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Abstract. The magnetic field plays an important role in various solar activities. This paper reviews techniques 
for computational modeling of magnetic fields in solar active regions. The input data are photospheric 
magnetic fields supplied by magnetograph observations. The field above the photosphere is computed by 
assuming an equation for the magnetic field. Three classes of magnetic fields, namely current-free fields, 
constant-a force-free fields, and general force-free fields are considered. Their physical/mathematical 
significances and computational procedures are systematically presented. 
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I. Introduction 

1.1. AIM OF THIS REVIEW 

Various activities in the solar atmosphere originate from the magnetic field. Strong 
magnetic field exceeding 3000 G is found in sunspots. Areas surrounding sunspots are 
called plage regions and have the magnetic field of a few hundred gauss. Sunspots and 
plages comprise active regions (Figure 1), which literally show various activities. The 
most significant among them is the solar flare, an explosive conversion of magnetic 
energy into heat, radiation, bulk motion of gases, shock waves, and high energy particles 
(Svestka, 1976; Sturrock, 1980; Kundu and Woodgate, 1986). A more steady heating 
which is responsible for the creation of hot solar corona is also believed to be due to 
the presence of the magnetic field (Kuperus et al., 1981). Quiet regions, which apparently 
show only the magnetic field of a few gauss, in actuality are composed of concentrated 
magnetic flux tubes (Stenflo, 1976). Active elements are, therefore, embedded every- 
where in the solar atmosphere, and the active regions are places where the density of 
flux tubes is the largest. The magnetic activity of the Sun shows a cyclic variation whose 
period is about 11 years. This solar activity cycle is driven by the magnetohydrodynamic 
dynamo mechanism, a combined effect of rotation, convection, and the magnetic field 
(Cowling, 1981). 

The observation of solar magnetic fields was initiated by Hale (Zirin, 1968). In the 
1950's the photoelectric instruments called magnetographs were developed (Babcock, 
1953) and the solar magnetic fields have been constantly monitored since then. Recent 
progress in instrumentation has made the observations more accurate and efficient 
(Hagyard, 1985). 

Although the magnetic fields in prominences are observed (Leroy et al., 1984), most 
magnetic observations give information on the photospheric magnetic field. The field 
in the atmosphere above is, therefore, not known observationally. The extrapolation of 
the magnetic field from the photosphere up into the chromosphere/corona is necessary, 
in order to obtain a global structure of the field. Such schemes have been extensively 
developed recently, relying on numerical computations. The ultimate goal we aim is to 
follow the evolution of the magnetic field from time to time, based on the available 
photospheric magnetograms. The expectation is that the solar flares manifest themselves 
through the change in the magnetic energy content in the atmosphere. The site of flare 
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Fig. 1. The chromosphere of the Sun seen in He (courtesy H. Morishita, Norikura Coronagraph Station, 
National Astronomical Observatory of Japan). 

energy release could be related to a localization of high electric current density. Hot and 
dense coronal plasma might be found where the magnetic field configuration is suitable 
for the heating mechanisms to operate. These studies require both reliable magnetic field 
measurements and efficient computational schemes. 

On the other hand the nature of flare energy release or coronal heating will be studied 
more easily by isolating fundamental processes rather than looking at the full complexity 
of real data. Such studies, therefore, adopt simplified models (one- or two-dimensional 
models, for example). Let this approach be called as the idealized modeling, in contrast 
with the computational modeling we discussed above. These terminologies are only for 
convenience within this paper. The idealized modeling may sometimes be heavily 
computational, and the computational modeling sometimes (always?) introduces 
idealizing assumptions. The computational modeling in this paper means such a proce- 
dure that can produce three-dimensional magnetic field structure from the magnetic 
data. 
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In this paper we mostly concentrate on the computational modeling of magnetic fields 
in active region scales. Global modeling in a spherical geometry, in which the effect of 
the solar wind is included, was developed by Altschuler and Newkirk (1969) and has 
been subsequently improved (Adams and Pneuman, 1976; Altschuler etaI. ,  1977; 
Riesebieter and Neubauer, 1979; Levine et al., 1982). For idealized modeling, see the 
reviews by Birn and Schindler (1981) and Low (1982). 

1.2. BASIC EQUATIONS 

The equilibrium structure of a system of magnetic field and plasma will be described by 
the equation of magnetohydrostatics, 

_X/p + ~ (curlB • B) - pX/~ = 0.  (1.1) 

Herep is the pressure, B is the magnetic field, p is the density, and 4~ is the gravitational 
potential. The cgs Gaussian unit is used throughout the paper. In the chromosphere and 
in the corona above active regions, the effect of the magnetic field generally overwhelms 
the pressure and gravity forces, so that the equilibrium is approximated by 

curlB x B = 0. (1.2) 

This equation defines the force-free magnetic field, in which the Lorentz force balances 
by itself. We may also write 

curlB = ~(x)B. (1.3) 

The magnetic field satisfies the divergence-free condition, 

divB = 0,  (1.4) 

so that Equation (1.3) leads to 

B. r e ( x )  = 0 .  (1.5) 

Therefore, the quantity e(x) is constant along the field line. When the value of e is the 
same for all the field lines, namely when ct is a constant, such a class of magnetic fields 
is called the constant-e force-free field, namely 

curlB = ~B, ~ = constant. (1.6) 

A particular case is e = 0, which is the current-free magnetic field, 

curlB = 0.  (1.7) 

In this case the magnetic field can be written in terms of the scalar potential (Equation 
(3.5)), hence is called also as the potential field. 

1.3. COORDINATE SYSTEM 

We assume that the magnetic data are supplied in an area as large as an active region 
(roughly 10 s km in size). The data are functions of X and Y, where the XY-plane is the 
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plane of the sky with positive X and Y toward east and north, respectively. The data 
are also projected onto a plane tangent to the solar (spherical) surface. This plane is 

designated as z = 0, and the magnetic field in the volume above it (z > 0) is to be looked 
for. The solution to Equation (1.2), (1.6), or (1.7) will be determined if proper boundary 

conditions are specified on the boundary z = 0. 
The unit vectors n and h designate the normal (positive z) and horizontal (x and y) 

directions, respectively. Similarly I and t represent the unit vectors in the line-of-sight 
(positive Z) and transverse (X and Y) directions, respectively. The magnetic field on the 

plane z = 0 will be written as 

B = Bnn + B h = Bnn + B h h ,  (1.8) 
o r  

B = B l l  + B t = B t l  + B t t .  (1.9) 

When basic computational methods are discussed (Sections 4-6), we will restrict 
ourselves to the cases with n = I. General cases will be discussed only in Section 8. 

The surface element dS appears in the following sections, when converting the volume 
integral over z > 0 into the surface integral by using Gauss's theorem. The surface of 
integration is made of the z = 0 plane and a hemisphere at infinity which encloses the 
volume z > 0. On the z = 0 plane, dS is given by 

d S =  - n d S =  - d x d y n .  (1.10) 

1.4. SLOW EVOLUTION OF MAGNETIC C O N F I G U R A T I O N  

Since the electrical conductivity of the plasma in the solar atmosphere is large enough, 
the plasma and the magnetic field moves together (the 'frozen-in' situation). It is 
advantageous to make a simplifying assumption that the plasma in the volume z < 0 is 
dense enough so that it can control the magnetic field, whereas the plasma in the volume 
z > 0 is so tenuous that the magnetic field behaves for itself. The relation between the 
magnetic field and the plasma motion is described by the induction equation, 

0B 
- curl(V • B).  (1.11) 

Ot 

In the photosphere and below (z < 0), the fluid velocity V is determined by non-magnetic 
forces and Equation (1.11) describes the change in B responding to V. Suppose V is 
sufficiently small so that the velocity induced in the volume z > 0 (the chromosphere and 
the corona) is negligible. Then the instantaneous state of the magnetic field in z > 0 is 
described by Equation (1.2), and a slow change in the solution reflects the change in 
the boundary condition. In other words we deal with the evolution of the magnetic field 
through a sequence of equilibria, instead of following the dynamical evolution in full. 

Caution should be made that Equation (1.11) is satisfied in the volume z > 0 as well. 
The velocity V is small while the time scale zis long, so that the displacement ~ ~ O(zV) 
is finite. This leads to a finite change in the magnetic field. Equation (1.1) or (1.2) only 
assumes that V is negligible, which does not mean that V = 0. 
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In Section 2 we briefly review the observation of magnetic fields. In Section 3 
fundamental properties of the magnetic field are summarized. In Sections 4 to 6, we 
discuss the modeling in the progressive order of complexity, namely, the current-free 
field (Section 4), the constant-~ force-free field (Section 5), and the force-free field in 
general (Section 6). Section 7 presents the applications of various techniques discussed 
in this paper. 

2. Observation of Magnetic Fields 

Magnetic fields in the solar atmosphere are constantly monitored by an instrument 
called the magnetograph. In the presence of the magnetic field, the light coming from 
the solar atmosphere is polarized due to the Zeeman effect. The magnetograph measures 
this polarization and derives information on the solar magnetic fields. This section 
outlines fundamental processes for the measurement of solar magnetic fields. For more 
details, see e.g. Stenflo (1971, 1976). 

2.1. STOKES PARAMETERS 

The polarization of light is described in terms of the so-called Stokes parameters 
(Chandrasekhar, 1960a). Suppose the light propagating in the z-direction has an electric 
vector 

E x = E 1 cos(c~t - ( P l ) '  

E,  = E2 cos(~ot - qh).  

Denoting the time average by --, we introduce 

11 = E 2 , 12 = E~. 

Then the Stokes parameters/, Q, U, and V are defined as 

1 = 1 1  +12 , 

Q =11 - 1 2  , 

U = 2EIE 2 cos (~b, - (P2), 

and 

V = 2 E I E  2 sin(q~, - ~P2). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The Stokes Q and Urepresent the linear polarization, and Vcorresponds to the circular 
polarization. Positive Vis for right-hand circular polarization viewed from the observer 
(i.e., from the positive z-direction) in our definition. The Stokes I is the total intensity 
and satisfies the relation 

12 > Q2 + U 2 q._ V 2 " (2.8) 

The equality holds if the light is perfectly polarized. Figure 2 shows some representative 
c a s e s .  
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Fig. 2. Stokes parameters Q, U, and V for perfectly polarized light. Arrows represent the trajectories of  

the electric field vector as viewed from the observer. 

2.2. Z E E M A N  EFFECT OF SPECTRAL LINES 

The absorption of light by an atom placed in the magnetic field (the Zeeman effect) is 
described as follows (Bray and Loughhead, 1979). In the classical theory of radiation, 
an atom is represented by a dipole oscillator. Suppose an electron in an atom oscillates 
with the frequency Vo. This atom absorbs the light near this frequency. When this atom 
is placed in the magnetic field, the motion of the electron along the magnetic field is not 
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affected. In the plane perpendicular to the magnetic field, however, the electron now 
undergoes the precession which is counterclockwise as viewed from the direction of the 
magnetic field. The frequency of the precession is the Larmor frequency 

egLH 
A v ~ -  - 1.40 • 106gLH (Hz),  (2.9) 

4 ZrmeC 

where m e and - e  are electronic mass and charge respectively, c is the speed of light, 
9L is the Land6 factor, and H is the magnetic field strength in gauss. The motion of the 
precessing oscillator is the superposition of two oppositely directed circular motions: 
the counterclockwise (left-hand circular) motion with the frequency v o + A v~r, and the 
clockwise (right-hand circular) motion with the frequency v o - A v~. These two com- 
ponents are called a-components. In the wavelength domain, they appear at 2o - A2n 
and 20 + A)~H, respectively. Here 2 o = ely o and 

A2~=22Av~/c=ll .79L H ( 2 ) 2 
1000~  ~ (mA). (2.10) 

When we observe the atom from the direction of the magnetic field, the former 
component, which appears at the shorter wavelength, absorbs the left-hand circularly 
polarized light selectively. The original unpolarized light therefore becomes right-hand 
circularly polarized after passing through the gas. The opposite situation takes place for 
the longer wavelength component (Figure 3(a)). 

On the other hand when we look at the atom from the direction perpendicular to the 
magnetic field, a-components absorb the light whose electric vector is in the plane 
perpendicular to the magnetic field. The other component (~z-component) absorbs the 
light polarized along the magnetic field. Therefore, after passing through the gas, the 
unpolarized light becomes linearly polarized. The direction of polarization of the 
a-components is along the magnetic field (Figure 3(b)). 

2.3. TRANSFER OF POLARIZED LIGHT 

The final state of the polarization of light after passing through the solar atmosphere 
will be obtained by solving the equation of radiative transfer (Landi Degl'Innocenti, 
1976). Let 

I(*) : (/(*), Q(z), U(z), V(z)), (2.11) 

S(~) = (S(~), 0, 0, 0), (2.12) 

where z is the continuum optical depth and S(v) is the source function. Then the 
equation of radiative transfer is 

dI 
# d-c = (1 + t/oA) (I - S).  (2.13) 
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Fig. 3. Longitudinal (a) and transverse (b) Zeeman effects. In the longitudinal case, te absorption line 
is split into two a-components which are circularly polarized in the opposite sense with each other. In 
the transverse case, the central ~r-component and the two a-components are linearly polarized in the 
direction orthogonal to each other. The direction of the polarization of the a-components is along the 

magnetic field vector. 

Here 1 denotes the unit  matrix, and bt = cos 0 where 0 is the angle between the line-of- 

sight and the solar surface normal.  Further, r/o is defined as 

x(line) 
= rloH(a, v ) ,  (2.14) 

~c(continuum) 

where ~c stands for the absorption coefficient, H is the Voigt function, a is the damping 

constant,  and 

v = (2 - 2o) /A2  D , (2.15) 

with the Doppler with A2 D . The matrix A is given by 

[ 0-1 r/i t/Q 0 

/']Q ~I  P v  . (2.16) 
A = 0 - P v  /7/ gO I 

r/v 0 - p Q  r/z 
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This expression forA assumes that the magnetic field has a constant direction and + Q 
axis is along the field. The so-called magneto-optical effect appears through p's, which 
will be discussed later. Here we neglect this effect and set p = 0, so that U = 0 holds. 
The remaining quantities are defined as 

I'~i = l [ H ( a ,  v) sin 2 ~ + � 8 9  v - v ~ )  + H ( a ,  v + vzt)} (1 + cos 2 ~k)], 

(2.17) 

t lo  = l [ H ( a ,  v) - l { H ( a ,  v - v H )  + H ( a ,  v + v~/)} sin2 ~O], (2.18) 

t l v  = l [ H ( a ,  v - vi-i) - H ( a ,  v + vii)] cos~ ,  (2.19) 

where ~ is the angle between the magnetic field and the line-of-sight, and 

v ~  = A2I_I /A2 D . (2.20) 

Hereafter we assume that the parameters a, v/~, and ~ are constants, independent of 
z. Unno (1956) obtained the solution to this problem when tlo is a constant. Makita 
(1979) extended the solution to an arbitrary form for qo(Z). The state of polarization at 
z = 0 which we observe is written as 

I = �89 + W_) ,  (2.21) 

V Q 1 
r/v r/O 2x/~O + r/2v (W+ - W_) ,  (2.22) 

where 

W+ = y B(z) (1 + t/or/+) exp [ - (z + tl+ ~)/M, (2.23) 
# 

0 

tl_+ = t/o -+ x/q~ + @ ,  (2.24) 

= f t/o(Z)dz. (2.25) 

2.4. DETERMINATION OF MAGNETIC FIELDS 

If the magnetic field is weak so that A2~ ~ A2D, we can expand the above expressions 
in terms of v~r. In this weak field approximation, we obtain 

- ~ ,  (2.26) V= v~ cos ~d  v 

and 

= ___ H" dI  (2.27) Q v~ sin2 ~k H '  
4 dv 
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where prime (') denotes differentiation with respect to vH. If the transverse magnetic 
field makes the angle )~ with respect to the + Q axis, Equation (2.27) is replaced with 

2 12[. 
Q = - V h s i n 2 t p ~  d l c o s 2 z ,  (2.28) 

4 H'  dv 

V~sin 2 H"  d l s i n 2  z (2.29) U = - - -  ~ 
4 H '  dv 

Therefore, the circular polarization degree is proportional to the line-of-sight component 
(Bz) of the magnetic field, whereas the linear polarization is proportional to the square 
of the transverse component (Bt) of the magnetic field. Namely, 

V ~ B  t , 

Q ~ B~cos2z  = B 2 -  B~,  

U ~ B 2 sin2z = 2 B x B ~ . .  

(2.30) 

(2.31) 

(2.32) 

The azimuth of the linear polarization is along the direction of the transverse magnetic 
field, either in parallel or antiparallel. This ambiguity is always associated with the 
polarization measurement, and can be resolved by introducing additional assumptions 
(see Section 7). If the weak field approximation is not valid, the conversion from the 
polarization to the field strength is more involved. 

The instruments which can record the profiles of Stokes parameters are called the 
Stokes polarimeters. Usual magnetographs only measure the Stokes parameters 
integrated over a narrow band of wavelength in the wing of a spectral line. Vector 
magnetographs measure both the circular and linear polarizations, whereas usual 
(longitudinal) magnetographs only record the circular polarization. Currently achieved 
accuracy in the measurement is a factor times 10- 4 in the polarization degree, which 
amounts to a few gauss in the longitudinal field and a few tens of gauss in the transverse 
field, respectively. 

2.5 .  APPLICABILITY OF ASSUMPTIONS 

The measurement of polarization is a very delicate task and requires extreme care. In 
addition we had to introduce many assumptions above, in order to extract the informa- 
tion on the solar magnetic field from the polarization measurement. We will now discuss 
the validity of these assumptions briefly. 

(a) M a g n e t o - O p t i c a l  E f f e c t  

Generally the absorption of light by the atom, represented by the imaginary part of the 
index of refraction, comes together with the retardation effect. The variation of the real 
part of the index of refraction (n) in the absence of the magnetic field is like 

n - 1 ~ v / (v  2 + a2). (2.33) 
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Therefore, the phase of light advances or delays in the wings of the spectral line. In the 
presence of the magnetic field, the retardation is caused by all the three Zeeman 
components. Let us consider the linearly polarized light propagating in the direction of 
the magnetic field. The consequence is that the direction of the polarization rotates 
clockwise in the wing and counter-clockwise near the center of the line, as viewed from 
the direction of the field. This is the well-known Faraday rotation. This effect is certainly 
present near sunspots where the field strength exceeds 1000 G (Landi Degl'Innocenti, 
1979; Kawakami, 1983; West and Hagyard, 1983). 

(b) Flux Tubes and Canopy Structure 

We have so far assumed that the magnetic field we measure is uniform within the 
aperture of the magnetograph as well as in the line-forming layer in the solar atmosphere. 
If the weak field approximation is valid, we can deduce the longitudinal field strength 
from the circular polarization degree. 

When the field is not uniform, we can still deduce the average longitudinal field (or 
the magnetic flux) within the aperture, provided (i) the weak field approximation is valid, 
and (ii) the profile of the spectral line does not change within the aperture. Under such 
circumstances we have 

( V )  ~ ( B , > ,  (2.34) 

where the brackets ( > represent spatial averaging. 
For the transverse field, the situation is more involved. We write 

B, = (B,> + bB t, (bB,> = 0. (2.35) 

Then from Equations (2.31) and (2.32) we obtain 

(Q> ~ (Bx> 2 - ( B r >  2, ( U )  ~ 2  ( B x )  ( B y ) ,  (2.36) 

provided 
(~B~c> = (SB~> ,  (~Bx~By> = 0. (2.37) 

That is, the observation gives the average transverse vector. On the other hand if 
the transverse magnetic field is inhomogeneous but uni-directional (e.g., 
~By = 0, (bB~> r 0), the observation gives the root-mean-square transverse field 
strength (Beckers, 1971). 

However, we have now good reason to believe that both presumptions (i) and (ii) are 
violated. Weak magnetic field on the Sun is not really weak, and is composed of 
elementary flux tubes which occupy only a small fraction of the solar surface (Stenflo, 
1976; Harvey, 1977). Magnetic fields are concentrated into the flux tubes whose size 
is only 100-200 km and the field strength there is as high as 1000 G, due to the 
interaction between the magnetic field and the convective flow (Parker, 1979, 
Chapter 10). Therefore the weak field approximation will not apply. Further, the excess 
magnetic heating in the flux tubes makes the absorption lines there shallower than in 
the surrounding non-magnetic atmosphere. Due to these effects, the signal from the 
magnetograph does not give the correct average magnetic field. 
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Magnetic field lines fan out from the flux tubes and merge together to make a larger 
scale structure. In between the flux tubes the field lines are nearly horizontal, overlying 
the non-magnetic atmosphere. This canopy structure (Giovanelli, 1980) also compli- 
cates the interpretation of the polarization measurement, especially the derivation of the 
transverse magnetic field. 

From the argument given above, the observation of the solar magnetic field requires 
not only the accurate polarization measurement but also the understanding of the nature 
of the solar magnetic field. In the following sections we shift our attention to the 
modeling of the magnetic field. However, we should keep in mind that the available data 
are subject to many uncertainties. 

3. General  Proper t i e s  o f  M a g n e t i c  Fie lds  

3.1.  R E P R E S E N T A T I O N  OF MAGNETIC FIELDS 

From the divergence-free condition for the magnetic field, Equation (1.4), we can write 

B = c u r lA ,  (3.1) 

where A is the vector potential. Since the gradient of any scalar can be added to A 
without altering B, the vector potential is not unique. This freedom in A is restricted in 
one way by imposing the so-called gauge condition. The other way is to adopt the 
toroidal/poloidal decomposition (Morse and Feshbach, 1953) 

A = Ta + curl(Pa), (3.2) 

where Tand P are called toroidal and poloidal scalars. The vector a may either be a = 
(the unit z-vector) or a = x (the position vector). 

Another representation for B is via Euler potentials (Stern, 1966), 

B = 7./" x 7 9 .  (3 .3 )  

Since B. 7 f  = B. 79 = 0, the Euler potentials f and 9 are constant along the field line. 
In other words, a pair of f and 9 labels the field line. This representation is always 
possible locally, but regular and single-valued functions f and 9 may not exist globally. 
The potentials (f, 9) can be changed to ( f ' ,  9') without altering B if 

a ( f  ', 9') 
- 1 .  (3 .4)  

a(f, a) 

When the magnetic field B is curl-free (current-free), one can introduce a scalar 
potential 9, 

B = - 7~b, (3 .5)  

and divB = 0 requires that ~b satisfies the Laplace equation, 

A~b = 0.  (3.6) 
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Note that Equations (3.1) and (3.3) are based on the divergence-free condition (1.4) 
which is always satisfied by B. Equation (3.5), however, only applies to the current-free 
magnetic field, and is meaningful only when the Laplace equation (3.6) is satisfied. 

3.2. CONSERVATION LAWS 

The magnetic field satisfies various conservation laws. The conservation of magnetic 
flux is the most fundamental one. We will discuss other conservation laws which are 
derived from the frozen-in condition. 

(a) Advection of Euler Potentials 
We can show that if the Euler potentials (f, g) evolve acording to 

) dt dt = ~  + v ' 7  , (3.7) 

then the induction equation (1.11) is satisfied. This is natural because the pair of (f, g) 
labels the field line which moves with the fluid. Equation (3.7) is sufficient but not 
necessary for the frozen-in condition to be satisfied. We can re-label the field lines within 
the restriction of Equation (3.4). 

(b) Magnetic Helicity 
The magnetic helicity is defined by 

H =  f A . B d V .  (3.8) 

By changing A to A' = A + 7G, we obtain 

H'= f A ' .BdV=H + f GB.dS. (3.9) 

We can see that H is not invariant against the change in the gauge of A when the 
magnetic field lines cross the boundary of the integration volume. Suppose a special case 
that the medium in the volume z < 0 is at rest. Then we may fix the gauge in z < 0 such 
that G = 0, and G(z > 0) does not affect the value of H. (A more rigorous procedure 
was taken by Berger and Field (1984), who introduced a gauge-invariant generalization 
of the helicity.) 

From the induction equation (1.11) the vector potential is found to satisfy 

0A 
- V x B + 7 g t ,  ( 3 . 1 0 )  

Ot 

where 7 t is an arbitrary scalar function. We can then show that 

d H _  [ (7j + V . A ) B . d S .  (3.11) 
dt J 
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Therefore, the helicity H is conserved when the field lines are closed within the volume 
of interest (B. dS = 0). Similarly when the external medium (z < 0) is at rest, we can 
set ~P = 0 and V = 0 on the boundary, and the helicity is conserved. 

(c) Energy Conservation 

The magnetic energy W is defined by 

W = ~ dV. (3.12) 

The rate of change in W is, therefore, 

dW_dt f l ( j x B ) ' V d V + c  f [ ~  ( V + B )  xB+B2V~'dS'8zc _1 (3.13, 

The first term is the work done by the Lorentz force, and the second term is the Poynting 
influx through the boundary. The third term is due to the change in the volume 
considered, and can be dropped in our present situation. 

3.3.  G L O B A L  FORCE BALANCE AND VIRIAL RELATIONS 

By integrating Equation (1.2) over the volume, we obtain the equations for the global 
force balance (Molodensky, 1969, 1974; Low, 1985), 

1 
BxB z dx dy = 0, (3.14) Fx-  4re 

1 
f ByB~ dx dy = 0,  (3.15) F y -  4~ 

1 
f (Bx2 + B~ - B~) dx dy = 0 (3.16) F z = 4 ~  

If these F's are non-zero, it means the existence of non-magnetic forces counter-acting 
against the net magnetic force (Fx, Fy, Fz) (Figure 4). 

Similarly the overall torque must vanish, namely, 

Tx= ~ y (B~+B~-B~)dxdy=O,  (3.17) 

1 
x(B~ + By z - B~) dx dy = 0, (3.18) 

Ty-  4re 

Tz - ,~rc (yBxB ~ - xByB~) dx dy = 0. (3.19) 



26 TAKASHI SAKURAI 

f 
Fig. 4. 

F 

I IIII l ' x 

I '  dx dy < B z dx dy 

T F  

X 

f'dxd,,f' B x B z dx 

F 

dy f BxB z dx dy >0 

Net magnetic force F derived from the global force balance equations (3.14)-(3.16) (Sakurai, 
1987). 

By taking the dot product of Equation (1.2) with x, we obtain, 

W = - -  (xBx + yBy)Bz dx  dy .  (3.20) 
41r 

The last four equations are a part of tensor virial relations (Chandrasekhar, 1960b). 
Although the coordinate x appears explicitly in Equations (3.17)-(3.20), the selection 
of the origin of x does not affect these equations because of Equations (3.14)-(3.16). 
Of particular importance is Equation (3.20), which gives the magnetic energy content 
in terms of the boundary values of B. 

3.4. T O P O L O G I C A L  PROPERTIES OF MAGNETIC FIELDS 

(a) Connectivity of  Field L&es 

Field lines connect two points, the starting and the end points. The correspondence 
(mapping) between the two points is the connectivity of the field line. The connectivity 
is most easily specified by the distribution of the Euler potentials ( f  g) on the boundary 
(Antiochos, 1987). When more than two points share the same value of (f, g), an 
additional condition is necessary to uniquely determine the connectivity. Usually the 
evolutional constraint is imposed in such a case, in that the connectivity should be the 
same as the initial state. 

(b) Helicity 

The magnetic helicity defined by Equation (3.8) is a measure of how the system of field 
lines are twisted (Berger and Field, 1984). As an example, let us consider two isolated 
flux rings which themselves are not twisted and whose magnetic fluxes are ~1 and 02, 
respectively. The helicity of this system is H = 0 if the two rings are disconnected, while 
H = + 20~ 02 if the rings are connected like a chain. 
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(c) Number of Neutral Points 

Molodensky and Syrovatsky (1977) considered the Poincar~ index of magnetic fields. 
Near the magnetic neutral point x o, the magnetic field is approximated by 

B = D(x - Xo), (3.21) 

where D is a constant matrix. The Poincar6 index is defined as the sum of the signs of 
det(D) over the volume. 

First we will consider the projection of magnetic field lines on the z -- 0 plane. Sources 
or sinks of field lines like sunspots have the Poincar6 index of + 1, whereas magnetic 
neutral points (saddle points) have the index of - 1  (Figure 5, 2-D). Suppose the 
magnetic flux in the region considered is balanced, and the net dipole moment is 
non-zero. Then this region is regarded as a dipole when seen from large distances, and 
its Poincar6 index is 2. Therefore, 

M+ + M_ - C = 2 ,  (3.22) 

where M+ is the number of sources/sinks, and C is the number of saddle points. 
Next we will consider the three-dimensional configuration. The volume z < 0 is 

assumed as the mirror reflection ofz  > 0. Sources or sinks only exist on the plane z = 0. 
Saddles may exist in the volume z > 0, but they always make a pair with the saddles 
with the opposite signs of det (D) in z < 0, so that only the saddles on the plane z = 0 
contribute to the Poincar6 index of the system. Since the three-dimensional Poincar6 
index (Figure 5, 3-D) of the dipole is 0, we obtain 

M+ - M  - C +  + C  = 0 ,  (3.23) 

2-D Y 
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Fig. 5. Poincar6 indices of magnetic neutral points in the two- and three-dimensional cases. 
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where C+ + C_ = C. From Equations (3.22) and (3.23) we find 

C+ = M+ - 1, C_ = M_ - 1. (3.24) 

The Poincar6 index of the volume z > z o can be calculated by the formula 

f 1 ]0 B x By B z ]  (3.25) 
N(z~ = 4 ~  dS 7B x VBy V B  z " 

Here the integration is to be carried out over the plane z = z o and a semi-spherical 
surface extending to z = ~ .  Note that the contribution from the latter surface does not 
vanish, so that this equation is of little use practically. 

4. Current-Free M a g n e t i c  Fields 

Because of computational tractability, current-free modeling has been carried out in 
numerous applications. Although the current-free approximation is the most crude 
among the three classes treated in this paper, we should not overlook the usefulness of 
the current-free modeling. This model will give us a general idea of the three-dimensional 
magnetic field configuration, which we cannot observe directly. The deviation of current- 
free field lines from the observed magnetic structures (tracers) suggests the degree of 
distortion in the magnetic field. 

4.1. BOUNDARY VALUE PROBLEM 

We will adopt the expression for B in terms of the scalar potential (3.5). The equation 
to be solved is Equation (3.6), and when a proper boundary condition is supplied, the 
solution exists and is unique. In the Dirichlet problem, the value of the potential ~p is 
specified on the boundary. In the Neumann problem, the normal derivative of the 
potential is given as the boundary condition. The latter fits into our situation because 
B n = -Ocb/~n is the observed quantity. The boundary value problem now is to find 
B = - 7  4 such that 

Aq~ = 0 (z > 0 ) ,  - n .  Tq~ = B ,  (z = 0 ) .  (4.1) 

We also require that the field strength decays to zero at infinity. 

4.2. VARIATIONAL PRINCIPLE 

The variational principle in this case is well known as Thompson's principle. If the scalar 
potential representation (3.5) is used, the variational principle for the energy W given 
by Equation (3.12) corresponds to the Dirichlet boundary value problem. In order to 
obtain the Neumann problem, we have to modify W into W', 

W ' =  f (V~)zdV+8~r f B,,~adS. (4.2) 
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The variation of W' yields 

4~GW'=-f A4~br f (~+ B.)64)dS. (4.3) 

Namely, the extremum satisfies the Laplace equation when the Neumann boundary 
condition is specified. The extremum is actually the absolute minimum. Therefore the 
current-free field, being the minimum energy state, is free from any instabilities. 

The variation of energy W when the vector potential representation (3.1) is adopted 
is 

4 ~ s w =  f ~A.curlBdV + f B.(dS • bA). (4.4) 

When dS x A is specified on the boundary, the energy W is stationary if B is curl-free. 
To give dS x A is equivalent to give B,. 

There are two kinds of computational methods for the current-free field, namely the 
Green's function method and the Fourier expansion. We will discuss each of them in 
the following. 

4.3. G R E E N ' S  FUNCTION METHOD 

In the Green's function method, the solution to Equation (4.1) is written as 

q~(x) = f B.(x')C.(x, x') dx' dy'. (4.5) 

The expression for the Green's function G n is 

2re 
G,(x, x') - (4.6) 

fx-x' l  

This formula was first applied to the solar magnetic field by Schmidt (1964). It is easy 
to confirm that Equation (4.1) solves the problem, since G, satisfies the Laplace 
equation and - c~Gn/az becomes the delta function as z --, 0. G~ represents the potential 
of a monopole whose magnetic flux in z > 0 is unity. 

4.4 F O U R I E R  EXPANSION METHOD 

In the Fourier expansion method (Teuber et aL, 1977), q5 is written as 

q5 = Z ~bk• exp(/k• .x•  - k•  (4.7) 
k •  

where k• = (kx, ky), k• = V~x + k2, and x• = (x, y). The Laplace equation (3.6) is 
then satisfied. The boundary value B~ is also expanded as 

B, = ~ Bki exp (ik• . x •  + B,o , (4.8) 
k •  

where Bno is a constant, and the summation ~2 excludes k• = 0. The relation between 
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Bk• and ~Pk• is found as 

(~k• = B k •  (kx ~ 0). (4.9) 

The three components of the field are 

B x = - ~ i(kx/k •177  exp ( ik•  x•  - k• z),  (4.10) 
ka_ 

By = - Z i ( k J k •  )B k i  exp (ik •  x • - k • z),  (4.11) 
ka_ 

B z = B,o + ~ Bki exp(ik• . x •  - k •  (4.12) 
ka_ 

The DC component Bno represents the imbalance in the magnetic flux within the domain 
of consideration, and should be made negligible by properly selecting the area of 

computation. 

5. Constant-~ Force-Free Fields 

5.1. VARIATIONAL PRINCIPLE 

In the case of the current-free field, the minimizing solution is sought for among the 
family of trial functions which are only constrained to possess the same flux distribution 
on the boundary. If an additional constraint is imposed on the trial functions so that 

the area for searching the energy minimum is restricted, we would find a different energy 
minimum. The more strict the constraint is, the narrower the area of minimum search 

and consequently the larger the value of minimum energy. 
Woltjer (1958, 1959) considered the extremum of Wwhen the helicity H is held fixed. 

By introducing the Lagrangian multiplier ~, the quantity to be made stationary is 

W " =  1 f {(curiA)Z_ eA.curlA} dV.  (5.1) 
8n d 

The variation of W" is 

4nbW"= f bA.(curlB-~B)dV+ f (B-~m~).(dSxbA). (5.2) 

Here dS • A is held fixed on the boundary (i.e., B n is fixed). Therefore, the extremum 
takes place for the constant-~ force-free field, Equation (1.6). 

Whether the extremum is minimum or not depends on the magnitude of ~. As long 
as ~ is small, the eonstant-~ fields will have the same property as the current-free field 
and will take the minimum energy (Molodensky, 1975). At the instant when the 
minimum turns into a saddle point, the energy contour in a magnetic 'phase space' will 
be very fiat. This situation corresponds to the appearance of multiple solutions. As is 
described below, the constant-~ solution takes the minimum energy if I c~1 is smaller than 
the smallest eigenvalue of Equation (5.5) (Berger, 1985). 
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5.2. BOUNDARY VALUE PROBLEM 

By adopting the toroidal/poloidal decomposition for B (Equation (3.2)) with a = ~, 
Equation (1.6) leads to 

T = ~P, (A + ~2)e = 0. (5.3) 

Therefore, the equation to be solved is the Helmholtz wave equation. This observation 
immediately implies some difficulties associated with the constant-~ force-free field. The 
boundary condition imposed by the observation is 

( 02 02"~P (z 0) (5.4) B n = -  ~ +  = . 
~x ~ ay2 / 

The boundary condition at infinity is a problem. In the case of the current-free field, 
solutions at infinity either diverge or decay to zero. Therefore, we impose the boundary 
condition in order to select the solution that decays to zero. All the solutions to Equation 
(5.3) however decay like P ~ exp( + io~r)/r ( r~  oo). The selection of + signs can be 
made by the so-called radiation condition when studying the waves by Equation (5.3). 
In our case no such conditions are appropriate. We do not have effective boundary 
condition at infinity. Another concern is that the magnetic field decays only slowly at 
infinity, as B ~ exp( + i~r)/r, like a spherical wave. The magnetic energy, therefore, 
diverges generally. 

The next difficulty is related to the uniqueness of the solution. The uniqueness is 
guaranteed if the homogeneous equation 

(A + 22)P = 0 ,  B.  = 0 (z = 0) ,  (5.5) 

only has the trivial solution B = 0. On the other hand Equation (5.5) has eigensolutions 
when 2's take particular values (eigenvalues), denoted here by 4 o, hi, 4 2 , . . .  Therefore, 
if e in Equation (5.3) coincides with one of 2's, the solution is not unique because one 
can add the eigensolution of arbitrary magnitude to the solution. 

Before getting into a detailed discussion on the uniqueness of the solution, we will 
first summarize the methods of solution in the following. As in the current-free case, we 
have both Green's function approach and Fourier method. 

5.3. FOURIER EXPANSION METHOD 

In the Fourier method (Nakagawa and Raadu, 1972), P is expanded as 

P = • Pk• exp(ik• "x• - Kz) (K = x / / ~  - c~2). (5.6) 
k•  

This form satisfies Equation (5.3). As in the case of the current-free field, the summation 
excludes k• = 0. For the moment we assume that all the k•  are restricted to the 

domain k 2 > a2 so that K is real. The Fourier coefficient Pk: is related to Bk• of 
Equation (4.8) by 

Pki = kZBk~ (k• ~ 0). (5.7) 
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The three components of the magnetic field are given as 

Bx = ~ (+ OBk• - kxK)  exp(ik• . x •  - K z ) ,  (5.8) 
k• 

By = E (- i )gk•  k22((~kx -[- kyg)exp(ik•  "x• - Kz), (5 .9 )  
k• 

Bz = ~ Bl,• exp(ikz . x •  - K z ) .  (5.10) 
k•  

When e = 0, these formulae reduce to those of the current-free field, Equations 
(4.10) - (4.12), except that the DC component Bno must vanish. S eehafer (1978) devised 
a scheme which is free from this restriction. 

In order to discuss the uniqueness of the solution, we consider the domain of 
computation as 0 < x < L x, 0 < y < Ly,  and 0 < z < L z. Equations (5.8)-(5.10) corre- 
spond to the case of L z = oo. We consider the eigensolutions which are periodic in x 
and y. The eigenvalues 2 are expressed as 

)`2 = (2 gnx/Lx) 2 + (2rCny/Ly) 2 + (ZCnz/Lz) 2 , (5.11) 

where n x, ny, and n z are integers and at least one of them must be non-zero. If the value 
of 7 does not coincide with any of 2's, the solution is unique. This may happen, for 
example, if 0~ 2 is smaller than the smallest )2, namely [~[ < min(2n/Lx, 27z/Ly, rc/Lz). 

As long as L x, Ly,  and L z are finite, the eigenvalues are discrete. Therefore, ~ generally 
falls between the eigenvalues and the uniqueness holds. I f L  z = oo on the contrary, the 
eigenvalues densely fill the interval [)`[ __> )`min = min(2rc/Lx, 2zC/Ly). If 0~ is large such 

that [~j __ )`min, the solution is not unique. 
I f ]a ]  >__ )`min, s o m e  k •  violate the condition k 2 > 0~ 2. Equations (5.8)-(5.10) no 

longer hold consequently. The quantity K in these equations becomes imaginary, and 
the z-dependence of the solutions is not exponential but sinusoidal. This feature reflects 
the appearance of eigensolutions. The eigensolutions have infinite magnetic energy 

(Berger, 1985). 
One may be happy as long as ~ is small ([ ~[ < )`rain), or if the given data have no 

Fourier components in the wavenumber range k 2 < ~2. But suppose we are studying 
an isolated active region which happens to be the only active region on the solar visible 
surface. Then a natural choice would be to set L x ~  L y ~  solar diameter. Then the 
allowable value for ~ is small and the deviation from the current-free field would hardly 
be visible within the active region. One may choose L~ and Ly such that the computa- 
tional area is just as large as the active region. One may then assign a relatively large 
value for ~. The latter approach however looks rather ad hoc. 

5.4. G R E E N ' S  FUNCTION METHOD 

Chiu and Hilton (1977) derived the Green's function for the constant-e force-free field. 
The poloidal scalar P is expressed as 

P = f Bn(x')G~(x, x ' )  dx '  d y ' .  (5.12) 
,) 
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In the local cylindrical coordinate system x - x'  = (R, q~, z), the Green's function G~ is 
written as 

ca3 

1 
t ~  

G~ = Re / Yo(kR) exp[ - z(k 2 - -  0{2) 1/2 ] dk/k, (5.13) 
2rt J 

0 

where Y's are Bessel functions, and Re means taking a real part. Equation (5.13) satisfies 
the Helmholtz equation (5.3). The components of the magnetic field are more con- 
veniently expressed in terms of an auxiliary function F = OGS3R, 

o o  

F = - Re 1 f Yl(kR) exp [ - z ( k  2 - ~ 2 ) 1 / 2 ]  dk = 
2r~ . )  

0 

= Re I~R - _ exp( f ikz ! ]  , (5.14) 

with r = x /R  2 + 2 2. The Cartesian components of the magnetic field vector are 

fOF/&(x-x') /R+ctF(y-y ' , ) /~ 
B(x)=fB, , (x ' )~OF/Oz(y-y ' ) /R- ,F(x-x) /~dx 'dy ' .  (5.15) 

\ -  ~r/~R - v /R 

The wavenumber spectrum of G= or/"consist  of both exp( - z x /k  5 - ~2) (for k 2 > ~2) 
and sin (z ~ - k 2) (for k 2 < ~2) terms. The latter contribution makes the energy 
divergent at infinity. If we replace Re with Im (imaginary part) in Equations 
(5.13)-(5.14), the resulting magnetic field satisfies the homogeneous boundary condition 
B n = 0. Therefore, we may add such homogeneous solutions to Equation (5.15). The 
wavenumber spectrum of homogeneous solutions consist of cos (z ~ -  k 2) terms 
(k2 < ~2). Their energy is divergent. 

5.5  U N I Q U E N E S S  OF SOLUTION 

The uniqueness of constant-c~ solutions is guaranteed if ] c~] is smaller than the smallest 
eigenvalue of Equation (5.5). When the volume of consideration extends to infinity, the 
smallest eigenvalue is arbitrarily close to 0, so that the only unique solution is the 
current-free field. One may generally be forced to adopt a finite volume because of 
computational restrictions, but one needs a physical justification for doing so. 

The recent knowledge (Taylor, 1986) that the helicity will be conserved even in the 
presence of magnetic diffusion (reconnection) could be a justification. The magnetic 
reconnection rapidly releases the energy and homogenizes the local helicities. Therefore, 

becomes constant within a volume in which the reconnection process has propagated. 
The extent of such a volume will depend on the initial magnetic configuration and on 
a subsequent development of instabilities that facilitate the reconnection. In a laboratory 
plasma one may take the whole volume inside the apparatus and can apply constant-~ 
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force-free modeling to it. In the case of the Sun no such enclosures exist. One should 
also notice that the model in which a is a constant in some volume and ~ = 0 elsewhere 
cannot be treated in the framework of the constant-a modeling. Due to the restriction 
that ~ is constant along the field line (Equation (1.5)), the boundary between different 
values of a must be a magnetic flux surface which is however unknown until the problem 
is solved. 

Hannakam et al. (1984) argued that the constant-~ force-free fields can be uniquely 
determined by specifying the horizontal components of the magnetic field on the 
boundary. This argument is based on the uniqueness theorem described by Stratton 
(1941). Both arguments are incorrect. If one specifies B h on the boundary, B n is also 
fixed because of Equation (1.6). The specification of all the three components on the 
boundary overdetermines the problem and no solutions exist generally. 

6. General Force-Free Fields 

6.1. VARIATIONAL PRINCIPLE 

We will use the Euler potential expression (3.3) for B. The values of (f,  g) are fixed on 
the boundary. We are, therefore, considering a family of magnetic fields which all share 
the same connectivity of field lines. The variation of energy W is 

4~6w=f(6fVg-bgVf).curlBdV+f{dS• 
(6.1) 

The extremum is described by 

7f.  curl B = 7g. curl B = 0 ,  (6.2) 

which means 

curlB x B = (Tg" cu r lB)Tf -  (Tf" curlB)Tg = 0.  (6.3) 

Therefore, general force-free fields are characterized as the extremum of energy when 
the connectivity of field lines is specified. The extremum is actually the minimum until 
the first unstable mode appears in the force-free field under consideration. 

6.2. CHARACTERISTIC SURFACES 

Equation (6.2) is a quasi-linear second-order partial differential equation for two 
unknowns (f, g). The characteristic surfaces, whose normal vector is {, are obtained by 
replacing 7 ~ { in the second-order derivatives in Equation (6.2). The resulting homo- 
geneous equations for { have non-vanishing solutions when their determinant 
[ = ~2({. B)2] is zero. Of four characteristic surfaces, two of them are imaginary and the 
other two coincide with the magnetic surface. The latter condition reflects the fact that 
the magnetic field may have discontinuities (current sheets). The discontinuities appear 
as curlB ~ oo and B ~ 0, so that the force-free equation (1.2) remains satisfied there 
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(formally). On the contrary Equations (3.6) and (5.3) are elliptic and no discontinuities 
appear in the solution. One may create a discontinuous solution by 'cutting and 
pasting' the two solutions, but Equation (3.6) or (5.3) is not satisfied at the discontinuity. 

6.3. D I R E C T  M I N I M I Z A T I O N  OF ENERGY WITH GIVEN CONNECTIVITY 

Since Equation (6.2) is nonlinear, no standard techniques are available to obtain the 
solution. One approach based on the variational principle given above was taken by 
S akurai (1979). (See also Zwingmann (1987) for two-dimensional cases.) If one as sumes 
some functions for the Euler potentials (f, 9), one can evaluate the magnetic energy. (The 
magnetic energy is a functional o f f  and g.) Since the solution is characterized by the 
minimum of the energy, the functions (f, g) should be so selected that the energy is as 
small as possible. In order to carry out the minimum search in a systematic way, the 
trial functions (f, 9) may include several adjustable parameters. The magnetic energy 
is now a function of these adjustable parameters, and standard techniques for function 
minimization are applicable. 

It is advantageous to introduce a curvilinear coordinate system (f, g, s) where s is the 
arc-length along the field line. Then we can rewrite the functions f (x) ,  g(x), s(x) inverted 
as x = x(f, g, s). The trial functions x(f, 9, s) then specify the shape x(s) of the field line 
labeled as (f, g). This is analogous to the change in representation from Eulerian to 
Lagrangian, where (f, g, s) are the material coordinates. 

As to the boundary condition, x(f,  9, s) must be fixed on the boundary. The footpoints 
of field lines are moved together with the fluid, and the boundary condition correctly 
reflects this situation. When one deals with the geometry of flux tubes such as coronal 
loops, the end boundaries (cross-sectional boundaries) are subject to such boundary 
condition. On the lateral boundary, however, the specification of the shape of the 
boundary surface seems too restrictive. The boundary condition can be changed to a 
more natural pressure-balanced free boundary by properly modifying the expression for 
the energy to be minimized (Sakurai, 1979). 

Figure 6 is an example. The initial current-free state (a) evolves into a force-free field 
(b) when the motion on the boundary z = 0 twists up the tube. The lateral boundary is 
supported by an external pressure. 

6.4.  SOLUTION BY SPECIFYING THE DISTRIBUTION OF 

The approach explained in the previous section is most suitable for studying the 
evolution of magnetic field structures due to the motion on the boundary. From the 
standpoint of realistic application, however, the boundary condition required in this 
approach, namely the connectivity of field lines, is not what can easily be derived from 
observations. 

Another approach which makes use of the magnetic vector observations was intro- 
duced by Sakurai (1981). When the magnetic field vectors on the photosphere are 
measured, one can derive the distribution of ~ by 

0~ = (~By OB~ 1 
k Ox ~yy/~= oB~- (6.4) 
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Fig. 6. Current-free (a) and force-free (b) magnetic fields calculated by the method of Section 6.3: top view 
(top) and side view (bottom). The motion applied on the boundary is such as to twist the tube (from Sakurai, 

1979). 

The value of ~ should be constant along the field line, but the shape of field lines is not 
available until the solution is found. Therefore, if ~ is specified on the whole z = 0 plane, 
this will generally lead to a conflict. As a matter of fact only the value of c~ either in the 
positive or in the negative flux region is enough in determining the force-free field 
solution. (B n should be specified on the whole z-plane.) 

The magnetic field B is written as 

B = B o + Be ,  (6 .5)  

where B o is the current-free field corresponding to the boundary value B n . The field Bc 
is due to the electric current and is written by Biot-Savart  law as 

B~ = curl A~, (6.6) 

A~(x)= I f j(x')  dV ' .  (6.7) 
c rx- 'l 

The integration with respect to x'  is carried out both in z > 0 and in z < 0. The current 
j in the volume z < 0 is defined by a mirror symmetry, 

jx(X, y, - z) = -jx(X, y, z) / 
jy(x,y, - z )  = - jy (x ,y ,  z) / (z > 0). (6.8) 
L ( x ,  y, - z) = + L ( x ,  y, z) 

This leads to A~ which is perpendicular to the z = 0 plane, so that Bc has vanishing 
normal component at z = 0. 
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The electric current j on the other hand should satisfy 

c ~  
J = 4nn B,  (6.9) 

for the field B to be force-free. If we give an arbitrary B, define j by Equation (6.9), and 
re-calculate B by Equations (6.5)-(6.7), the last B is generally different from the first 
B. The force-free field solution can be found by making the two B's consistent, by using 
an iterative procedure. The solution certainly exists when c~ = 0 (the current-free field). 
As long as c~ is small, the existence of solution is guaranteed (Bineau, 1972), and the 
solution will be dynamically stable (Molodensky, 1976). 

It is to be stressed here that not all the vector components of B are necessary in 
carrying out the procedure described above. The horizontal magnetic field B h c a n  be 
decomposed into a solenoidal (divergence-free) part and an irrotational (curl-free) part. 
The procedure given above only utilizes B~ on the whole z-plane and the solenoidal part 
of B h in the region of certain (positive or negative) polarity. The computed force-free 
field will reproduce these components but not necessarily the other components. 

Figure 7 shows an example of calculation. First a current-free configuration (a) is 
calculated, and a volume threaded by several field lines is picked up in order to assign 
a non-zero value of c~. The resulting force-free field (b) shows twisted field lines due to 
the current flowing in the loop. Dashed lines are in the volume where no currents are 
assigned, but they also are disturbed by the current flowing in the loop. 
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Fig. 7. Current-free (a) and force-free (b) magnetic fields calculated by the method of Section 6.4. The 
distribution of �9 in Figure 7(b) is like a step function, namely e = constant > 0 in the tubular volume 

threaded by solid field lines, and c~ = 0 elsewhere (from Sakurai, 1981). 

6.5. PRIDMORE-BROWN'S  METHOD 

Pridmore-Brown (1981) attacked the problem by means of the so-called Method of 
Weighted Residuals (e.g., Finlayson, 1972). The magnetic field is decomposed into the 
current-free component B o and the current-associated component B c as in Equation 
(6.5). The Bo-component is represented by the Fourier series as in Section 4.4, and is 
uniquely determined by specifying B n . The Bccomponent is also Fourier expanded in 
such a form that it gives vanishing normal component on the z-plane. The unknown 
Fourier coefficients in the Be-component is determined by minimizing the sum of the 
square of the following quantities: 

(i) the volume integral of Lorentz force, and 
(ii) the difference between the observed and calculated directions of the horizontal 

magnetic field. 
In (ii), the observed direction of the horizontal magnetic field is supposed to be given 
by the direction of fibrils in the Ha photographs. Therefore the boundary conditions 
used in this method are the values of Bn and Bx/By over the z-plane. Mathematical proof 
is not available which guarantees the existence of the solution in this approach. 
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The method of Section 6.4 is based on the finite element representation of the current 
flow. The finite element approach is most appropriate if the electric current is limited 
within a small volume. The Fourier method is less effective in such a case because it 
has to handle the whole volume anyway. As the current distribution becomes diffuse, 
the Fourier expansion becomes at least equally effective as the finite element method. 
In some cases the finite element approach introduces a complicated handling of the 
elements, and becomes less effective than the simple Fourier method. 

6.6. INTEGRATION IN Z AS AN INITIAL VALUE PROBLEM 

Nakagawa (1974) and Wu et  al. (1985) tried to solve the force-free equation by direct 
integration of this equation via finite differencing, 

OBx #B  z 
- e B y  + - -  , ( 6 . 1 0 )  

#z Ox 

_ 3B= (~By a B  x + - -  , (6.11) 
ey 

c~z c~x ~y 

~= Bx~x+ By Bj- 
(3z ~ y )  

The boundary condition requires the magnetic vector B at z = 0. 

(6.12) 

(6.13) 

When the boundary condition is such that e = 0 on the z-plane, this method leads 
to the Cauchy integration of the Laplace equation. In the Cauchy problem of the Laplace 
equation, the Laplace equation is integrated as an initial value problem in which z is the 
time variable and the value of B is given at z = 0 as the initial condition. As is well 
known, this is an ill-posed problem and the integration diverges. The reason is that the 
Laplace equation, when integrated with respect to z, has both exponentially decaying 
and growing solutions. Even if the initial condition only contains the decaying solutions, 
the growing solutions sneak in due to numerical errors. 

This undesirable situation will appear in the force-free field equation as well. Wu et  al. 

(1985) applied their method to a known analytic force-free field model and confirmed 
the accuracy in their procedure. This, however, does not guarantee the success of their 
method in realistic cases. An irregular distribution of magnetic fields in realistic data 
will be a source of larger numerical errors. It should also be remembered that, in the 
ill-posed problems, the reduction in the grid size will not lead to the increase in the 
accuracy but to the earlier breakdown in the integration. 

6.7. FRICTIONAL METHODS 

Yang et  al. (1986) and Craig and Sneyd (1986) modified the force-free equation into a 
time-dependent equation with a frictional term which is proportional to the Lorentz 
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force. Starting from an initial non-equilibrium state, the system relaxes under the 
frictional drag. In the final state the system is at rest without friction (i.e., the Lorentz 
force in balance), and the force-free equilibrium is obtained. 

Yang et al. (1986) modified Equation (6.2) into 

af_ v_IFB.~f ' Og= -v-IFB'Vg, (6.14) 
~t ~t 

where F B is the Lorentz force and v is a fictitious coefficient of friction. Craig and Sneyd 
(1986) make use of the Lagrangian description of the fluid and write 

D x  
- vF B . (6.15) 

Dt  

Here x(X, t) is the location at time t of the fluid element which was initially situated at 
X. The Lagrangian time derivative D / D t  is taken for a fixed X. These two approaches 
are essentially the same because the Euler potentials are regarded as the two Lagrangian 
coordinates in the direction transverse to the magnetic field. On the boundary, the values 
of (f,  g) or x are specified. 

7. A p p l i c a t i o n s  

7.1. 'VECTORIZATION' OF VECTOR MAGNETOGRAMS 

As was described in Section 2, measurements by vector magnetographs give two 
possible vectors for transverse fields, either B t or - B  t. Several methods have been 
proposed to resolve this ambiguity in the azimuth of the transverse field. Krall et al. 

(1982) selected the vector which is closer to the local gradient of the longitudinal field 
( - 7Bl), because generally the field runs from positive to negative polarities. Sakurai 
et al. (1985) calculated the current-free field based on the observed BI, and assigned the 
direction of B t in referring to the current-free field vector (Figure 8, left). Both methods 
may have a conservative bias, leading to less distorted magnetic field. 

Once the field vec to r  (Bt,  BI) for the observer is determined, we may express it in the 
solar frame as (Bh, Bn) according to the location of the observed region on the Sun. This 
process, however, mixes B l with less accurate B t. As long as the region of interest is not 
very far from the disk center, it would be advisable to simply set B h = B t and B n = B r 

An example of application obtained from this vectorization is that we can then 
calculate the vertical gradient of the magnetic field in sunspots by 

OB~oz ~ = o = - 7h" Bh " (7.1) 

This quantity has also been derived by measuring the longitudinal magnetic fields in two 
spectral lines which are formed in different heights in the solar atmosphere (Makita and 
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magnetic field vector electric current 

Fig. 8. Magnetic field vector (left) and electric current distribution (right) in the active region NOAA 4187 
(May 26, 1983) observed by the vector magnetograph of Okayama Station, National Astronomical Observa- 
tory of Japan. Positive and negative longitudinal fields are represented by solid and dotted contours, 
respectively, with levels + 10, 20, 50, 100, 200, and 500 G. Arrows indicate the transverse field vector. The 
electric currents are here shown in terms of curl B,, with contour levels + 20, 40, 60, 80, and 100 6/104 km 

(from Sakurai etal., 1985). 

Nemoto, 1976, and references cited therein). A comparison between the two methods 
is found in Hagyard et al. (1985). 

When the observed transverse field deviates significantly from the computed current- 
free field, it indicates the existence of electric currents. Such magnetic configuration is 
called to have a large shear, and is closely related to the flare activity (Hagyard et aL, 
1984; Patty and Hagyard, 1986; Hofmann et al., 1987). This point can be addressed 
more directly in terms of the electric current distribution derived from magnetic vector 
observations. 

7.2. ELECTRIC CURRENT DISTRIBUTION 

We can derive the normal component of electric current density from observations by 

c 
j~ = - -  n" curlB h . (7.2) 

4re 

An example is shown in Figure 8 (right). The association between flare knots and regions 
of large j~ was originally pointed out by Moreton and Severny (1968), and was 
extensively studied in the Solar Maximum Mission era (Krall et al., 1982; Lin and 
Gaizankas, 1987; Ding et aL, 1987; a review by Hagyard etal., 1986). The relation 
betweenj~ and bright points seen in the XUVwavelengths  was studied by de Loach et al. 
(1984) and by Haisch et al. (1986). Kotov (1971) derived the electric current vector j 
from the magnetic vectors B(z l) and B(z2) by using two spectral lines that correspond 
to different heights (z I and z2) in the atmosphere. 

If the force-free field approximation is valid, the value of 0~ is obtained by 

c~ = (47r/c)jn/B,. (7.3) 
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Sakurai e t  al .  (1985) calculated the force-free field by using the distribution of ~ thus 
obtained, by applying the method described in Section 6.4 (Figure 9). 

' I ~ /,412: 

enrrent-free foree-free 

Fig. 9. Current-free (left) and force-free (right) magnetic fields calculated from the magnetic data of 
Figure 8. Field lines in the two figures have the same footpoints, so that the difference between the two is 

due to the effects of the electric currents (from Sakurai et al. 1985). 

Sometimes one encounters a conflicting situation, however. For example a large value 
of j ,  is found on the magnetic neutral line where B n = 0. Global force-balance relations 
described in Section 3.3, which must hold for force-free fields, were examined by Gary 
e t  al .  (1987) and were found to be satisfied. Sakurai (1987), however, found a large 
deviation in several active regions. 

Since there is no reason to believe that the force-free assumption applies down to the 
photospheric level where the magnetic field is observed, the validity of Equation (7.3) 
should be considered critically. For this purpose we divide the electric currents into two 
categories, namely the force-free (field-aligned) currents and the non-force-free currents. 
The former currents have the scale length as large as that of the magnetic field itself. 
The latter currents are caused by non-magnetic forces in the photosphere and will be 
confined within a thin layer of thickness h. The magnitude of h will be a few times the 
photospheric scale height, for example h = 500 kin. We designate by B the observed field 
vector at z = 0 (photosphere) as before, and by B' the field vector at z = h. The normal 
component of the electric current Jn at z = 0 is derived by Equation (7.2). 

Now we will apply the method described in Section 6.4 to the volume z > h. We then 
need the boundary values B' n and j ' .  The approximation B" = B~ will be justified 
because h is small compared with the lateral characteristic length scale of the field. For 
the electric current we set j" = jn as the first guess. The force-free field solution gives 
the value of B', from which we can calculate the surface electric current Jh = ( Jx ,  J y )  

integrated over the range 0 < z < h, 
s 

J x  = - - -  (B~  - B y ) ,  (7.4) 
4n 
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C 
JY : +4~  (B" - Bx). (7.5) 

If we require that the force vector Jh x B should lie in the horizontal plane, we obtain 
the condition, 

B~, 2 = B~. (7.6) 

The first guess will not generally fulfill this condition. We may then deviate from the 
initial guess j" = j, so that Equation (7.6) is satisfied. This scheme is however much more 
complicated than the original method. 

7.3. M A G N E T I C  E N E R G Y  S T O R A G E  

The total amount of energy stored in the volume z > 0 can be calculated in various ways. 
For the current-free field, the energy is represented as 

1 ~ ~bB ndxdy. (7.7) Wo = 
t )  

z = O  

In the Fourier expansion methods for constant-a force-free fields (including the current- 
free field), the energy is written as 

W= Z IBk• 2LxLy (7.8) 
K 

For the general force-free fields, the energy W is the quantity to be minimized in the 
method of Section 6.3 so that it is readily available. In the method of Section 6.4, the 
energy is evaluated by 

W = - -  Ac ' i  d V +  Wo. 
2c 

z:>O 

(7.9) 

One may also utilize the virial relation (3.20). 
The energy of the current-free field Wo is associated with the currents flowing under 

the photosphere. Therefore, in rapid processes like flares, W o will not change and can 
be regarded as the constant base level of the energy. If any changes in magnetic energy 
are to take place during the flare, those will be associated with the currents flowing in 
the chromosphere/corona. The amount of energy that can be liberated is W - Wo, which 
might be called the magnetic free energy stored in the atmosphere. 

By applying a simple constant-~ force-free field model, Tanaka and Nakagawa (1973) 
obtained that W - W o was of the order of 1032 ergs in the active region of August 1972 
which produced several large flares. A more detailed treatment by Seehafer and Staude 
(1979) gave a similar value. Since the constant-~ model could not reproduce the 
magnetic field structure precisely, it would be premature to say that the flare energy 
build-up was detected in a quantitative sense. 



44 TAKASHI SAKURAI 

Gary et al. (1987) applied the virial relation (3.20) to estimate the energy stored in an 
active egion of September 1980. They found that W - W o is of the order of 1032 ergs. 
Sakurai (1987) applied the same technique to many active regions and found that 
W - Wo shows a large scatter, even W - Wo < 0 in some regions. This might mean the 
breakdown of force-free assumption in some active regions. 

7.4. COMPUTED FIELD LINES AND MAGNETIC TRACERS 

The most common way of representing the structure of the magnetic field is to draw field 
lines. When B(x) is available by the methods described in Sections 4-6, the magnetic 
field lines are obtained by integrating 

dx B(x) 
- - -  , ( 7 . 1 0 )  

ds iB(x) l 

where s is the arc-length along the field line. The starting points of the field fines are 
usually distributed in such a way that the density of the footpoints of the field lines is 
proportional to B n (or magnetic flux). 

If the field lines pass through the region near magnetic neutral points, their trajectory 
is very sensitive to the selection of the starting points. In order not to be deceived by 
such untypical field lines, one should integrate enough number of field lines. Needless 
to say, field lines that do not exist in the solution will not appear, although one may miss 
the existing field lines. 

Computed field lines were compared with thread-like structures on the Sun: 
chromospheric fibrils (Nakagawa et al., 1971), post-flare loops (Rust and Roy, 1971), 
coronal X-ray loops (Poletto et al., 1975; Sakurai and Uchida, 1977), and so on. The 
underlying expectation is that these structures form along the magnetic field. This 
expectation has been vindicated in a broad sense. If we appreciate that the alignment 
of these features along the magnetic field is so fundamental as not to fail, we may reverse 
the argument. We may check the validity of, or constrain the ambiguity in, the compu- 
tational models for the magnetic field. 

One of such approaches has been made when one tries to determine the value of 
in the constant-e force-free field model. Frequently a single value of c~ is found to be 
insufficient in reproducing the observed structures. Levine (1976), for example, argued 
that different X-ray loops in an active region have different values (signs) of e. Gary et al. 

(1987) obtained the sign of ct point by point in an active region, by comparing which 
sign of e better reproduces the magnetic tracers. These treatments are however incon- 
sistent with the assumption of e = constant, and no much weight can be attached. 

8 .  C o n c l u d i n g  R e m a r k s  

8.1. COMPUTATIONAL METHODS WHEN l 5 ~ n 

When the region to be studied is not close to the disk center, and n is significantly 
different from i (viz., oblique geometry), the applicability of methods described in 
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Sections 4-6 is as follows. For the current-free modeling, the Green's function method 
can be extended to the oblique geometry (Semel, 1967) and to the spherical geometry 
as well (Sakurai, 1982). The uniqueness in the solution in these cases was discussed by 
Aly (1987). The Fourier method (Wellck and Nakagawa, 1973) can handle the oblique 
geometry for the constant-~ force-free field (which includes the current-free case). The 
Green's function of Chiu and Hilton (1977) has not been modified to the oblique cases. 

Various methods for general force-free fields are developed for the cases with n = 1. 
Since some of these methods are meaningful only when the magnetic field vector is 
available as the boundary condition, one may always derive (Bh, Bn) from (Bt, BI). In 
this sense the oblique geometry can be handled. As was discussed in the previous 
section, however, the derived B n will be deteriorated by the relatively inaccurate B t . One 
should conservatively restrict the application of these methods to the head-on geometry 
( n  = 1). 

8.2. B E Y O N D  T H E  F O R C E - F R E E  A P P R O X I M A T I O N  

The inclusion of the effects of pressure and gravity has been made for idealized (two- 
dimensional) models (Low, 1982). The basic equation can be neatly written in terms of 
Euler potentials even in three-dimensional cases (Low, 1980). It is, therefore, possible 
to construct a realistic scheme for a fully magnetohydrostatic modeling. A more difficult 
problem is how to obtain the necessary boundary conditions from observations. 
Although full of difficulties, magnetic fields are constantly monitored by the magneto- 
graphs. On the other hand the temperature and the density at the photospheric level are 
largely uniform. The energy density carried by the plasma greatly exceeds the magnetic 
energy at the photosphere. Therefore a slight inhomogeneity in the temperature and/or 
density will have a great effect on the magnetic field. 

Despite this difficulty, the deviation from the force-free state exists without doubt. H c~ 
photographs show low-lying fibrils, indicative of the effect of gravity. Prominences will 
not form without gravity. A future direction would be to modify the force-free field 
modeling in a thin layer near the photosphere, where the deviation from the force-free 
equilibrium is most important. 

8.3. PROSPECTS 

We have a difficulty in measuring the magnetic field on one hand, and a difficulty in 
computing the magnetic field model on the other hand. The latter difficulty is close to 
being resolved. The former, however, still stands. It may be that the situation is 
pessimistic, in that whatever we improve our instruments, the existence of inhomo- 
geneous magnetic structures may prohibit us from obtaining the correct information on 
the solar magnetic fields. 

The current view (Stenflo, 1976) is that the flux tubes are homogeneous in character 
and only their number density varies from position to position. If this is the ease, the 
construction of 'standard flux tube' model would be of great help. The instruments like 
LEST (Andersen et al., 1984) or HRSO (van Ballegooijen, 1985) are crucial in achieving 
this goal. On the other hand if the character of the flux tubes depends on the environ- 
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ment, one has to determine the flux tube parameters at the same time as the magnetic 
observations. This will require the upgrade of existing magnetographs. The Stokes 
(profile-recording) polarimeters as efficient as the usual magnetographs might be a 
solution. The nature of the activity of the Sun will ultimately be revealed when these 
difficulties are resolved. 

In the coming activity maximum (1991-1992) of the 22-nd solar cycle, several coordi- 
nations in the flare research are being planned (FLARES 22 of COSPAR/SCOSTEP, 
MAX '91 of U.S.A.). As a joint Japan-U.S.A.-U.K. project, the SOLAR-A satellite 
with hard and soft X-ray imagers will be launched in 1991 (Ogawara, 1987). With the 
vector magnetograms and the coronal magnetic structures at hand, it is timely to pursue 
the computational modeling of magnetic fields. Methods described in Section 6 have to 
be tested on realistic data sets and should be ready by the advent of the activity 
maximum. 
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