. For the new instance I,,, with m > m,,, find
the previous instance 4 E ZQ, which m aximizes the function

where 6 E (0, l/n), is a small constant; if these values are the same for two different in-
stances, choose one arbitrarily (for example, choose the most recent instance). This is the
selection function described in Section 2.1. Let Op$ be the set of items that were chosen
as the optimal solution to instance j. We next take the intersection of Op$ and Z,,, forming
Xmj. if Xmj is not empty, then we include all of the items in Xmj as part of the heuristic
solution to instance m. Since we assumed that all of the knapsacks were of the same size,
this must form a feasible solution to instance m but could be very poor since the intersec-
tion might contain few or perhaps no items. Though there may be several possibilities in-
volving heuristic solution methods to improve the solution, we will describe a multistage
learning process that should improve the value of the solution.

The amount of available space in the knapsack after the first step is

b - c w,.
n~X,j

(1%

If this amount is greater than some tolerance level, then we could proceed in the follow-
ing manner. Find the instance Zk E Zq with k # j for which the value of equation (14)
is the largest. Define X, as above, and add the items in X, to those in Xmj (eliminating
duplications). Continue this process until one of three possibilities occur. The first possibility
is that we run out of old instances or reach some predeflned limit on the number of itera-
tions. The second possible stopping condition is that we have enough items so that the
value in equation (15) is less than the tolerance level, in which case we give those items
as the heuristic solution. The third possibility is that we have taken too many items and
exceeded the capacity of the knapsack. In this case, we randomly remove items from the

CASE-BASED REASONING 79

knapsack. In this manner we always determine a feasible solution to the current instance,
using almost no domain-specific knowledge about knapsacks. Obviously, we could improve
the performance using domain-specific knowledge, but for more difficult RCOPS, this in-
formation might be difficult or impossible to obtain. Thus, we feel that this is the first
method that should be studied. The performance of this simple heuristic will be analyzed
in the following section.

5.2. lheoretical analysis

In this section, a slightly simplified version of the algorithm is used to derive several
analytical results. We start with the same basic idea-that we have N as the set of total
items, having values cl to c, and weights w1 to w, all independently generated from some
distributions (say, U(0, 1)). We let Q, be an (0, 1) indicator random variable, whether
item i is in instance m, with P(Qi, = 1) = p > 0 Vi, m. Let b = 1 for all instances,
and define xi,,, as the decision variable for item i in knapsack problem m. The problem
instance m can be defined as

subject to

CF=l WiQimXim I b

xim E (0, l} Vi. (16)

We assume that we have previously solved me instances are are currently solving in-
stance k = mc + 1. We start by having only one iteration of the learning process-that
is, we just take the instance with the most items in common. The expected performance
of the heuristic can then be measured by

EVi’=l CiWQiJQid
W-J ’

where

(17)

J = argj=l,. .,3 mm 2 (Qik Qij - SQi$
I-

(18)
i=l

and 6 E (0, l/n) is a small constant.
The following is a description of one method for determinng an approximate formula

for (17). The distribution for the number of items in instance k is a simple binomial. An
asymptotic value for Vk as a function of the number of items in instance k was derived
by Frieze and Clarke (19&l)-specifically, that the value approaches J-- 2s/3 where s is the

80 KRAAY AND HARKER

number of items available for the knapsack. This same procedure can be used as an ap-
proximation for Cy==, CixiJ since the items are independently and identically distributed
random variables. The approximate value would be

(19)

Given these assumptions, we can form an approximate formula for (17). Since we cannot
find an exact formula for the expected optimal objective function value of the knapsack
problem (or other COPS), and the learning heuristics are a function of these previous values,
it is unlikely that we will ever be able to determine an exact formula.

Let us define fbur intermediate variables to help derive the formula. Let

t = number of items in the current instance,
s = number of items in the maximal instance J,
z = number of items in the intersection Q,Q,,
d = number of old instances with cardinal@ equal to z,

and let q = 1 - p. Then (17) is approximately equal to

B(d) = [1;3 [[;]Pv-zlyg ;]Pv-f-l

(21)

(22)

and

(23)

Equation (20) gives the probability of r items in the current instance times the value
function for having r items, & for the optimal solution and A for the heuristic solution
(the ~6?% will cancel out of all the equations). In equation (2 1) , we sum over the possible
values for the maximal intersection, the number of instances with maximal intersection,

CASE-BASED REASONING 81

and the value gained from choosing that old instance. The value function is the square
root of the number of items in the old instance times the fraction of the old instances in
which that item would have been chosen (on average, remembering that the items are i.i.d.
random variables). B (in equation (22)) is the conditional probability of having d old in-
stances with the same overlap z, given we have r items in the current instance. Finally,
(23) gives the conditional probability that the number of items in instance J is equal to
S, given r, z, and d. If we consider J from equation (18) and amount of overlap z = Cy==,
Q&Q, is fixed, then among those d instances with the same number of overlapping items
z, the function will be maximal for the instance with the fewest items (because we subtract
6Qi, and 6 E (0, l/n)). Thus, equation (23) is the probabilistic equivalent of a minimiza-
tion function over the number of items in the instance (8).

It is almost impossible to perform most types of sensitivity analysis on equation (20)
due to the presence of the same variables both in summations and factorials/exponents.
One result that we can obtain is the asymptotic value of equation (20) as we let k --* 00
(assuming that all of the other parameters are fixed). Intuitively, as we let the number of
old instances approach infinity, then the chance of finding exactly the same instance (among
the old ones) as the one we are currently trying to solve should approach one. This is stated
in the following theorem.

Theorem 5.1. The limit as k goes to injinity of equation (20) is equal to one.

The proof of the above theorem is given in Kraay (1993).
Unfortunately, the analysis becomes increasingly complicated when we consider the

multistage learning described in Section 5.1. After some work, it was discovered that to
obtain a good bound for the heuristic value in a reasonable period of time, a very slight
modification to the heuristic is necessary. This modification relates to how we remove items
from the heuristic solution when we have chosen more items than can fit in the knapsack.
The modification is that we will only remove items that were put in during the last stage
of the learning procedure. This means that in the two-stage case, only items from the sec-
ond closest intance can be dropped from the knapsack, since all of the items from the first
solution must fit. Given this assumption, we now proceed to describe an approximate lower
bound on the two-stage heuristic. The analysis is almost identical for more stages, but the
calculation of the value will become increasingly difficult, and the bound will get increas-
ingly farther from the true value, unless we use a more complicated procedure.

We will define a set of temporary variables similar to those used for the single-stage
case, with a few minor differences. let

r = number of items in the current instance,
s1 = number of items in maximal instance J,

s2 = number of items in second closest instance,
z1 = number of items in the intersection with the closest instance,
z2 = number of items in the intersection with the second closest instance,
di = number of old instances with the same cardinality, zl,
d2 = number of old instances with the same cardinality, z2.

82 KRAAY AND HARKER

We will also define two additional functions for notational convenience:

fta, b, d =
and

g(a, b, c) = “-2’ [: 1 :) p+f-Q-(i-C)<
i=b

(24)

(25)

Equation (20) is identical to the single-stage case, but in the two-stage case we now have

A = 2 2 B1 . (Cl + C,) + k ‘s ‘2 B2 . C3 V-9
(q =z2)= 1 dl =2 z*=o z*=o 4=1

4 = [il) [[;)tilCzl]“~ [;)P%-I’*’ (27)

n--r+21

cl= c E * [W, ~1, zddl - go-9 Sl + 1, Zlldl) - D] (28)
(sl=sz)=(zl=z2)

n-r+.?,

D = c dl *.f@‘, sl, z,) * [g(r, s2, z~)~‘-’ - g(r, s2 + 1, zl)4-‘] (29)
9=s,+1

n--r+z, n--r+z,

c2 = c 4 *f@, $1, Zl) * c Es W, ~2, zddl-’ - g(r, s2 + I, zl)dl-l) (30)
Sl =z1 s2=q+l 1

B2 = k. [[~)pz,4r-zl]. [y) [[;)pz2qr-z2]“[g [;)pjqr-j]k-1-4
(31)

n--r+z1 n--r+z2

c3= c f(~,S1,ZdO c E l t&t, ~2, z214 - g(r, s2 + 1, z2)4)
I

(32)
s1=21 9 =z2

E=+~++H.q +-max{;,H}] (33)

H=minfi -:,z}. (34)

CASE-BASED REASONING 83

Equation (26) is composed of two major parts. The first part covers the case where the
maximal intersection is the same for the closest and second closest old instances (zi = z2),
the second part is for when they are different (the second must be less than the first, by
definition). For the first case, equation (27) gives the probability of having di, which must
be at least two, instances with the same maximal overlap. There are then two further sub-
cases, whether there are two instances with the same minimal number of items or whether
there is just one. In the case with two or more with the same minimal number, the probabil-
ity times the payoff is given by (28); equation (29) is just the sum of the probabilities for
one of the instances having more items. The payoff and probability for when the number
of items in the old instances is different is given by equation (30). For the second major
case (zi 1 Q), equation (31) gives the probability for one instance with intersection z1
and d2 old instances with intersection z2. Equation (32) gives the probability function for
the number of items in the two instances, multiplied by the payoff E. For all of the equations
(26) through (32), the probabilities are exactly as shown. Unfortunately, it is much harder
to find an exact answer for the value of the heuristic solution for the two-stage algorithm.

Equation (33) is an underestimation of the value of the heuristic solution for all values of
zl, z2, sl, s2. The first major reason is that we modify the amount we are sampling from
the second instance. If we were to take zi/si (the actual conditional distribution is hyper-
geometric) and z2/s2 of the items from the second instance, and the sum of these two frac-
tions were greater than one, then the probability that all of these items would fit in the
knapsack would be fairly small, especially if s1 and s2 are fairly large. Since this value
would be small and fairly hard to find, we reduce the number of items we can take in
this case. One simple method is to reduce the amount taken from the second instance to
1 - (z&i) (the value given in (34)). The next problem is to find the probability that all
of the items will fit, given that we are taking zl/sl and H from the two instances, respec-
tively. The worst case would occur if one of the optimal solutions had only one item (the
one with the larger ratio), and the other optimal solution had a very large number of items.
In this case, the probability of the items fitting is just 1 - max(zl/sl, H} , for other com-
binations the probability is larger than this value. This is actually a very rough lower bound,
since there should be an additional term that is the conditional probability of a smaller
fraction fitting if the H would not fit. Unfortunately, finding even a lower bound on this
probability is extremely complicated and hence will not be considered here. The third
underestimation in equation (33) comes from multiplying by the value 4, which is to ac-
count for the case of an item being in both problems. The true value would be less than
q, since multiplying by q implies that if an item is in the optimal solution of one problem,
it must be in the optimal solution of the other, which is not always the case. Since E is an
underestimation of the value gained by taking the two closest instances, and all the proba-
bilities are exact, then the entire term is an approximate lower bound on the ratio of the
heuristic to optimal value (approximate because of the use of the square root).

As is the case in the single-stage learning procedure, the only relatively simple analysis
is to prove that the asymptotic value when k + 00 = 1. The details of the proof are found
in Kraay (1993). As mentioned earlier in the section, we would also lie to determine how
these values behave as functions of IZ, k and p, which is very difficult to state analytically
due to the presence of discrete summations and those same variables being used as functions
raised to powers (except for trivial cases such as p = 1). Numerical results for the actual
performance under a variety of parameter values will be presented in Kraay and Harker.

84 KRAAY AND HARKER

6 Conclusion

In this article, we have presented a general framework for applying case-based reasoning
to repetitive combinatorial optimization problems (RCOP). This framework allows for a
combination of different selection functions and adaption procedures depending on the type
of the optimization problem. Many of the more complicated functions and procedures may
allow for integration with other artificial intehigence and mathematical programming tech-
niques to form heuristics that may be usable on large, difficult problems.

The knapsack problem presented in this article gives just one simple example of how
case-based reasoning can be applied directly to a RCOP. In Part 2 of this article (Kraay
and Harker, fbrthcoming) , we given numerical results for the application of these procedures
to a number of different combinatorial optimization problems. There is still a large amount
of research needed to determine the most efficient method for implementing the ideas dis-
cussed in this article, especially for real-world problems where traditional methods may
not be capable of solving the problem.

References

Ashley, K.D. (1987). “Distinguishing: A Reasoner’s Wedge.” In Proceedings of the Ninth Annual Conference
of the Cognitive Science Sociefy (Pp. 737-747). Hillsdale, NJ: Lawrence Erlbaum.

Bagley, J.D. (1967). “The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms,”
Doctoral dissertation, University of Michigan.

Bain, W.M. (1986). “Case-Based Reasoning: A Computer Model of Subjective Assessment.” Doctoral disserta-
tion, Yale University.

Bertdas, D. J. (1988). ‘Probabilistic Combinatorial +imimtion Problems.” Technical Report No. 194, Gperations
Research Center, Massachusetts Institute of Technology, Boston.

Bhargava, H.K., and S.O. Kimbrough. (1990). “On Embedded Language for Model Management.” In Pnxeedings
of the Twenty-lhini Hawaii International Conferences on System Sciences (pp. 443-452).

Bhargava, H.K., and R. Krishnan. (1990). “A Formal Approach for Model Formulation in a Model Management
System.” In Proceedings qfthe Twe~l?dni Hawaii Imwnational conferences on System Sciences (pp. 453462).

Chaturvedi, A. (1993). Xcquiring Implicit Knowledge in a Complex Domain.” Expert Systems wifh Applica-
tions 6, 23-35.

Collins, G.C. (1987). “Plan Creation: Using Strategies as Blueprints.” Doctoral disseration, Yale University.
Davis, L. (1985a). “‘Applying Adaptive Algorithms to Epistatic Domains.” In Proceedings of rhe Nin#h Intema-

tionul Joint Conference on Arrificial Intelligence (Pp. 162-164).
Davis, L. (1985b). “Job Shop Scheduling with Genetic Algorithms.” In Proceedings of an International Confer-

ence on Genetic Algorithms and their Applications @p. 136-140).
De Jong, A.K. (1975). “An Analysis of the Behaviour of a Class of Genetic Adaptive Systems.” Doctoral disser-

tation, University of Michigan.
Dudxiiki, K., and S. Wahtkiewicz. (1987). “Exact Methods for the Knapsack Problem and Its Generalizations.”

European Joumal of Operational Research 28, 3-21.
Fourer, R. (1983). “Modeling Languages Versus Matrix Generators for Linear P rqramming.” ACM Tmnsnctions

Mathematical Sofware 9, 143-183.
Frieze, A.M., and M.R.B. Clarke. (1984). “Approximation Algorithms for the m-Dimensional O-l Knapsack

Problem: Worst-Case and Probabilistic Analyses.” European Journal of Openational Research 15, 100-109.
Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence.” Computers and

Operations Research 13, 533-549.
Glover, F. (1989). “lhbu Search: Part I.” ORYA Journal on Computing 1, 190-206.
Glover, F. (1990). “lhbu Search: Part II.” ORYA Journal on Computing 2, 4-32.

CASE-BASED REASONING 85

Glover, F., D. Klingman, and N. Phillips. (1989). “A Network-Related Nuclear Power Plant Model with an Intelli-
gent Branch-and-Bound Solution Approach.” ,4nnuls of Opemtions Research 21, 3 17-33 1.

Glover, E , and M . Laguna. (199 1). “‘lhrget Analysis to Improve a ‘lhbu Search Method for Machine Scheduling.”
Arabian Journal for Science and Engineering 16, 239-253.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:
Addison-Wesley.

Goldberg, D.E., and R. Lingle. (1985). ‘AUeles, Loci, and the Traveling Salesman Problem.” In Proceedings
of an International Conference on Genetic Algorithms and their Applications (pp. 154-159).

Goldberg, D.E., and R.E. Smith. (1986). ‘AI Meets OR: Blind Inferential Search with Genetic Algorithms.”
Paper presented at the ORSAlTIMS Joint National Meeting, Miami.

Grefenstette, J. J., et al. (1985). ‘Genetic Algorithms for the Traveling Salesman Problem.” In Proceedings of
an International Conference on Genetic Algorithms and iheir Applications @p. 112-120).

Grefenstette, J. J., and J.M. Fitzpatrick. (1985). ‘Genetic Search with Approximate Function Evaluations.” In
Proceedings of an International Conference on Genetic Algorithms and Their Applications (pp. 112-120).

Hammond, K. J. (1989). Case-Based Planning: Kewmg Planning as a Memory Task. Perspectives in Artificial
Intelligence. Boston: Academic Press.

Holland, J.H. (1975). Adaptation in Natural and Art@%1 Systems. Ann Arbor: University of Michigan Press.
Koton, P. (1989). “SMARTPLAN: A Case-Based Resource Allocation and Scheduling System.” Proceedings

of a Workshop on Case-Based Reasoning (pp. 285-289).
Kraay, D. (1993). ‘Learning Heuristics for Repetitive Combinatorial Optimization Problems: With an Applica-

tion in Train Scheduling.” Doctoral dissertation, University of Pennsylvania, Philadelphia.
Kraay, D., and P.T. Harker. (Forthcoming). “Case-Based Reasoning for Repetitive Combinatorial Optimization

Problems: Part II: Numerical.” Heuristics.
McClelland, J.L., and D.E. Rumelbart. (1987). Explomtions in Parallel Distributed Processing: A Handbook

of Models, Progmms, and Exercises. Cambridge, MA: MIT Press.
Nemhauser, G.L., and L.A. Wolsey. (1988). Integer and Combinatorial Optimization. New York: Wiley.
Nygard, K.E., P Juell, and N. Kadaba. (1990). “Neural Networks for Selecting Vehicle Routing Heuristics.”

ORSA Journal on Computing 2, 353-364.
Quinlan, J.R. (1986). “Induction of Decision Trees.” In R.S. Michalski, J.G. Carbonell, and T. Mitchell (Eds.),

Machine Learning (1, pp. 81-106). Palo Alto: Tioga.
Riesbeck, C., and R. Schank. (1989). Inside Case-Based Reasoning. Hillsdale, NJ: Erlbaum.
Rissland, E.L., and K.D. Ashley. (1986). “Hypotheticals as Heuristic Device.” In Proceedings ofAAAI-86 (American

Association for Ar@cial Intelligence). Los Altos, CA: Morgan Kaufmann.
Rumelhart, D.E., and J.L. McClelland @Is.). (1986). Parallel Distributed Processing: L&plomtions in the Micto-

structure of Cognition. Cambridge, MA: MIT Press.
Shavlik, J.W., and T.G. Diet&rich (Eds.). (1990). Readings in Machine Learning. San Mateo, CA: Morgan

KaUfIllalUl.

Thagard, P. (1989). “Explanatory Coherence.” Behavioml and Bmin Sciences 12, 435-502.
Waterman, D.A. (1986). A Guide to Expert Systems. Reading, MA: Addison-Wesley.
Wetxe.1, A. (n.d.). “Evaluation of the Effectiveness of Genetic Algorithms in Combinatorial Optimization.” Unpub-

lished manuscript, University of Pittsburgh, Pittsburgh, PA.

