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Wood in the stationary state: 
Zero entropy gradients for water vapor and bound water 

R. M. Nelson, Jr., Missoula  MT, U S A  

Summary. According to nonequilibrium thermodynamics, the local rate of entropy production 
is minimized for moist wood in the stationary state. Furthermore, the rate of entropy production 
due to moisture flow must be zero in this state. Conservation of energy applied to the steady flow 
of water vapor through an arbitrarily selected volume element of wood shows that the vapor 
entropy gradient is zero. Because the entropy production due to moisture flow must be balanced 
by a corresponding entropy flow away from the element, entropy gradients for bound water and 
water vapor are equal and the bound water entropy gradient also is zero. 

Introduction 

Nonequi l ibr ium thermodynamics  show that  for s ta t ionary-s ta te  systems (systems in 
which mat ter  flux is zero but  heat  flux is nonzero due to a fixed temperature  gradient),  
fluxes conjugate to the unrestrained (or nonfixed) driving forces are zero. In  the 
Choong (1963) s ta t ionary-s ta te  experiments,  the wood  samples were sealed and fluxes 
of  moisture  and air to the surroundings were zero. A constant  temperature  difference 
was appl ied externally, but  chemical potentials  just  inside the boundar ies  o f  each 
sample freely assumed values consistent with the initial moisture content  and  imposed 
temperature  distr ibution.  In addit ion,  calculations for the Choong da ta  suggested that  
en t ropy gradients  for both  bound  water  and water  vapor  were essentially zero (Nelson 
1986). A d o p t i o n  o f  this concept  has made possible the quant i f icat ion of  molar  heats 
of  transfer in thermodynamic  models  of  moisture t ranspor t  (Nelson 1989). Analyt ica l  
verification of  the zero-entropy-gradient  result would strengthen the credibil i ty of  
these models.  

I t  is noteworthy that  zero mat te r  fluxes are not  determined by zero values o f  the 
driving forces, but  by the requirement  that  the local rate of  en t ropy product ion  be 
minimized (Katchalsky,  Curran  1965). The theory also shows that  the local rate of  
entropy product ion  due to mat te r  flow must  be zero because the mat ter  flow is zero. 
To consider  ent ropy product ion  alone, however,  is to consider only par t  of  the 
governing process. The purpose  o f  this paper  is to show that  zero ent ropy gradients  
for water  vapor  and bound  water  are required by the conservation of  energy and by 
a balance between entropy product ion  and ent ropy outflow in an arbi t rar i ly  chosen 
volume element of  wood.  
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Zero matter flux 

A combined flux of  water vapor and sorbed water equal to zero for wood in the 
stationary state is derived in this section using a modification of  the analysis described 
by Katchalsky and Curran (1965). The wood-water system is heterogeneous because 
water occurs in two states; air also is present in cell cavities within the wood. In the 
present analysis, local chemical potentials of  the bound water and water vapor and 
local temperatures of  all three phases are considered equal. I f  chemical, electrical, 
viscous, and gravitational effects are absent, the rate of  entropy production in a 
volume element due to flows of  energy, sorbed water, and water vapor may be written 
as 

O" = J q  X q + J  s X s + J  v X v (1) 

where Xq = d (1/T)/dx = - (1/T z) (dT/dx), X s = - d (#,/T)/dx, and X v = - d (#v/T)/ 
dx. This equation includes contributions of  all three phases to the total entropy 
production in the element. It is approximate, however, because the contribution of  air 
to a is assumed to be negligible. This approximation is valid at temperatures below 
50~ for which the total pressure remains close to atmospheric, the mole ratio of  
vapor to air is small, and the velocity ratio of  vapor to air is large. Quantities Xq, xs ,  
and X v denote driving forces for transport of  energy, sorbed water, and water vapor;  
Jq, Js, and Jv are the corresponding fluxes on a volume of  wood basis. Quantity T is 
the Kelvin temperature, and #s and #v refer to the chemical potentials of  sorbed water 
and water vapor. Because #s=#v,  the phenomenological equations describing the 
system may be written in the form 

Jq = Lqq Xq -~- Lqw X w 

Jw = Lwq Xq -{- Lww X w (2) 

where X w = X s = X  v and Jw=Js+Jv  (Nelson 1989). This abbreviated form of the 
equations expresses the fluxes and forces as independent quantities. The phenomeno- 
logical coefficients Lqq and Lww are related to the conductivities for uncoupled heat 
and moisture transfer in the wood. The terms Lqw and LIq are cross coefficients 
expressing effects of  coupling between the processes of  energy and moisture flow. 
Summing of  Js and Jv implies that the steady-state flows determining the combined 
flux Jw occur along parallel pathways. The cell cavity (including the pit chamber) is 
taken to be in series with the parallel combination of  cell crosswalls, pit membrane, 
and pit membrane pores. Flows through continuous sidewalls of  the cell and through 
the pit membrane are considered negligible due to the length of  continuous sidewalls 
and the small membrane area relative to the crosswall area. Thus, the governing 
parallel flows are bound water diffusion through cell crosswalls and hindered water 
vapor diffusion through pit membrane pores (Nelson 1989). The simple summing of  
fluxes is expected to describe, for practical purposes, all instances of  steady transverse 
diffusion in wood. The local entropy production rate becomes 

O" : Jq Xq + J w Xw (3) 

and substitution of  Jq and Jw from Eqs. (2) yields 

a = Lqq Xq 2 + 2 Lwq Xq X w + Lww X 2 (4) 

due to the Onsager reciprocal relation, Lqw = Lwq (Skaar 1988). 
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During the approach to the stationary state in the Choong experiments, local 
values of Xq rapidly became fixed quantities, but X s and X v (and hence Xw) freely 
assumed values determined by the initial moisture content and imposed temperature 
difference. According to the principle of minimum entropy production, a takes on a 
minimum value upon attainment of the stationary state (Katchalsky, Curran 1965). 
Thus, for constant Xq and for Lqq, Lwq, and Lww independent of Xq and Xw, 

~a/OXw = 2 Lwq Xq -t- 2 Lww Xw = 2 Jw = 0 

J w = J s + J v = 0  (5) 

Js = - J r  = constant.  

This result indicates a possible circulation of bound water and water vapor within the 
wood. Whether this cyclical process occurs, or fluxes Js and Jv are identically zero, is 
not clear. The principle of microscopic reversibility, which forbids cyclical processes 
under conditions of thermodynamic equilibrium (a = 0), does not apply to the non- 
isothermal conditions ( a>0)  considered here (Rice 1967). Thus, the rate of entropy 
production due to the combined moisture flow is zero [Jw = 0 in Eq. (3)], but the 
entropy production associated with individual fluxes J~ and Jv remains undetermined. 

Flows of entropy and energy 

A key requirement for attainment of the steady or stationary state is that the rate of  
entropy flow away from any volume element in the wood equal the rate of entropy 
production in the element (Katchalsky, Curran 1965). If  flow is one-dimensional, this 
balance may be expressed as 

a = dJ e/dx (6) 

where Je is the entropy flux in the x direction. For conditions of the Choong experi- 
ment, the flux equation given by these authors is 

Je = Jq/T--  Js (#s/T) - J v  (#v/T) = J q / T -  Jw (#v/T) = Jq/T (7) 

where Jq is the total energy flux. Equation (7) shows that J, is determined by the 
energy flux and temperature when Jw=0. Furthermore, it can be shown that Jq is 
constant throughout wood in the steady or stationary state. Differentiation of Eq. (7) 
with respect to x gives 

dJ~/dx = (l/T) (dJq/dx) + Jq Xq + Jw Xw (8) 

and comparison with Eqs. (3) and (6) shows that 

dJq/dx = 0.  (9) 

Thus, energy is conserved in either the steady or stationary state because Jq is indepen- 
dent of x even when Jw is nonzero. 

S. R. de Groot  (1966) has shown that, under certain conditions, irreversible 
processes may be described in different frames of reference and that the Onsager 
reciprocal relations and the form of the phenomenological equations remain valid for 
a transformation to new variables. These conditions require that the new variables be 
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conjugate variables (dimensions of  each product  of  flux and force in the t ransformed 
expression for a are those of  a volumetric rate of  entropy production).  Equat ions 
(1) - (9)  describe a system in which entropy and energy fluxes are defined relative to 
the zero velocity of  the volume element. I t  is convenient, however, to write Eqs. (1), 
(2) and (7) in a different frame of  reference, in which the fluxes of  total ent ropy and 
energy are referenced to the entropy and energy fluxes due to moisture flow. Thus, 
the ent ropy and energy fluxes differ from those in the old system, but  the entropy 
product ion,  entropy flow, and moisture fluxes remain unchanged. Let quantities in 
the new system of  reference be denoted by primed symbols. Then a new energy flux, 
related t o  J q ,  is defined as 

J'q = J q - J s  h s - J v  hv = J q - J ~  (h~--hv) = J q - J s  T ( s s -  Sv) (10) 

through use of  the equil ibrium relation h ~ - h  v = T (s s -  s,).  Flux J'q is called the 
reduced heat  flow, and represents the amount  by which Jq exceeds the sum of  the 
mean energy fluxes due to flow of  sorbed water  and water vapor.  Quantit ies s s and 
s v are entropies per mole of  sorbed water and water vapor ;  h s and h, are the corre- 
sponding enthalpies. Similarly, a new entropy flux may be defined in terms o f J  e from 
Eq. (7) and Eq. (10) as 

J'c = J'q/T = Jq/Y--  Js (Ss S v ) = J  c Js (Ss-- Sv) (11) 

and regarded as a reduced flux indicating the amount  by which the total  ent ropy flux 
exceeds the entropy flux due to moisture flow. Other variables in the new system may 
be writ ten as follows: 

J's =Js; Yv=L 
X'q = - ( 1 / T  2) (dT/dx) = Xq 

X~ = -- ( l /T)  (a#s/aX)T = X s -{- hs Xq (12) 

X' v = - - ( l / T )  (am/ax)T = Xv+hv Xq 

where X' s differs from X'v. The phenomenological  equations in the new frame of  
reference take the form 

J'q = L'qq X'q q- L'qs X's + L'qv X; 

J'~ = L'sq X'q + L'~ X'~ + L'~v X' v (13) 
t ! t t ! t 

J'v = Lvq Xq q- Lvs Xs + Lvv X v 

so two independent  driving forces X' s and X' v characterize water flow in the system, 
ra ther  than the single force X w in Eqs. (2). Of more interest, however, is the rate of  
ent ropy product ion,  a' ,  given by 

o" -- J'q X'q ~- J' s Xts~- J t X' v . (14) 

Subst i tut ion of  Eqs. (10) and (12) into Eq. (14) produces 

0 "  = J q  X q + J  s X s + J  ~ X v , (15) 

an equat ion identical to Eq. (1). Thus, from Eqs. (1) and (15), 

a = ~' (16) 



Wood in the stationary state 339 

in agreement with the concept of  a unique rate of  entropy production. This invariance 
in entropy production implies that volumetric flows of  entropy also are invariant 
because of  the balance between them given by Eq. (6). Moreover, Eq. (11) shows that 
the fluxes J~ and J'e are not equal unless s~=Sv or Js=0.  The entropy flows (x 
derivatives of  Jo and J'e) must be invariant, however, implying that the fluxes differ 
at most by a constant. 

Heats of transfer 

The rate of  entropy flow from a volume element of  wood in the stationary state may 
be written, using Eqs. (7) and (10), as 

dJ c/dx = d (Jq/T)/dx = (1/T) (dJ'q/dx) + J'q Xq + Js [d (s~ - s v)/dx] . (17) 

F rom Eqs. (9) and (10), 

dJq/dX = 0 = dJ'q/dx + J~ [d (h s -  hv)/dx ] (18) 

where the gradient in enthalpy difference may be obtained from 

h s - h  v = # s + T s s - h  v . (19) 

Differentiation of  Eq. (19) gives 

d (h~-- hv)/dx = d#s/dx + T (dsJdx) + (s~ - Cp,) (dT/dx) 

= - [(Q*/T) + Cpv I (dT/dx) + T (ds~/dx). (20) 

Quantity Q* denotes the heat of  transfer for bound water diffusion and Cpv the molar  
heat capacity of  water vapor. Equation (20) is written using the following relation- 
ships: 

dhv/dx = Cpv (dT/dx) (21) 

Jw = 0 = - (Lww/T) {[(Q*/T) + s s ] (dT/dx) + d#~/dx} (22) 

where Eq. (22) describes the steady combined flow of  bound water and water vapor 
in wood. This equation originates in Eqs. (2) from the definition U* = [Jq/Jw]xq=O = 

Q* + h s = Lqw/Lww = Lwq/Lww, where U* is the energy of  transfer (de Groot  1966). 
This energy is the average energy transferred due to the combined flow of one mole 
of  moisture under isothermal conditions, and is expressed here in terms of  the sorbed 
water. Thus, U* is composed of  the average energy of  the sorbed water (h,) and the 
increment of  average energy that must be acquired for the sorbed water to participate 
in diffusion (Q*). Substitution of  Lwq = Lww (Q* + h s) into the Jw relationship in Eqs. 
(2) leads to Eq. (22) if X w is taken as - d  (#s/T)/dx. In the stationary state, however, 
Jw = 0. Quantity Lww ( =  Lss + Lvv) is a phenomenological coefficient representative of  
the combined flow. Symbols L~ and Lvv refer to phenomenological coefficients for the 
separate flows. Substitution of  Eqs. (10), (18), and (20) into Eq. (17) gives 

dJ e/dx = Jq Xq--Js  (Q* + h~-hv  + Cpv T) X q -  Js (dsv/dx) = Jq Xq . (23) 

The right side of  this equation follows from Eqs. (8) (for Jw = 0) and (9), and shows 
that the sum of  the multipliers of  J~ must be zero. From the equation for the entropy 
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o f  water  vapor  (considered an ideal gas), the vapor  entropy gradient  is 

dSv/dx = ( C p v / T )  ( d Y / d x ) - R  (d In p/dx) (24) 

where p is the vapor  pressure. Subst i tut ion into Eq. (23) yields 

d In p /dT = - (Q* + h s -  h v)/RT 2 . (25) 

A different heat  of  transfer may be defined as 

Q* = Q* + h s -  hv (26) 

leading to a restatement of  Eq. (25) as 

d In p /dT = - Q * / R T  2 . (27) 

Denbigh and Raumann  (1951) refer to Q* as an overall heat of  transfer. 

R. M. Nelson Jr. 

Conservation of energy and zero entropy gradients 

The argument  can be made that  entropy gradients for sorbed water  and water  vapor  
must  be zero because J , - - 0  in the s tat ionary state. In this case, the flux of  e n e r g y  Jq 
in Eq. (3) reduces to a pure heat flux and the entropy product ion (or irreversibility) 
in an arb i t ra ry  volume element of  wood is due to heat  conduct ion alone. In view of  
Eqs. (5), however, the element must be regarded as an open system capable of  
exchanging both mat ter  and energy with its surroundings.  Because all three phases 
making up the element satisfy the requirements of  a pure substance, conservation of  
energy applies to each phase separately. Ent ropy  gradients may be evaluated, howev- 
er, by analyzing the gas phase only. The analysis shows that  the conservation of  
energy is satisfied separately for each component  of  the phase (air or water vapor) 
when the individual  flows are steady. Thus, the energy equation for steady flow of  
water  vapor  may be written as 

du v = d q -  dw (28) 

where u v is the molar  internal energy (also the total  energy because changes in kinetic 
and potent ia l  energy are assumed negligible), and dq and dw are the net heat absorbed 
f rom the surroundings and work done by the vapor  per mole of  vapor  transferred 
(Lee, Sears 1963). The work done is that  required to displace a mole of  vapor  within 
the element and is dw = d (p v), where v is the molar  volume. Eq. (28) applies to open 
or closed systems because duv, dq, and dw are intensive variables. Enthalpy h v is 
defined as u v + p v, and division of  Eq. (28) by T gives 

dq/T = d (u v + p v)/T = dhv/T (29) 

where dq/T may  be interpreted as a change in vapor  entropy due to entry of  a mole 
of  vapor  into the element and subsequent outflow at a lower temperature.  The 
t ranspor ted  energy in excess of  the enthalpy of  the entering vapor  (not considering 
heat  conduct ion in the vapor)  is defined as a heat of  transfer (de Groo t  1966) and 
denoted here as Q*. The flow is from a warmer to a cooler region and these regions 
differ in temperature  by dT, so the net absorbed heat  may be expressed in terms of  
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the entropy change due to vapor flow as 

dq = T {[Q*/(T + dT)] - [Q*/T]} = - (Q*/T) dT (30) 

if it is assumed that Q* is constant and dT is small in comparison with T (Denbigh 
1951). Combination of Eqs. (21), (29), and (30) leads to 

Q* = -Cpv T (31) 

indicating that, within the element, a vapor entropy increase due to a change in state 
(dhv/T) is balanced by the entropy decrease associated with vapor flow ( - d q / T ) .  
Combination of Eqs. (24), (27), and (31) shows that 

dsv/dx -- 0 .  (32) 

Thus, conservation of energy requires zero vapor entropy change within the element. 
The bound water entropy gradient also is calculable because the two entropy 

fluxes discussed earlier differ by only a constant. Invariance of the entropy flows 
derived from Eq. (11) yields 

d (Je-- J'e)/dx = 0 = Js [d (ss-- sv)/dx ] (33) 

leading to equality of the entropy gradients given by 

dss/dx = dsv/dx. (34) 

Thus, Eqs. (32) and (34) show that 

dss/dx = 0.  (35) 

It is noted that introduction of Eq. (31) into Eq. (26) gives 

Q* = h ~ - h s - c p v  T = Qv+Qw-Cp~ T (36) 

where Q~ and Qw are the heat of vaporization and differential heat of sorption of 
liquid water, respectively. Thus, Eqs. (31) and (36) agree with previous formulations 
of Q* and Q* based on a zero vapor entropy gradient inferred from calculations of 
s v (Nelson 1986, 1989). 

The zero entropy gradients in Eqs. (32) and (35) are due to conservation of energy 
and to a balance between entropy production in any wood volume element and flow 
of entropy away. For moisture flow, the zero entropy production must be balanced 
by zero entropy flow, and this is possible only when the entropy gradients are zero. 

Conclusion 

For moist wood in the stationary state, the combined flux of bound water and water 
vapor and the individual entropy gradients for each moisture phase must equal zero. 
Zero moisture flux ensures a zero entropy production rate due to moisture flow; 
conservation of energy and a balance between production and flow of entropy ensure 
constant entropies for each phase. This result is intuitively satisfying, for if there is to 
be zero entropy production due to moisture flow, as theory predicts, constant en- 
tropies for the moisture are expected. 
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