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and its experimental verification 
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Summary. A theory has been developed for calculating the cup and edge distortion that will 
occur when green boards are dried, or the moisture content of dry boards changes in service. The 
parameters on which the calculations are based are the annual ring orientation coordinates R 
and 0 of the boards, and the transverse shrinkage factors. For boards of square-cross-section the 
theory agrees very closely with the shrinkage predicted by the older theory of Greenhill, 
MacLean and Keylwerth. For Beilschmiedia tawa specimens 50 x 50 mm in cross-section the 
experimental and calculated width and thickness shrinkage were in excellent agreement. For 
radiata pine boards 200 x 50 mm in cross-scction the experimental cup, edge distortion and 
shrinkage in width and thickness agreed very closely with the values predicted by the theory. 

Introduction 

It  has been known for at  least a century that  the cupping and edge dis tor t ion experi- 
enced by boards  during drying are caused by differential radial  and tangential  shrink- 
age. Textbooks such as Kol lmann and C6t~ (1968) describe this in a very generalised 
way, but  no accurate theory exists at present that  allows the complete cross-sectional 
deformat ion  of  a board  cross-section to be calculated pr ior  to drying. The aim of  this 
article is to develop a theory for calculating cross-sectional shrinkage deformat ion  of  
boards  f rom a knowledge of  radial  and tangential  shrinkage coefficients and the 
direction of  the annual  rings, and to verify this theory experimentally.  

Previous investigators such as Greenhil l  (1940), MacLean  (1945) and Keylwerth  
(1948) developed shrinkage equations based on the assumption that  the annual  rings 
in a boa rd  can be effectively approx imated  by straight lines at an angle d? to the width 
axis (Fig. 1). This was a reasonable assumpt ion while boards  were still being sawn 
from large diameter  trees f rom virgin forests. However,  this assumpt ion is poor  for 
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A D Fig. 1. Board with straight line annual rings at angle ~b 
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boards from the smaller diameter plantation-grown logs that have been increasingly 
replacing those from virgin forests since about 1950. 

The theories based on the assumption that annual rings in boards can be approx- 
imated by straight lines allow the calculation of  edge distortion, but not cupping. 
Formulae describing edge distortion derived with the assumption of  straight line 
annual rings are given in Appendix 1. 

Deve lopment  o f  a theory for calculating shrinkage distortion 

A realistic theory of  cross-sectional shrinkage distortion must take into account a 
number of  facts. Firstly, that annual rings in boards are approximately arcs of  a circle 
and not straight lines, and secondly that shrinkage occurs tangentially along these 
rings and radially perpendicular to the rings. Hence to calculate the shrinkage distor- 
tion of  a board the orientation and curvature of  its annual rings must be known. 

Booker (1987) has recently shown that the direction of  the annual rings in a board 
can be uniquely defined by two coordinates, a radial coordinate R and an angle 0. The 
(R, 0) coordinates of  a board correspond to the polar coordinates of  the centroid (C) 
of  the board cross-section in the tree before sawing (Fig. 2). 

When the polar coordinates of  the centroid of  a board are known, as well as the 
board 's  width and thickness, the board circumference and the orientation of  the 
annual rings can be graphically or mathematically reconstructed. The above system 
of  representation would be of  little practical use if it were necessary to measure the 
board coordinates in the log before sawing. This is not the case. The coordinates can 
be measured with a transparent overlay as shown in Fig. 3. This has been fully 
described by Booker (1987). 

When a green tree disc dries, it normally develops a large number of  small radial 
checks because the tangential shrinkage is greater than the radial shrinkage. However, 
if such a disc has a single sawcut made from bark to pith, this sawcut widens into a 
slit during drying, and the two sides of  the slit are effectively straight lines (Fig. 4). 
Moreover,  the remainder of  the disc is practically free from radial checks. This 
indicates that the residual stresses developed in the slotted disc are small and that the 
disc moves as a whole. This means that in Fig. 4 we may assume that one side of  the 
slit remains fixed in position while the other rotates. In fact, any point on the disc such 
as P can be assumed to rotate towards the fixed side of  the slit during drying. In other 
words, the point P in the board cross-section represented in Fig. 5 will during drying 
move tangentially along the annual ring towards Ox and radially towards O to take 
up the final position P'. 

The chord PL has length R 0, where 0 is in radians. If  the radial and tangential 
shrinkage fractions are given by r and t respectively, the point P moves a distance R 0 t 
along the arc PL towards L, and a distance R r along the radius OP towards O. After 
drying, the radial distance from P' to O will hence be OP (1 - r ) ,  and the tangential 
distance of  P' from Ox will be PL (1 - t ) .  Hence the angle P 'Ox  is given by: 

, _  _ _  R O ( 1 - t )  ( l - t )  
R ( 1 - r ) -  ~ O. 
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Fig. 2. Orientat ion in the log of a 
rectangular board with coordinates 
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Fig. 3. Use of a t ransparent  overlay to de- 
termine the coordinates of the centroid, C. 
The overlay has a large number  of arcs of 
concentric circles printed on it. These are 
10 mm apart  and have their radius of cur- 
vature clearly marked. By matching the 
concentric circle segments with the annual  
rings as shown the (R, 0) coordinates can 
be determined. In this example the 
150 mm • 60 mm board has coordinates 
R =  13.5 cm; 0 = 5 4  ~ 
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Fig. 4. a Disc with a sawcut prior to drying; b same 
disc after drying 
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Fig. 5. Movement  of a point  P in a board 
along and perpendicular to the annual  ring 
direction during drying 
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Hence any point P with polar coordinates (R, 0) will after shrinkage occupy a 
position P' whose polar coordinates (R', 0') are given by: 

R ' = R ( I  - r )  (1) 

1 - t  

where t and r are the tangential and radial shrinkage fractions. 
These equations will be referred to as the transformation equations. Mathemati- 

cally they are equivalent to a uniform stress-free shrinkage in all directions by a 
fraction r, followed by fractional shrinkage ( t - r )  in the tangential direction. 

A computer program has been developed that calculates the shrinkage distortion 
of  a board in a series of  steps: 

1. It is assumed that for a given board the polar coordinates of  the centroid 
(Re, 0c) have been determined, either in the log or more commonly with a transparent 
overlay. The thickness (p) and width (q) are also assumed known. The program 
calculates the coordinates of  a large number of  points along the edges of  the board 
cross-section using 100 intervals along each edge. First the coordinates (xc, Yc) of  the 
centroid are calculated; the points on the top and bot tom surfaces BG and AD (Fig. 2) 
have y-coordinates Yc-t-p/2, while the points on the sides have an x-coordinate given 
by xc + q/2. 

2. For  each of  the points on the lines AB, BG, GD and DA (Fig. 2) the (x, y) 
coordinates are converted into polar coordinates. 

3. The transformation equations are applied. 
4. The transformed polar coordinates are converted into (x, y) coordinates. 
5. The (x, y) coordinates of  all the points along the edges are plotted to represent 

the cross-section of  the board after drying. 
6. Further calculations are carried out as described later. 

Experimental verification 

Square tawa specimens 

A single length of  fresh Beilschmiedia tawa sapwood 100 mm x 100 mm in cross-sec- 
tion was obtained. It was carefully selected to avoid spiral grain and other defects. A 
set of  seven specimens each just over 300 mm long was cut. The samples were 
machined so that a full range of  ring angles from zero to 45 degrees was obtained. 
Each of  the specimens was then cut in two to yield a total of  14 specimens of  
cross-sectional area 50 x 50 mm and 150 mm long. Each sample was weighed (green 
weight), end-waxed to prevent end-splitting, and the ring angle was determined at 
each end. This was then averaged to give the ring angle at the centre of  the sample. 
The ring angle was taken to be the angle subtended by the chord connecting the ends 
of  the annual ring that passed closest to the centre of  the cross-section (Fig.l). 

The width (q) and thickness (p) of  each specimen was measured by placing the 
specimen on a 38 mm pedestal and measuring with a dial gauge the distance between 
H or K (Fig. 6) and the opposite side AB or BG resting on the pedestal. However, if 
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Fig. 6. Measurement positions H and K on the tawa specimens. H and 
K lie in the centre of DG and AD. The edge A that is closest to the pith 
is the leading edge 

after drying the surface AB or BG was slightly concave, the specimen was turned over 
and the was measured from E or F to the opposi te  side. 

The specimens were held in a 12% equil ibrium moisture content  (emc) cabinet  for 
7 months.  When  emc was reached the specimens were re-weighed and re-measured on 
the shrinkage points with a dial gauge. Eventually the specimens were oven-dried and 
reweighed so that  the basic wood density and the true moisture content  values could 
be calculated. 

Rectangular radiata pine boards 

A pruned butt  log of  Pinus radiata D. Don  was selected which had  the p~th close to 
the geometric centre. The flared region at the butt  was cut off, yielding a pruned log 
6.4 m long with little taper. The log was cut into two 3.2 m long sections. The average 
radius of  the two log sections was 263 _+ 24 ram. A reference disc was cut from each 
end o f  the two log sections, after which each was cut into manageable  55 m m  thick 
slabs with a chainsaw mill. These slabs were t ranspor ted  to the l abora to ry  for further 
machining.  Twenty seven boards  600 m m  long and 200 x 50 m m  in cross-section were 
sawn so that  they spanned a large range of  (R, 0) values. In addi t ion ten boards  of  
smaller cross-sectional dimensions were produced.  A large number  of  f latsawn boards  
(i.e. 0 = 90 ~ with a large range of  R values were manufactured.  N o d a l  areas a round  
the branch stubs with their annual  ring and spiral grain deviat ions were excluded from 
the sample material .  

The (R, 0) values of  the boards  were measured in the log, with a t ransparent  
overlay, and by compar ison with two reference discs cut from the end-discs. Each 
board  was weighed (green weight) and painted at its ends to prevent end-split t ing. The 
thickness was measured in the centre of  each board ,  halfway between its ends. The 
width was measured 5 mm from the top  surface of  each board.  The boards  were 
air-dried without  restraint  and equil ibrated in a 12% emc cabinet. The cross-sectional 
dimensions were remeasured and a one inch thick slice cut from the centre of  each 
board.  On this cross-section the (R, e) coordinates  were measured.  The cross-section 
was also photocopied  and digitised for analysis. I t  was then computer  corrected for 
the small amount  of  paper  stretch that  occurs during photocopying.  

F r o m  the centre o f  the 6.4 m log a series of  shrinkage specimens was cut 150 m m  
long and 50 m m  x 50 mm in cross-section. This yielded a series of  shrinkage specimens 
from pith to bark  in four directions at  right angles to each other. 
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Results 

The shrinkage o f  square B. tawa specimens 

Shrinkage data for square specimens are ideally suited to test both the old and the new 
theories and to compare them, as the square cross-section becomes effectively a 
rhomboid with parallel sides. Because of symmetry considerations only angles from 
0 ~ to 45 ~ needed to be considered, as for complementary angles it is only necessary 
to interchange height and width. It can also be shown that the angles 4, of Fig. 1 and 
0 of Fig. 2 are complementary, so that 4)= 90 ~  0. 

Experimental results for the square tawa specimens are shown in Table 1. Results 
tbr specimen 6 had to be rejected as in spite of all precautions it possessed a very 
distorted annual  ring pattern. The data are also plotted in the form of a graph of 
percentage shrinkage in width (q) as a function of ring angle 0 from 0 ~ to 90 ~ (Fig. 7). 
A curve of best fit was drawn through the points to calculate the values of r and t 
according to Keylwerth's formula (Eq. A4): 

~width shrinkage = r sin 2 ~b + t c o s  2 ( / )  . 

The best fitting values for the radial and tangential shrinkage were found to be 
2.28% and 6.61% respectively, and the fit of the equation was excellent with a 
correlation coefficient r 2 of 0,997. 

The Greenhill formulae A8 and A9 were used to calculate the theoretical shrink- 
age values, which are shown as a continuous graph in Fig. 7 and are tabulated in 
Table 1. in  practice the values calculated with the Greenhill formulae A8 and A9 are 
almost indistinguishable from those calculated with the Keylwerth formulae A3 and 
A4 (Table 1). 

The new transformation Eqs. (1) and (2) above were used to calculate the posi- 
tions of the four points E', F', H' and K'  (Fig. 6) after drying. From the coordinates 
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the lengths E 'H'  and F 'K '  were calculated, as they are equivalent to the width q' and 
the thickness p' after drying respectively. Values are listed in Table 1. It was expected 
that the values calculated according to the new theory would be closer to the exper- 
imental values than those for the Greenhill/Keylwerth theory, as the new theory takes 
into account differences in curvature of  the annual rings. Instead, Table 1 shows that 
as far as shrinkage is concerned the values predicted by the new theory and the 
Greenhill theory are practically identical. However, the new theory is slightly better 
at predicting the size of  the angles A' and G' (Fig. 6 and 13 and Table 1). The main 
advantage of  the new theory is, however, that it can predict the magnitude of  cupping 
in boards, while theories based on straight line annual rings predict that board 
surfaces remain flat during shrinking or swelling. 

The shrinkage o.t radiata pine boards 

No perceptible difference was found between the shrinkage behaviour of  the four log 
quadrants or the two sections of  the log. Consequently the results for all 38 shrinkage 
specimens (50 mm x 50 mm x 150 mm) have been combined into a single graph of  
radial and tangential shrinkage versus distance from the pith (Fig. 8). Both radial and 
tangential shrinkage decline slightly towards the pith. The average tangential shrink- 
age was found to be (3.69 + 0.43)% and the average radial shrinkage (1.61 _+ 0.37)%. 
Converted to a percentage the standard deviation of  t and r is 12% and 23% respec- 
tively. The difference ( t - r )  is (2.10 _+ 0.15)%, with a standard deviation of  only 7%. 
This is clearly evident in Figure 8; in general whenever the tangential shrinkage for a 
specimen is high or low, the radial shrinkage is high or low by a similar amount. The 
shrinkage calculations were performed for the boards assuming that: 

r (%) = 1.3262 + 0.00198 R 

and 

t (%) = 3.1813 +0.00355 R 

However, if a constant radial shrinkage value of  1.61% and a tangential shrinkage 
fraction of  3.69% were used, irrespective of  radial position, this made very little 
difference to the results. 

The range of  (R, 0) coordinates for the 38 boards is shown in Fig. 9. The coordi- 
nates for 200 mm x 50 mm boards are limited to the area enclosed by the dotted lines. 
The top line indicates the limit set by the maximum log diameter, and the bot tom line 
the requirement that the theory requires boards to be free from enclosed pith. Boards 
with smaller cross-section can lie outside the enclosed area. A reasonable spread of  
(R, 0) values was obtained. 

It has been a problem to decide how to display the experimental and theoretical 
data in such a way that they could be readily compared. While it is a simple matter 
to plot the digitised experimental cross-section and the calculated cross-section for 
each board onto a transparent overlay and to compare theory and experiment by 
superimposing these, it would occupy too much space to display all the results in this 
form. Figure 10a and b show the experimental and calculated distortion for board 
no. 27 which has coordinates (71 mm, 61.5~ When transferred to a transparent 
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Fig. 10. Cross-sectional distortion of board 27 (half size) as predicted by the theory (top) and 
observed experimentally (bottom). Close agreement is indicated 

overlay the two cross-sections overlap closely, showing excellent agreement between 
theory and experiment.  

Cupping 

The experimental  results for the 38 boards  are listed in Table 2. Figure 11 shows a 
three dimensional  graph of  cup (in mm) as a function of  the (R, 0) coordinates  for all 
200 mm wide boards.  The largest values of  cup occur in the region with low R and 
high 0 values, i.e. for flatsawn boards  close to the pith. In addit ion,  for a given value 
of  R the cup steadily decreases from 0 = 90 ~ to 0 = 0 ~ i.e. from flatsawn to quarter-  
sawn. 

The correlat ion coefficient r between experimental  and theoretical cup for the 32 
two hundred mm wide boards  without  pith was 0.84 (r2=0.71).  In general the 
calculated and experimental  cup were in good agreement. As the amount  of  cup is 
small for radia ta  pine because of  the low values of  radial  and tangential  shrinkage, 
considerable scatter in the measurements associated with cup was introduced into the 
results by small surface imperfections. These were caused by the planer  and by the fact 
that  the la tewood at the surface was slightly depressed below the level of  the early- 
wood by differential shrinkage. Board number  11 (Table 2) showed less cup and 
shrinkage than expected because of  severe compression wood, and boards  18 and 28 
possessed non-concentr ic  rings in one corner of  the cross-section. Whenever reasons 
for differences between theory and experiment are known they are indicated in 
Table 2. 

Shrinkage in width 

The lowest shrinkage in width occurred for quartersawn boards  for which 0 is close 
to 0 ~ (Table 2). It then gradually increased with increasing ring angle to a maximum 
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Fig. 11. Cup (in mm) as a function of(R, 0) coordinates for 35 radiata pine boards 200 mm wide. 
(R, 0) coordinates; �9 theoretical values; ~ experimental values; �9 identical theoretical and exper- 
imental values; --- boundary lines for 200 mm x 50 mm boards; P boards containing pith 

at 0 = 90 ~ (flatsawn boards).  F o r  flatsawn boards  the width shrinkage increased with 
R for three reasons: 
(i) the tangential  shrinkage increases slowly with distance from the pith (Fig. 8), 
(ii) cup and edge dis tor t ion decrease with increasing distance from the pith so that  the 
distance by which the top corners are bent towards  each other decreases, 
(iii) as R increases the curvature of  the annual  rings decreases, so that  the radial  
contr ibut ion to the width shrinkage decreases. 

As a result the max imum calculated shrinkage value of  4.1% occurred for the 
flatsawn board  with the highest value of  R, board  number  31. The max imum exper- 
imental  width shrinkage occurred for boards  17, 18 and 22 which are flatsawn and 
have large R values. 

The correlat ion coefficient r between experimental  and theoretical  width shrink- 
age for the 35 boards  not  containing pi th is 0.84 (r2=0.71).  The main  differences 
between experiment and theory are a t t r ibutable  to the effect of  non-concentr ic  annual  
rings and the presence of  compression wood.  The relationship between experimental  
and theoretical  shrinkage was calculated to be" 

experimental  shrinkage in width ( % ) = -  0.326 + 0.998 x theoretical  shrinkage (%) 
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Fig. 12. Cup in a 200 mm x 50 mm flatsawn board as a function of distance from the pith. The 
calculation assumed radial and tangential shrinkage factors of 1.60% and 3.69% respectively 

The slightly lower experimental  shrinkage could be caused by the boards  having 
a slightly lower moisture content at the time of  measurement than the shrinkage 
specimens. 

Shrinkage in thickness 

Calculated and theoretical thickness shrinkage values were in good agreement with a 
correlat ion coefficient of  0.89 (r 2 =0.79) for the 38 boards.  

Thickness shrinkage decreased gradually from 0 = 0  ~ (quartersawn) to 0=90"  
(flatsawn). Fo r  boards  with large 0 values the thickness shrinkage is essentially 
independent  of  R. This can be explained by the fact that at the centre of  flatsawn 
boards  the direction of  thickness shrinkage is radial,  i.e. always perpendicular  to the 
annual  rings and hence unaffected by ring curvature. Radial  shrinkage changes only 
slightly with R (Fig. 8), so that thickness shrinkage is almost independent  of  R for 
flatsawn boards.  

Discussion 

It has long been known that boards  close to the pith experience much greater distor- 
t ion than boards  further away. This is confirmed by the results in Table 2 and Fig. 11. 
Many  sawmillers believe this is caused by greater transverse shrinkage close to the 
pith. This is not  the case. The amount  of  cupping to be expected for flat sawn boards 
200 mm x 50 mm in cross-section has been calculated for a range of  R values, assum- 
ing constant  shrinkage fractions r = 1 . 6 0 %  and t = 3 . 6 9 % .  Results are shown in 
Fig. 12. The amount  of  cup decreases rapidly with increasing distance from the pith. 

The log was chosen because the pith was symmetrically located. It also had very 
little spiral grain, which is fortunate,  as further analysis shows that cross-sections can 
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B I G s 

\ \, \ I \ ,  '\ 

,,/',+, 2 q 
A' \ Annual rings D' 

Fig. 13. Distorted cross-section of a board after 
drying, assuming straight line annual rings 

also distort  during drying as the result of  spiral grain (Booker,  unpublished).  As most  
trees are reasonably symmetrical  and shrinkage dis tor t ion does not  vary rapidly with 
R and 0, it is p robable  that  small deviat ions of  annual  rings from circular will in 
practice not  make a large difference to the results. Large differences should be 
expected however when the rings are badly  distorted due to the proximi ty  of  knots  or 
when the rings are not  concentric. Board 16 is an example of  the latter (Table 2). 

The new theory can be a useful tool in theoretical  studies on sawmilling. Unti l  now 
only green t imber recovery from alternative sawing pat terns could be calculated. This 
can now be extended to recovery of  dry dressed t imber as the min imum amount  of  
planing required to return the distorted cross section to rectangular  can be calculated. 

The theory can also be used to predict  the cupping that  would occur in dry boards  
of  rectangular  cross-section on export  from an area of  high equil ibrium moisture 
content  to an area of  low emc, or  vice versa. 

Conclusion 

It  has been shown that  for boards  of  a given dimension and relatively straight grain 
cupping and edge dis tor t ion are governed by only two pairs of  parameters ,  annual  
ring or ientat ion and transverse shrinkage fractions r and t. In turn, the shrinkage 
fractions depend upon  the shrinkage coefficients, fibre sa tura t ion  point  and the initial 
and final moisture content  o f  the wood.  Other  factors such as density or ring width 
only affect cupping indirectly through their effect on the shrinkage fractions r and t. 

Appendix I 

Shrinkage formulae based on straight line annual rings 

The following formulae describe the shrinkage of a rectangLdar board whose annual riugs, 
assumed to be straight lines, make an angle ~b with the width axis (Fig. 1). After shrinkage the 
board cross-section becomes a parallelogram (Fig. 13) whose dimensions are given by: 

A' B' = A B ,,/cos 2 q~ (1 -- r) z + sin 2 0 (1 -- 02 (A1) 

A' D' = A D ,,/cos 2 q~ (1 -- t) 2 + sin z ~b (1 -- r)2 (A2) 

Equations (A 1) and (A2) were first derived by Greenhill (1940). 

The fractional shrifikage along the thickness direction 

A B - A ' B '  
AB - 1  --~/cos2~b(1--r)2+sin20(l -t)2=rcosZq~+tsinZ~b (Keylwerth 1948) (A3) 
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The  fract ional  shr inkage a long the width direct ion 

A D - - A ' D '  
A D  = r  s in2~b+t  cos2~b (Keylwerth 1948) (A4) 

o ) = 9 0 O _ s i n  i ( t - r )  sin~bcos~b - s i n  1 ( t - r )  sin~bcos~b (A5) 
x/cos2 ~b (1 - r)2 + sin2 q5 (1 - t )  2 x/cos2 q5 (1 - t)2 + sin2 ~b(1 - r )  2 

Because the boa rd  dis tor ts  f rom a rectangle to a para l le logram with angle a~ (Fig. 13), 
th ickness  and  width  mus t  bo th  include a term sin~o: 

p' = p  ~ /cos  2 ~ b ( 1 - 0 2  + s i n  2 qS(1-02,  sine) (A6) 

q' = q x /cos  2 4, (1 -- t) z + sin 2 ~b (1 - r) 2. sin ~o (A7) 

where p and  q are the original  thickness and  width respectively. Hence the fractional  shr inkage 
in thickness  is given by: 

p - p '  
= 1 - x /cos  2 q5 (1 - 02 + sin 2 q~ (1 - t) 2. sin co (A8) 

P 

and  the fract ional  shr inkage in width is given by: 

q - q '  
= 1 - x /cos  2 4) (1 - t) 2 + sin 2 ~b (l - r) 2. sin co. (A9) 

q 
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