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A theory of cross-sectional shrinkage distortion
and its experimental verification

R. Booker; N. Ward and Q. Williams, Rotorua, New Zealand

Summary. A theory has been developed for calculating the cup and edge distortion that will
occur when green boards are dried, or the moisture content of dry boards changes in service. The
parameters on which the calculations are based are the annual ring orientation coordinates R
and 0 of the boards, and the transverse shrinkage factors. For boards of square-cross-section the
theory agrees very closely with the shrinkage predicted by the older theory of Greenhill,
MacLean and Keylwerth. For Beilschmiedia tawa specimens 50 x 50 mm in cross-section the
experimental and calculated width and thickness shrinkage were in excellent agreement. For
radiata pine boards 200 x 50 mm in cross-section the experimental cup, edge distortion and
shrinkage in width and thickness agreed very closely with the values predicted by the theory.

Introduction

It has been known for at least a century that the cupping and edge distortion experi-
enced by boards during drying are caused by differential radial and tangential shrink-
age. Textbooks such as Kollmann and Coté (1968) describe this in a very generalised
way, but no accurate theory exists at present that allows the complete cross-sectional
deformation of a board cross-section to be calculated prior to drying. The aim of this
article is to develop a theory for calculating cross-sectional shrinkage deformation of
boards from a knowledge of radial and tangential shrinkage coefficients and the
direction of the annual rings, and to verify this theory experimentally.

Previous investigators such as Greenhill (1940), MacLean (1945) and Keylwerth
(1948) developed shrinkage equations based on the assumption that the annual rings
in a board can be effectively approximated by straight lines at an angle ¢ to the width
axis (Fig. 1). This was a reasonable assumption while boards were still being sawn
from large diameter trees from virgin forests. However, this assumption is poor for
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Fig. 1. Board with straight line annual rings at angle ¢
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boards from the smaller diameter plantation-grown logs that have been increasingly
replacing those from virgin forests since about 1950.

The theories based on the assumption that annual rings in boards can be approx-
imated by straight lines allow the calculation of edge distortion, but not cupping.
Formulae describing edge distortion derived with the assumption of straight line
annual rings are given in Appendix 1.

Development of a theory for calculating shrinkage distortion

A realistic theory of cross-sectional shrinkage distortion must take into account a
number of facts. Firstly, that annual rings in boards are approximately arcs of a circle
and not straight lines, and secondly that shrinkage occurs tangentially along these
rings and radially perpendicular to the rings. Hence to calculate the shrinkage distor-
tion of a board the orientation and curvature of its annual rings must be known.

Booker (1987) has recently shown that the direction of the annual rings in a board
can be uniquely defined by two coordinates, a radial coordinate R and an angle 6. The
(R, 0) coordinates of a board correspond to the polar coordinates of the centroid (C)
of the board cross-section in the tree before sawing (Fig. 2).

When the polar coordinates of the centroid of a board are known, as well as the
board’s width and thickness, the board circumference and the orientation of the
annual rings can be graphically or mathematically reconstructed. The above system
of representation would be of little practical use if it were necessary to measure the
board coordinates in the log before sawing. This is not the case. The coordinates can
be measured with a transparent overlay as shown in Fig. 3. This has been fully
described by Booker (1987).

When a green tree disc dries, it normally develops a large number of small radial
checks because the tangential shrinkage is greater than the radial shrinkage. However,
if such a disc has a single sawcut made from bark to pith, this sawcut widens into a
slit during drying, and the two sides of the slit are effectively straight lines (Fig. 4).
Moreover, the remainder of the disc is practically free from radial checks. This
indicates that the residual stresses developed in the slotted disc are small and that the
disc moves as a whole. This means that in Fig. 4 we may assume that one side of the
slit remains fixed in position while the other rotates. In fact, any point on the disc such
as P can be assumed to rotate towards the fixed side of the slit during drying. In other
words, the point P in the board cross-section represented in Fig. 5 will during drying
move tangentially along the annual ring towards Ox and radially towards O to take
up the final position P’.

The chord PL has length R 8, where 8 is in radians. If the radial and tangential
shrinkage fractions are given by r and t respectively, the point P moves a distance R 6t
along the arc PL towards L, and a distance R r along the radius OP towards O. After
drying, the radial distance from P’ to O will hence be OP (1 —r), and the tangential
distance of P’ from Ox will be PL (1 —t). Hence the angle P’Ox is given by:

o R0(1~t):<1—t)9'
R(1-1) \l—r
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Fig. 2. Orientation in the log of a
rectangular board with coordinates

\ (R, ). The edge A that is closest to the
g, 1 \ b \ ] 1 . x  Dith 0 is the leading edge

Fig. 3. Use of a transparent overlay to de-
termine the coordinates of the centroid, C.
The overlay has a large number of arcs of
concentric circles printed on it. These are
10 mm apart and have their radius of cur-
vature clearly marked. By matching the
concentric circle segments with the annual
rings as shown the (R, 0) coordinates can
be determined.
150 mm x 60 mm board has coordinates
R=13.5 cm; #=354°

example the

Fig. 4. a Disc with a sawcut prior to drying; b same

\

\ Fig. 5. Movement of a point P in a board
9 ‘I along and perpendicular to the annual ring

L direction during drying
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Hence any point P with polar coordinates (R, ) will after shrinkage occupy a
position P’ whose polar coordinates (R’, ') are given by:

R'=R(1-r1) ()

(1t
v=(1=1)o @)

where t and r are the tangential and radial shrinkage fractions.

These equations will be referred to as the transformation equations. Mathemati-
cally they are equivalent to a uniform stress-free shrinkage in all directions by a
fraction r, followed by fractional shrinkage (t —r) in the tangential direction.

A computer program has been developed that calculates the shrinkage distortion
of a board in a series of steps:

1. It is assumed that for a given board the polar coordinates of the centroid
(R., 8.) have been determined, either in the log or more commonly with a transparent
overlay. The thickness (p) and width (q) are also assumed known. The program
calculates the coordinates of a large number of points along the edges of the board
cross-section using 100 intervals along each edge. First the coordinates (x,, y,) of the
centroid are calculated; the points on the top and bottom surfaces BG and AD (Fig. 2)
have y-coordinates y,+ p/2, while the points on the sides have an x-coordinate given
by x.+q/2.

2. For each of the points on the lines AB, BG, GD and DA (Fig. 2) the (x,y)
coordinates are converted into polar coordinates.

3. The transformation equations are applied.

4. The transformed polar coordinates are converted into (X, y) coordinates.

5. The (x, y) coordinates of all the points along the edges are plotted to represent
the cross-section of the board after drying.

6. Further calculations are carried out as described later.

Experimental verification
Square tawa specimens

A single length of fresh Beilschmiedia tawa sapwood 100 mm x 100 mm in cross-sec-
tion was obtained. It was carefully selected to avoid spiral grain and other defects. A
set of seven specimens each just over 300 mm long was cut. The samples were
machined so that a full range of ring angles from zero to 45 degrees was obtained.
Each of the specimens was then cut in two to yield a total of 14 specimens of
cross-sectional area 50 x 50 mm and 150 mm long. Each sample was weighed (green
weight), end-waxed to prevent end-splitting, and the ring angle was determined at
each end. This was then averaged to give the ring angle at the centre of the sample.
The ring angle was taken to be the angle subtended by the chord connecting the ends
of the annual ring that passed closest to the centre of the cross-section (Fig.1).

The width (q) and thickness (p) of each specimen was measured by placing the
specimen on a 38 mm pedestal and measuring with a dial gauge the distance between
H or K (Fig. 6) and the opposite side AB or BG resting on the pedestal. However, if
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B F G

Eleq xH
p Fig. 6. Measurement positions H and K on the tawa specimens. H and
i K lie in the centre of DG and AD. The edge A that is closest to the pith
A K D is the leading edge

after drying the surface AB or BG was slightly concave, the specimen was turned over
and the was measured from E or F to the opposite side.

The specimens were held in a 12% equilibrium moisture content (emc) cabinet for
7 months. When emc was reached the specimens were re-weighed and re-measured on
the shrinkage points with a dial gauge. Eventually the specimens were oven-dried and
reweighed so that the basic wood density and the true moisture content values could
be calculated.

Rectangular radiata pine boards

A pruned butt log of Pinus radiata D. Don was selected which had the pith close to
the geometric centre. The flared region at the butt was cut off, yielding a pruned log
6.4 m long with little taper. The log was cut into two 3.2 m long sections. The average
radius of the two log sections was 263 +24 mm. A reference disc was cut from each
end of the two log sections, after which each was cut into manageable 55 mm thick
slabs with a chainsaw mill. These slabs were transported to the laboratory for further
machining. Twenty seven boards 600 mm long and 200 x 50 mm in cross-section were
sawn so that they spanned a large range of (R, 6) values. In addition ten boards of
smaller cross-sectional dimensions were produced. A large number of flatsawn boards
(i.e. 8=90°) with a large range of R values were manufactured. Nodal areas around
the branch stubs with their annual ring and spiral grain deviations were excluded from
the sample material.

The (R, ) values of the boards were measured in the log, with a transparent
overlay, and by comparison with two reference discs cut from the end-discs. Each
board was weighed (green weight) and painted at its ends to prevent end-splitting. The
thickness was measured in the centre of each board, halfway between its ends. The
width was measured 5 mm from the top surface of each board. The boards were
air-dried without restraint and equilibrated in a 12% emc cabinet. The cross-sectional
dimensions were remeasured and a one inch thick slice cut from the centre of each
board. On this cross-section the (R, 6) coordinates were measured. The cross-section
was also photocopied and digitised for analysis. It was then computer corrected for
the small amount of paper stretch that occurs during photocopying.

From the centre of the 6.4 m log a series of shrinkage specimens was cut 150 mm
long and 50 mm x 50 mm in cross-section. This yielded a series of shrinkage specimens
from pith to bark in four directions at right angles to each other.
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Fig. 7. % Shrinkage in width as a function of ring angle 0 from 0° to 90° for square B. tawa
specimens. The solid line represents both the Keylwerth formula and the new theory

Results
The shrinkage of square B. tawa specimens

Shrinkage data for square specimens are ideally suited to test both the old and the new
theories and to compare them, as the square cross-section becomes effectively a
rhomboid with parallel sides. Because of symmetry considerations only angles from
0° to 45° needed to be considered, as for complementary angles it is only necessary
to interchange height and width. It can also be shown that the angles ¢ of Fig. 1 and
0 of Fig. 2 are complementary, so that ¢ =90"—6.

Experimental results for the square tawa specimens are shown in Table 1. Results
for specimen 6 had to be rejected as in spite of all precautions it possessed a very
distorted annual ring pattern. The data are also plotted in the form of a graph of
percentage shrinkage in width (q) as a function of ring angle 0 from 0° to 90° (Fig. 7).
A curve of best fit was drawn through the points to calculate the values of r and t
according to Keylwerth’s formula (Eq. A4):

.width shrinkage=r sin?¢ +1t cos® ¢ .

The best fitting values for the radial and tangential shrinkage were found to be
2.28% and 6.61% respectively, and the fit of the equation was excellent with a
correlation coefficient % of 0.997.

The Greenhill formulae A8 and A9 were used to calculate the theoretical shrink-
age values, which are shown as a continuous graph in Fig. 7 and are tabulated in
Table 1. In practice the values calculated with the Greenhill formulae A8 and A9 are
almost indistinguishable from those calculated with the Keylwerth formulae A3 and
A4 (Table 1).

The new transformation Eqgs. (1) and (2) above were used to calculate the posi-
tions of the four points E’, F', H and K’ (Fig. 6) after drying. From the coordinates



359

Cross-sectional shrinkage distortion, theory and verification

92139p ® JyeYy Jo 19pIO0 3} JO SI SO[FUR JO JUSWSINSESU S} UI PIA[OAUL

I0115 [eyuswIadXs oy

¥0 ¥0 970 §To LT0 8C0 870 6C0 UONBIASP pIBpUE]g

0 ¥0 €00 00 100 €00 €00 100— 1dxe pue L1009y vsom

-19q S0URISIP FeIoAY

L8 L'88 0L8 798 $98 19 65y (494 wy a7 1444 LEY 65y MY VL 4}

$L8 $'88 088 £98 098 eLy LY L9y €8 8Ty 6Ty 144 L8Y oLV 88 €7

L'L8 788 088 698 098 9¢e 8¢S (4% 16°6 09°¢ 9¢ 9¢°¢ e o£8 801 4

L'L8 988 088 898 098 9¢°¢ 8E°¢ (459 £C¢ [4°27 (4223 95°¢ 99°¢ o£€ 68 1

8L8 888 068 0L8 0'L8 (429 96 65°¢ 009 9¢'¢t cee 6Tt L6C 6C 08 01
6'L8 688 0'68 VL8 0L8 LS 0L'S §9°¢ 68'C 1ee 8Tt (XA 91°¢ 8T €L 6
$'88 688 0’68 1'88 088 179 w9 619 6L'S 0Le (44 69°C 6£'C 81 811 8
L'88 1’68 068 £'88 0'88 w9 £€9 (4% 099 8¢T 65T LST 6LT 51 08 L
688 768 0’68 988 1'88 6£9 0v'9 69 w9 16T 167 6v'C 88°C £1 T8 Y
£68 G68 006 1’68 88 059 €59 59 859 LET LET 9e'C LTe 8 6 14
€68 9'68 006 0’68 0'88 6v'9 £5°9 59 979 LET LET 9¢T LTT -8 06 €
006 006 006 006 006 99 199 199 979 87T 8TT 8TT £0°C 0 8C1 <
006 006 0'06 006 006 199 199 199 1€9 8CC 8CT 8CT §0T o0 23 1

L8| g qiem g Yuem
-usoln  Ioyoog qeidxs  Ioyoog reidxe  Ieyoog -usein Aoy Teidxe  1ojyoog -uealin)  -[Aoy  [eldxe
20180p ww  udwW
®o8uy  soa189p O 9fuy  searfop v oiSuy ageyuLIYs SSAUNOIY], %, aeyuuys YIpIm % 9 A -adg

suowiads pmpy "g a1} Jo a8eYULIGS pue SUOCISUIWI(] T IqeL



360 R. Booker et al.:

the lengths E'H’ and F'K’ were calculated, as they are equivalent to the width q" and
the thickness p’ after drying respectively. Values are listed in Table 1. It was expected
that the values calculated according to the new theory would be closer to the exper-
imental values than those for the Greenhill/Keylwerth theory, as the new theory takes
into account differences in curvature of the annual rings. Instead, Table 1 shows that
as far as shrinkage is concerned the values predicted by the new theory and the
Greenhill theory are practically identical. However, the new theory is slightly better
at predicting the size of the angles A’ and G’ (Fig. 6 and 13 and Table 1). The main
advantage of the new theory is, however, that it can predict the magnitude of cupping
in boards, while theories based on straight line annual rings predict that board
surfaces remain flat during shrinking or swelling.

The shrinkage of radiata pine boards

No perceptible difference was found between the shrinkage behaviour of the four log
quadrants or the two sections of the log. Consequently the results for all 38 shrinkage
specimens (50 mm x 50 mm x 150 mm) have been combined into a single graph of
radial and tangential shrinkage versus distance from the pith (Fig. 8). Both radial and
tangential shrinkage decline slightly towards the pith. The average tangential shrink-
age was found to be (3.69+0.43)% and the average radial shrinkage (1.61 +0.37)%.
Converted to a percentage the standard deviation of t and r is 12% and 23% respec-
tively. The difference (t—r) is (2.10+0.15)%, with a standard deviation of only 7%.
This is clearly evident in Figure 8; in general whenever the tangential shrinkage for a
specimen is high or low, the radial shrinkage is high or low by a similar amount. The
shrinkage calculations were performed for the boards assuming that:

r(%)=1.3262+0.00198 R
and
t(%)=3.1813+0.00355R

However, if a constant radial shrinkage value of 1.61% and a tangential shrinkage
fraction of 3.69% were used, irrespective of radial position, this made very little
difference to the results.

The range of (R, ) coordinates for the 38 boards is shown in Fig. 9. The coordi-
nates for 200 mm x 50 mm boards are limited to the area enclosed by the dotted lines.
The top line indicates the limit set by the maximum log diameter, and the bottom line
the requirement that the theory requires boards to be free from enclosed pith. Boards
with smaller cross-section can lie outside the enclosed area. A reasonable spread of
(R, 6) values was obtained.

It has been a problem to decide how to display the experimental and theoretical
data in such a way that they could be readily compared. While it is a simple matter
to plot the digitised experimental cross-section and the calculated cross-section for
each board onto a transparent overlay and to compare theory and experiment by
superimposing these, it would occupy too much space to display all the results in this
form. Figure 10a and b show the experimental and calculated distortion for board
no. 27 which has coordinates (71 mm, 61.5°). When transferred to a transparent
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Fig. 10. Cross-sectional distortion of board 27 (half size) as predicted by the theory (top) and
observed experimentally (bottom). Close agreement is indicated

overlay the two cross-sections overlap closely, showing excellent agreement between
theory and experiment.

Cupping

The experimental results for the 38 boards are listed in Table 2. Figure 11 shows a
three dimensional graph of cup (in mm) as a function of the (R, 8) coordinates for all
200 mm wide boards. The largest values of cup occur in the region with low R and
high 6 values, i.e. for flatsawn boards close to the pith. In addition, for a given value
of R the cup steadily decreases from 6=90° to §=0°, i.e. from flatsawn to quarter-
sawn.

The correlation coefficient r between experimental and theoretical cup for the 32
two hundred mm wide boards without pith was 0.84 (r?=0.71). In general the
calculated and experimental cup were in good agreement. As the amount of cup is
small for radiata pine because of the low values of radial and tangential shrinkage,
considerable scatter in the measurements associated with cup was introduced into the
results by small surface imperfections. These were caused by the planer and by the fact
that the latewood at the surface was slightly depressed below the level of the early-
wood by differential shrinkage. Board number 11 (Table 2) showed less cup and
shrinkage than expected because of severe compression wood, and boards 18 and 28
possessed non-concentric rings in one corner of the cross-section. Whenever reasons

for differences between theory and experiment are known they are indicated in
Table 2.

Shrinkage in width

The lowest shrinkage in width occurred for quartersawn boards for which 8 is close
to 0°. (Table 2). It then gradually increased with increasing ring angle to a maximum
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Fig. 11. Cup (in mm) as a function of (R, §) coordinates for 35 radiata pine boards 200 mm wide.
(R, 8) coordinates; @ theoretical values; o experimental values; m identical theoretical and exper-
imental values; --- boundary lines for 200 mm x 50 mm boards; P boards containing pith

at 6 =90° (flatsawn boards). For flatsawn boards the width shrinkage increased with
R for three reasons:

(i) the tangential shrinkage increases slowly with distance from the pith (Fig. 8),
(ii) cup and edge distortion decrease with increasing distance from the pith so that the
distance by which the top corners are bent towards each other decreases,

(ili) as R increases the curvature of the annual rings decreases, so that the radial
contribution to the width shrinkage decreases.

As a result the maximum calculated shrinkage value of 4.1% occurred for the
flatsawn board with the highest value of R, board number 31. The maximum exper-
imental width shrinkage occurred for boards 17, 18 and 22 which are flatsawn and
have large R values.

The correlation coefficient r between experimental and theoretical width shrink-
age for the 35 boards not containing pith is 0.84 (r2=0.71). The main differences
between experiment and theory are attributable to the effect of non-concentric annual
rings and the presence of compression wood. The relationship between experimental
and theoretical shrinkage was calculated to be:

experimental shrinkage in width (%)= —0.326 +0.998 x theoretical shrinkage (%)
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Cup vs Distance
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Fig. 12. Cup in a 200 mm x 50 mm flatsawn board as a function of distance from the pith. The
calculation assumed radial and tangential shrinkage factors of 1.60% and 3.69% respectively

The slightly lower experimental shrinkage could be caused by the boards having
a slightly lower moisture content at the time of measurement than the shrinkage
specimens.

Shrinkage in thickness

Calculated and theoretical thickness shrinkage values were in good agreement with a
correlation coefficient of 0.89 (r>=10.79) for the 38 boards.

Thickness shrinkage decreased gradually from 6=0° (quartersawn) to 6=90°
(flatsawn). For boards with large 6 values the thickness shrinkage is essentially
independent of R. This can be explained by the fact that at the centre of flatsawn
boards the direction of thickness shrinkage is radial, i.e. always perpendicular to the
annual rings and hence unaffected by ring curvature. Radial shrinkage changes only
slightly with R (Fig. 8), so that thickness shrinkage is almost independent of R for
flatsawn boards.

Discussion

It has long been known that boards close to the pith experience much greater distor-
tion than boards further away. This is confirmed by the results in Table 2 and Fig. 11.
Many sawmillers believe this is caused by greater transverse shrinkage close to the
pith. This is not the case. The amount of cupping to be expected for flat sawn boards
200 mm x 50 mm in cross-section has been calculated for a range of R values, assum-
ing constant shrinkage fractions r=1.60% and t=3.69%. Results are shown in
Fig. 12. The amount of cup decreases rapidly with increasing distance from the pith.

The log was chosen because the pith was symmetrically located. It also had very
little spiral grain, which is fortunate, as further analysis shows that cross-sections can
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Fig. 13. Distorted cross-section of a board after
drying, assuming straight line annual rings

also distort during drying as the result of spiral grain (Booker, unpublished). As most
trees are reasonably symmetrical and shrinkage distortion does not vary rapidly with
R and 0, it is probable that small deviations of annual rings from circular will in
practice not make a large difference to the results. Large differences should be
expected however when the rings are badly distorted due to the proximity of knots or
when the rings are not concentric. Board 16 is an example of the latter (Table 2).

The new theory can be a useful tool in theoretical studies on sawmilling. Until now
only green timber recovery from alternative sawing patterns could be calculated. This
can now be extended to recovery of dry dressed timber as the minimum amount of
planing required to return the distorted cross section to rectangular can be calculated.

The theory can also be used to predict the cupping that would occur in dry boards
of rectangular cross-section on export from an area of high equilibrium moisture
content to an area of low emc, or vice versa.

Conclusion

It has been shown that for boards of a given dimension and relatively straight grain
cupping and edge distortion are governed by only two pairs of parameters, annual
ring orientation and transverse shrinkage fractions r and t. In turn, the shrinkage
fractions depend upon the shrinkage coefficients, fibre saturation point and the initial
and final moisture content of the wood. Other factors such as density or ring width
only affect cupping indirectly through their effect on the shrinkage fractions r and t.

Appendix I
Shrinkage formulae based on straight line annual rings

The following formulae describe the shrinkage of a reciungulur board whose annual rings,
assumed to be straight lines, make an angle ¢ with the width axis (Fig. 1). After shrinkage the
board cross-section becomes a parallelogram (Fig. 13) whose dimensions are given by:

A'B'=AB \/cos?d(1—r)>+sin’> ¢ (1 —1)° (A1)
A'D'=AD . /cos? (1 —1t)*+sin’ ¢ (1—1)° (A2)
Equations (A1) and (A2) were first derived by Greenhill (1940).

The fractional shrifikage along the thickness direction

AB—A'PF

B 1— \/cosz d(1—1)+sin?¢p(1—t)>=rcos’p+tsin¢ (Keylwerth 1948) (A3)
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The fractional shrinkage along the width direction

AD—-A'D
—A-I‘)i =rsin?¢+tcos’¢  (Keylwerth 1948) (Ad)
©=90°—sin~ 1 (t—r) sin ¢ cos ¢ N (t—r)sin ¢ cos¢ (AS)

—s .
Jeos? p(1 —1)? +sin’ (1 — 1) Jcos? (1 —1)? +sin? p(1 —r1)?

Because the board distorts from a rectangle to a parallelogram with angle o (Fig. 13),
thickness and width must both include a term sinw:

P’ =p+/cos? (1 —1)? +sin? ¢(1 —t)>. sinw (AS6)
q' =q~/cos? p(1 —t)* +sin? p(1 —1)%. sinw (A7)

where p and q are the original thickness and width respectively. Hence the fractional shrinkage
in thickness is given by:

p_pp’=1—\/Cosz¢(1—r)2+sin2¢(1‘t)2~ sinw (A%

and the fractional shrinkage in width is given by:

q%qlz1—\/cos2¢(1—t)2+sin2¢(1 -1 sino. (A9)
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