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Abstract The additive main effects and multiplicative 
interaction (AMMI) model has emerged as a powerful 
analytical tool for genotype x environment studies. The 
objective of the present study was to assess its value in 
quantitative trait locus (QTL) mapping. This was done 
through the analysis of a large two-way table of geno- 
type-by-environment data of barley (Hordeum vulgare 
L.) grain yields, where the genotypes constituted a ge- 
netic population suitable for mapping studies. Grain 
yield data of 150 doubled haploid lines derived from the 
~ x 'Morex' cross, and the two parental lines, 
were taken by the North American Barley Genome 
Mapping Project (NABGMP) at 16 environments 
throughout the barley production areas of the USA and 
Canada. Four regions of the genome were responsible 
for most of the differential genotypic expression across 
environments. They accounted for approximately 50% 
of the genotypic main effect and 30% of the geno- 
type x environment interaction (GE) sums of squares. 
The magnitude and sign of AMMI scores for genotypes 
and sites facilitate inferences about specific interactions. 
The parallel use of classification (cluster analysis of 
environments) and ordination (principal component 
analysis of GE matrix) techniques allowed most of the 
variation present in the genotype x environment matrix 
to be summarized in just a few dimensions, specifically 
four QTLs showing differential adaptation to four clus- 
ters of environments. Thus, AMMI genotypic scores, 
when the genotypes constituted a population suitable 
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for QTL mapping, could provide an adequate way of 
resolving the magnitude and nature of QTL x environ- 
ment interactions. 
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Introduction 

Genotype • environment interaction (GE) is differential 
genotypic performance across environments. It reduces 
the association between phenotypic and genotypic 
values, and thus selections that perform well in one 
environment may perform poorly in another 
(Romagosa and Fox 1993; Fox et al. 1996). GE is 
considered quantitative, or non-crossover, when 
ranking ofgenotypes does not change from one environ- 
ment to another. Non-crossover interactions are less 
important to plant breeders than crossover, or qualitat- 
ive, ones in which genotypes change rank across loca- 
tions. When mapping quantitative trait loci (QTLs) with 
data from different locations, GE interaction is shown 
by variable levels of significance of QTL effects across 
sites. Crossover interactions are present when contrast- 
ing favorable alleles are shown in different environ- 
ments. If present, the design of alternative molecular 
marker-assisted selection (MMAS) schemes for different 
sites may be warranted. In MMAS, the total number of 
QTLs that may be used for selection should be balanced 
by the high cost of genotyping segregating populations. 
Such balance requires the use of statistical tools to 
identify the QTLs that determine most of the adaptation 
to a set of environmental conditions. 

The additive main effects and multiplicative interac- 
tion (AMMI) model has emerged as a powerful analyti- 
cal tool to interpret large complete GE data sets (Gauch 
1992), often providing parsimony, effectiveness, and in- 
sight into GE. It first extracts genotype and environ- 
mental main effects and then uses principal component 
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analysis to explain the pattern in the GE matrix, that is 
the residuals after removal of the main effects. AMMI 
analysis generates a family of models with different 
numbers of principal component axes (PCAs) retained. 
The simplest model, AMMI0, which only considers 
additive main effects, without GE interaction, ranks 
genotypes identically at each environment. AMMI1 
considers main effects and one PCA (PCA1) to interpret 
the residual matrix. For every entry in the model (both 
genotypes and environments) AMMI1 gives an average 
value and a first principal component score. AMMI2 
considers main effects plus was two PCAs (PCA1 and 
PCA2) for GE. Subsequent models consider additional 
PCAs. Simultaneous examination of the magnitude and 
sign of PCA scores for genotypes and sites facilitates 
inferences about specific interactions. Any genotype 
with PCA scores for yield close to zero shows general 
adaptation to the tested environments. Large genotypic 
scores reflect specific adaptation to environments with 
PCA scores of the same sign. 

AMMI tends to extract 'pattern' in the first PCA 
axes, with subsequent axes being associated with 'noise' 
(Gauch 1992). This feature could be used to identify 
QTLs with a sufficiently large effect to be considered for 
MMAS. If patterns of adaptation have a genetic origin, 
QTL mapping of the scores for the different genotypes 
could identify those regions of the genome responsible 
for the differential genotypic expression across environ- 
ments. 

The objective of the present study was to assess the 
value of AMMI analysis in QTL mapping. This was 
done through the analysis of a large two-way table of 
genotype-by-environment data of barley (Hordeum vul- 
{]are L.) grain yields, where the genotypes constituted a 
genetic population suitable for QTL mapping. 

Materials and methods 

Plant material and agronomic data 

The genotypic (markers and map information) and phenotypic 
(grain yield) data used in this study were gathered by a consortium of 
barley geneticists and breeders in the USA and Canada, as part of 
the North American Barley Genome Mapping Project (NABGMP). 
A population of 150 doubled haploid lines (DHLs), derived from 
'Steptoe'/'Morex' (S/M) Fls by the Hordeum bulbosum technique 
as modified by Chen and Hayes (1989), and the two parents were 
studied. Steptoe is a broadly adapted high yielding six-row 
'Coast'-type feed barley. Morex, a 'Manchurian'-type, is the six-row 
malting quality standard in the US. Yield data were collected 
throughout the US and Canadian barley production areas described 
by Hayes et al. (1993a, 1994). The trial sites, years, and codes 
used are: Crookston, Minnesota, 1992 (MN92); Ithaca, New York, 
1992 (NY92); Guelph, Ontario, 1992 (ON92); Pullman, Washington 
1992 (WA92); Brandon, Manitoba, 1992 (MA92); Outlook, Sas- 
katchewan, 1992 (SKo92); Goodale, Saskatchewan, 1992 (SKg92); 
Kcfr, Saskatchewan, 1992 (Skk92); Tetonia, Idaho, 1992 (ID92); 
Bozeman, Montana, irrigated, 1992 (MTi92); Bozeman, Montana, 
dryland, 1992 (MTd92); Aberdeen, Idaho, 1991 (ID91); Klamath 
Falls, Oregon (OR91); Pullman, Washington, 1991 (WA91); Boze- 
man, Montana, irrigated, 1991 (MTi91); Bozeman, Montana, dry- 
land, 1991 (MTd91). 

In 1991, two replications of 50 DHLs plus the two parents and a 
single replicate of the other 100 DHLs was used at five sites. In 1992, 
yield data was collected from eight randomized block design trials 
with two replications and from three non-replicated trials. For all 
statistical analyses, given that only three sites were used for the 2 
years, site x year combinations identified different environments. 
Given the non-orthogonal nature of the data taken in 1991, the best 
linear unbiased estimator for each DHL was estimated at each site 
using the residual maximum likelihood method from proc M I X E D  of 
SAS/STAT (SAS Institute 1992). All subsequent analyses were carried 
out using these values. 

Additive main effects multipIicative interaction model 

The AMMI model (Gauch 1992) for the yield of the ith genotype in 
thej th environment is: 

,v 
Yij = # + G~ + Ej + ~ 2,?,~c5 j + ~j, 

n = l  

where # is the overall mean, G~ and Ej are genotypic and environment- 
al main effects; N is the number of PCA axes considered, 2, is the 
eigenvalue of the nth PCA axis, y,~ and 6,j are the genotype and 
environment scores for the nth PCA axis, and e~a is the residual term. 
As a convenient scaling for the PCA scores, both genotype and 
environment scores are expressed as a unit vector times the square 
root of the eigenvalue. Multiplication of a genotype PCA score by an 
environment score then gives the estimated interaction directly. Thus, 
the predicted value of the ith genotype and j th environment, for the 
AMMI model retaining three interaction axes, AMMI3, would be the 
sum of the Gi and Ej main effects, plus the sum of the three cross 
products between the ith genotype'and j th environment PCA scores 
for PCA1, PCA2 and PCA3. Ifa genotype has positive PCA values, it 
would be particularly adapted to those environments with positive 
PCA scores and poorly adaptated to those environments with nega- 
tive PCA scores. AMMI analyses were carried out using SAS pro- 
cedures (SAS Institute 1988). 

QTL mapping 

For each entry in the trial, 152 genotypes and 16 environments, 
AMMI analysis produced a mean yield and a set of PCA scores. The 
mean grain yields and genotypic scores were included as phenotypic 
data for QTL mapping, along with a 222-point S/M base map 
developed by Mather (1995) from a comprehensive map of about 500 
molecular markers (Kleinhofs et al. 1993; Kleinhofs 1995). Analyses 
were conducted with MQTL (beta version 0.93 for DOS, Tinker and 
Mather 1995 a,b), which does simple interval mapping (SIM) and 
simplified composite interval mapping (sCIM) for multi-location 
data sets. The test statistics (TS) provided by MQTL is that described 
by Haley and Knott (1992). For similarity to the LOD scores reported 
by Mapmaker/QTL (Lander et al. 1987; Lincoln et al. 1992), TS can 
be divided by 2-1n10 (Tinker and Mather 1995a). The statistical error 
rate was controlled by means of 1000 permutation tests, as described 
by Churchill and Doerge (1994), implemented in MQTL. 

Pattern analysis: clustering of environments 

The term 'pattern analysis' (Williams 1976) describes the parallel use 
of multivariate classification and ordination techniques to present the 
maximum variation from GE data sets in a few dimensions. Environ- 
ments can be considered in a multi-dimensional space with each 
dimension a genotype and, thus, can be grouped based on the relative 
similarities of the yields of the different genotypes. Pattern analysis 
was done by the simultaneous use of AMMI, as an ordination 
method, and cluster analysis, as a classification technique. Cluster 
analysis of the standardized mean yields for the DHLs carrying the 
same QTL were done as suggested by Fox and Roseille (1982). To 
group environments that rank genotypic classes similarly, and thus 
provide similar screening information, yields were standardized for 
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each environment with a mean of zero and a unit phenotypic standard 
deviation. The Ward or incremental sum of squares method 
(Romagosa and Fox 1993) was used as a fusion strategy. At each 
fusion, the group formed was the one that minimized the increment in 
the within-groups sums of squares. 

Results 

Ge and AMMI analysis 

Test Statistics for sCIM 
400 

300 

200 

100 

0 
40O 

Mean grain yields ranged from 7.5 t/ha at two irrigated 
sites (ID91 and Sko92) to 3.2t/ha at Montana (rainfed) a00 
1991. The proportions of the total sum of squares in the 
combined analysis of variance due to differences among 200 
environments, genotypes, and GE were 70, 7, and 23 %, 
respectively. AMMI was used to partition GE interac- 100 
tion. The first seven PCA axes (the so-called AMMI7 
model) were significant based on post-diction (Gauch 0 
1992; Fox et al. 1996), and together explained more than 
75% of GE. The first four axes, PCAI-PCA4, explained 
65% of GE (Table 1). 

Mapping AMMI genotypic scores 

Scans for the sCIM test statistics given by MQTL are 
shown for the combined analysis (Fig. 1) and for the 
genotypic main effects and individual PCA scores 
(Fig. 2). In the multiple environment MQTL analysis, a 
single QTL on chromosome 3 (QTL1), with a TS peak 
for both SIM and sCIM in the ABG396-BCD828 inter- 
val with a length of 3.5 cM, explained over 35% of yield 
differences, with a yield advantage of 0.5 t/ha attribu- 
table to Steptoe (top Fig. 1, Table 1; Hayes et al. 
1993a,b). Two other regions, on chromosomes 1 and 4, 
showed peaks just above the significance levels. The 
multiple environment sCIM showed peak for the test 
statistics at every single chromosome which interacted 

QTL Main Effects 

QTL x E Interaction 

1 2 3 4 5 6 7 

Chromosome 

Fig. 1 Scans for the sCIM test statistic given by MQTL used to make 
inferences about the presence and position of QTLs for barley grain 
yield main effects (top) and QTL • environment interaction. Hori- 
zontal lines show approximate threshold levels that give 5% experi- 
ment-wise type-I error rates 

with the environments (bottom Fig. 1). Although no 
control of the statistical error rate for the GE interaction 
when using sCIM is currently available (Tinker and 
Mather 1995a), most of these peaks exceeded the thresh- 
old level defined for SIM. 

When the genotypic PCA scores were used as 
phenotypic data in mapping, four chromosomal regions 
showed significant QTLs (Fig. 2, Table 1). PCA1 identi- 
fled a QTL within the same interval on chromosome 3 as 
the one identified using average grain yields across sites. 
When mapping PCA2 and PCA3 genotypic scores, a 

Table 1 Yield QTLs for main effects and interaction PCA axes of the AMMI model 

Additive main effects QTL mapping: MQTL 

Chromosome Interval TsasIM/ Yield Variance Designation 
sCIM difference explained 

S-M (t/ha) (%) 

3 ABG399-BCD828 68/101 0.50 36 QTL1 

Multiplicative interaction QTL mapping: MQTL 

Axes SS of GE explained(%) Chromosome Interval TS"SIM/ Difference Variance Designation 
sCIM S-M explained 

Individual Cumulative (%) 

PCA1 22 22 3 ABG399-BCD828 43/61 0.34 25 QTL1 
PCA2 18 40 2 ABC156A-ABG358 19/55 0.23 12 QTL2 

3 ABG399-BCD828 17/36 0.21 11 QTL1 
6 CDO497-BCD340E 22/36 - 0.24 14 QTL3 

PCA3 14 54 2 ABC156A-ABG358 63/78 0.36 34 QTL2 
PCA4 10 64 7 ABC324-ABC302 47/48 0.30 27 QTL4 

MQTL test statistic for single intervaI mapping and simplified composite mapping. TS thresholds for ~ = 0.05 were approximately 13 and 21 
for SIM and sCIM respectively 
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Fig. 2 Scans for the sCIM test statistic given by MQTL used to make 
inferences about the presence and position of QTLs for barley grain 
yield for the genotypic main effects and the individual PCA scores 
produced by the AMMI9 model. Horizontal lines show approximate 
threshold levels that give 5% experiment-wise type-I error rates 

second QTL (QTL2) was found on chromosome 2, with 
a peak interval at ABC156A-ABG358 of 5 cM. QTL2 
explained more than one-third of the differences among 
DHLs for PCA3 and a small fraction of PCA2. A third 
QTL (QTL3) was also identified when mapping PCA2 
on chromosome 6, with a TS peak in a 5.4-cM interval 
between CDO497-BCD340E. Finally, QTL4 was 
identified on chromosome 7 accounting for 31% of the 
differences among genotype PCA4 scores. Its flanking 
markers are ABC324 and ABC302, with a distance of 
7.6 cM. No QTLs were found in PCA5 to PCA9. 

The analysis of a subset of 130 entries in which there 
were no crossovers between any of the flanking markers 
showed that close to 50% of the genotypic and 30% of 
the GE sums of squares were accounted for by just these 
four chromosome regions (Table 2). It was not known if 
a single QTL could be simultaneously responsible for 
main effects and the differential adaptation of genotypes 
to the environments, as suggested in this analysis. How- 
ever, such a hypothesis seemed plausible particularly in 
the case of non-crossover interactions. In this way, the 
effect ofa gene substitution, although positive in favor of 
a given allele, may change in size from one environment 
to the next. Similarly, it was also unknown if a single 
QTL could partially control more than one interaction 
axis. For simplicity such an assumption was made in this 
study. Thus QTL1, QTL2, QTL3 and QTL4 were be- 
lieved to be unique QTLs at each of the identified 
chromosome regions. For the subsequent analysis they 
were treated as such. 

Assessing adaptation 

Based on the standardized grain-yield means of DHLs 
with the same genotypic constitution for QTLI-QTL4,  
environments were clustered into two main groups 
(Fig. 3), each with two distinct subsets. All Western 
Canadian sites and OR91 were grouped together. Un- 

Table  2 Partition ofgenetic main effects and GE for barley grain yield of 130 DHLs not segregating between the flanking markers of four yield 
QTLs, grown at 16 environments clustered as shown in Fig. 3. The only significant epistatic interaction between QTLs is shown 

Source of variation df Sums of Partial Mean Squares 
Squares R 2 (%) 

G: 129 375.22 
Genotypes [Geno] 15 181.24 48.3 12.08'* 
QTL1 1 145.80 80.5 I45.81"* 
QTL2 1 0.80 0.4 0.80 
QTE3 1 9.39 5.2 9.39* 
QTL4 1 0.93 0.5 0.93 
QTLI*QTL2 1 6.26 4.3 6.26* 
DHL (Geno) (error a) 114 193.98 51.7 1.70 

GE: 1935 1206.90 
Environments*Geno 225 350.08 29.0 1.56"* 
Clusters*Geno 45 165.00 47.1 3.67"* 
Clusters*QTL1 3 54.08 32.8 18.03"* 
Clusters*QTL2 3 65.80 39.9 21.93"* 
Clusters*QTL3 3 13.97 8.5 4.66** 
Clusters*QTL4 3 6.20 3.8 2.07"* 
Env*DHL (Geno) (error b) 1710 856.82 71.0 0.50 
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Fig. 3 Dendrogram of relationships among environments using, as 
classification variables, standardized mean grain yields for DHLs 
carrying the same alleles at each of four QTLs 

like the main effect QTL for grain yield, the S-M dif- 
ferences listed in Table 1 for the different QTLs are not 
immediately interpretable. Both their magnitude and 
sign have to be related to the scores of the different 
environments, which facilitate inferences about adapta- 
tion of genotypes to distinct environments. Means of 
genotype scores for DHLs carrying a specific genotypic 
combination for QTL1-QTL4 and PCA scores for the 
environments are shown in Table 3. Since QTL1 was 
identified using PCA1 scores, lines carrying the M allele 
at this locus showed a different PCA1 sign from those 
carrying the S allele (Table 3). DHLs carrying the M 
allele at QTL1, with negative PCA1 scores, had lower 
yields in the first cluster of environments, which tend to 
have positive PCA1 scores. The cross products of these 
genotype and environment scores are negative and, 
therefore, the first interaction term substracts a given 
amount to the main-effect total. Lines with the M allele 
had relative higher yields in the second cluster of envi- 
ronments, particularly at Klamath Falls in 1991 (OR91) 
with the largest negative score and, therefore, a positive 
and large interaction term. PCA2 was associated with 
three QTLs (QTL1, QTL2 and QTL3; Table 1, Fig. 2). 
Its genetic interpretation is not as simple as for PCAI. 
The genotypes with the largest absolute values for the 
PCA2 score were M M M M S S S S  and SSSSMMMM. 
They showed a differential yield response in the 16 
environments. Overall, S S S S M M M M  DHLs signifi- 
cantly outyielded M M M M S S S S  DHLs in most sites 
belonging to the first group of environments and in 
OR91, with the opposite being true in most sites with 
negative PCA2 scores. 

PCA3 was specifically related to QTL2 (Table 1). The 
M allele was particularly favored in the Western Cana- 
dian sites. Differential adaptation of genotypes with the 
S and M allele at QTL4 was responsible for the fourth 
interaction axis, PCA4 (Table 3). The effect of an allele 
substitution for QTL4 was observed in certain sites 
which were not particularly associated with any envi- 
ronmental grouping. Both sites with positive and nega- 
tive PCA4 scores were found within either cluster. 

Discussion 

Based on independent mapping of grain yields at each 
individual location, Hayes et al. (1993a) reported that 
the number of QTLs influencing yields in the Step- 
toe x Morex data set which interacted with the environ- 
ment was quite high. Using Mapmaker/QTL with a 
threshold LOD score of 2 (Lander et al. 1987; Lincoln et 
al. 1992), Hayes et al. (1993a) found 14 QTLs across all 
seven barley chromosomes. Only one QTL was shown 
when mapping genotypic means across sites (top of 
Fig. 1), and apparently seven (one per chromosome) 
significantly interacted with the environment (bottom of 
Fig. 1) when using MQTL (Tinker and Mather 1995a). 
Mapping of the genotypic scores from AMMI using any 
available QTL software, such as Mapmaker/QTL, 
could improve our knowledge of the magnitude and 
nature of the QTL x E. Mapping of the genotypic scores 
for the first four PCAs, AMMI4, identified peaks for the 
test statistic given by MQTL in four chromosome re- 
gions revealed by both independent site and QTL x E 
combined analyses (Fig. 2). 

By simultaneous examination of the PCA scores for 
the different environments, AMMI could identify the 
environments where the interactions were occurring, in 
a similar way to running independent maps at each site. 
For example, ID91 and OR91 had the extreme absolute 
values among all environments for PCA1 (Table 3). 
When individual analyses were done, these sites also 
showed the greatest and the least absolute effects on 
yields associated with allelic substitution at QTL1 (Hay- 
es et al. 1993a,b). No QTLs were detected m 
PCA5 PCA9 (Fig. 2), all QTLs were identified in just 
the first four PCA axes, which confirms the suggestion 
that AMMI tends to extract pattern (or true GE interac- 
tion) in the first axes and noise in the others (Gauch 
1992). Thus, mapping of genotypic PCA scores from 
large two-way GE tables could provide most of the 
linkage information contained in the data, without the 
need for individual analyses. 

Different types of QTL x E were present in this data 
set. QTL1 showed non-crossover interaction. Steptoe 
(S) alleles were associated with higher yields. Ranking of 
genotypes did not dramatically change from one envi- 
ronment to another, the differential response was pri- 
marily a matter of scale. Crossover interactions were 
found for QTL2, which also showed an epistatic interac- 
tion with QTL1 (Table 2). When the M allele was pres- 



T a b l e  3 Average mean yield and PCA1 to PCA4 scores for DHLs with 
environments grouped into the four clusters defined in Fig. 3 

the same genotypic constitution 

35 

for QTL1 to QTL4 and for the 16 

Genotype No. lines Site-year Mean yield PCA1 PCA2 PCA3 PCA4 

M M  M M  M M  M M  7 
M M  M M  M M  SS 10 
M M  M M  SS M M  7 
M M  M M  SS SS 12 
M M  SS M M  M M  8 
M M  SS M M  SS 14 
M M  SS SS M M  5 
M M  SS SS SS 8 
SS M M  M M  M M  5 
SS M M  M M  SS 8 
SS M M  SS M M  7 
SS M M  SS SS 6 
SS SS M M  M M  8 
SS SS M M  SS 6 
SS SS SS M M  8 
SSSSSSSS  11 

ID91 
ON92 
MN92 
WA91 
ID92 
MTd91 
MTi91 
MTi92 
NY92 
M e a n  c l u s t e r  1.1 

MTd92 
WA92 
M e a n  c l u s t e r  1 .2  

MA92 
SKo92 
SKg92 
SKk92 
M e a n  c l u s t e r  2 .1  
O R 9 1 :  c l u s t e r  2 . 2  

5.03 -0 .19 0.00 -0 .20  -0 .20  
5.13 -0 .27 -0 .05 -0 .12 0.07 
4.93 --0.31 -0 .20  -0.11 -0 .04 
4.94 -- 0.15 - 0.41 - 0.07 0.02 
5.16 0.05 0.02 0.18 -0 .10  
5.25 -0.11 0.13 0.12 0.27 
5.08 -0 .04 -0.01 0.18 --0.13 
5.00 - 0.21 - 0.08 0.26 0.27 
5.83 0.12 0.10 -0 .24  -0 .35 
5.68 0.18 0.03 - 0.34 0.09 
5.81 0.13 -0 .06 0.31 -0 .33 
5.29 0.25 -0 .05 --0.18 -0 .05 
5.61 0.19 0.39 -0 .03 -0 .03 
5.57 0.15 0.20 0.20 0.08 
5.53 0.35 0.05 0.24 -0 .20  
5.58 0.24 0.09 0.30 0.18 
7.49 1.60 1.71 -0.71 0.72 
3.28 -0.01 0.45 -0 .04  -0 .33 
4.90 0.49 0.02 - 0.02 - 0.05 
5.50 1.34 0.38 -0 .70  -2 .40 
4.94 0.62 0.59 1.32 0.36 
3.20 0.66 0.54 0.87 0.02 
5.85 0.65 0.34 0.92 0.19 
5.97 0.44 - 0.27 0.47 0.67 
5.74 - 0.43 - 0.49 0.60 0.34 
5 . 2 1  0 . 5 9  0 . 3 6  0 . 3 0  - 0 . 0 5  

5.01 0.11 - 1.20 0.95 0.90 
3.55 -0 .67 --1.04 0.36 -0 .07 
4 . 2 8  - 0 . 2 8  - 1 .11  0 . 6 6  0 . 4 1  

6.91 -0.21 -0 .72 -0 .58 -1 .18 
3.73 -1 .05 -1 .33 -0 .39 --0.41 
7.48 0.22 - 0.29 - 2.75 1.49 
5.14 -0 .73 -1 .07  -0 .24 -0 .16 
5 . 8 2  - 0 . 4 4  - 0 . 8 5  - 1 . 0 0  - 0 . 0 7  
5 . 9 2  - 3 . 0 0  2 . 3 7  - 0 . 0 6  - 0 . 1 0  

ent at QTL1, the presence of Steptoe alleles at QTL2 
seemed to confer a yield advantage in the first group of 
environments. The converse was true in the second 
group of environments, where the presence of the S allele 
at QTL2 decreased grain yields. 

Overall, a superiority of DHLs with the S S M M - - M M  
(S at QTL1, M at QTL2 and QTL4 and either S or M at 
QTL3) genotype was found for most sites, while a 
superiority for the SSSSSSSS lines was seen in others, 
particularly in the first cluster of environments (Table 3). 
Figure 4 shows the average rank and standard deviation 
across sites for every DHL with the three genotypes 
noted above, in the two main environmental clusters. 
Low average rank is associated with yield superiority; 
whereas low standard deviation of ranks indicates yield 
stability. DHLs with a relative low average rank across 
sites and a low standard deviation of ranks, such as 
those carrying S S M M M M M M ,  showed general adap- 
tation. DHLs with the SSSSSSSS genotype were specifi- 
cally adapted to the first cluster of environments. 

The assessment of adaptation of these 152 genotypes 
to the 16 environments was done in this study according 
to 'Pattern Analysis' (Williams 1976; Romagosa and 
Fox 1993). It was based upon the parallel use of classifi- 
cation (cluster analysis of environments) and ordination 

(principal component analysis of GE matrix, i.e., AMMI 
models) to present the maximum variation from the 
152 x 16 GE matrix in just a few dimensions: four QTLs 
showing differential adaptation to four groups of envi- 
ronments. The Clustering of environments could have 
been done in different ways. Environments can be con- 
sidered in a multi-dimensional space with each dimen- 
sion a genotype. Grain yields for each individual DHL 
could have been used, but these estimates were based on 
just one or two replicates per site. Environments could 
also be defined by the estimates of the additive effect of 
each significant QTL at each individual site, or their 
PCA scores from AMMI. However, since the final goal 
of MMAS is the identi-fication of superior genotypes, 
standardized mean yields for the 16 genotypes defined 
by QTLI-QTL4 were preferred. 

AMMI is an empirical or statistical approach relat- 
ing observed phenotypic responses, in terms of yield, to a 
sample of often unknown environmental conditions. 
However, it may allow for an analytical or physiological 
assessment of the value of any genotype at any specific 
site. AMMI has often unveiled specific patterns of adap- 
tation, by examining the yield of certain well-known 
genotypes at specific sites, which could be a posteriori 
related to previously unknown biotic or abiotic factors 



36 

60 

50 

40 

30 

20 

10 

0 

60 

50 

40 

30 

20 

10 

0 

STANDARD DEVIATION OF RANKS 

/ � 9  o n  

i i i 

10 

Cluster 1 

\ 

i 
20 30 40 50 60 70 80 90 100110120130 

n ~ 

10 20 30 40 50 60 

�9 SSMMMMMM 

~ C l u s t e r  2 
�9 

o 

z 5  
70 80 90 100 110 120 130 

MEAN RANK 
() SSMMSSMM �9 SSSSSSSS 

somal regions corresponding to the identified QTLs, 
selecting lines with the SSMMMMMM, SSMMSSMM 
or SSSSSSSS constitution. Multi-location evaluation of 
these lines should render the highest probability of 
recovering superior genotypes, and would limit the 
number of entries in the trials. Such an appraisal is 
currently underway for an independent set of DHLs, 
produced from the S/M cross, which were not used in 
the mapping process. 
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Fig, 4 Relative rank performance of DHL with the SSMMMMMM, 
SSMMSSMM and SSSSSSSS genotypes in the two main regions 
identified in Fig. 3. The horizontal lines represent the average stan- 
dard deviation of ranks, the enclosing lines the approximate bound- 
aries of variation for the 130 DHLs 

(Roy�9 et al. 1993). Unfortunately, the grouping of loca- 
tions by their PCA scores could not allow for the 
identification of distinct agronomic or unique geo- 
graphic patterns of adaptation. Environments were as- 
sociated with two independent clusters (Fig. 3). The 
second cluster includes all the northern-most sites and 
OR91. OR91 was very peculiar, showing extreme scores 
for both PCA1 and PCA2. It is a high-elevation site that 
may behave in some respects similarly to the Western 
Canadian sites. QTL3, as also revealed by the indepen- 
dent site analysis, was specifically associated with yield 
differences at this site. Had the specific agronomic par- 
ticularities of this site been known, specific adaptation 
patterns associated to this QTL could have been inves- 
tigated. The biological determinant of yields may only 
be speculated for QTL2. As described by Hayes et al. 
(1993a), QTL2 seems to be coincident with a significant 
QTL for heading date. 

The S/M cross was made as a compromise between 
the need for adequate DNA-level polymorphism for 
linkage mapping and the need to generate meaningful 
QTL information. Such a cross, between the 'Coast' and 
'Manchurian' germ plasm pools, would not be generally 
attempted in a direct breeding effort aimed at cultivar 
development particularly for malting types (Ozdemir 
1994). However, some DHLs have acceptable malting 
quality and showed wide adaptation out-yielding Step- 
toe, the high-yield parent. Thus, MMAS could be of 
some direct use in breeding within this gerrn plasm pool. 
Based on these analyses, the simplest strategy would be 
to genotype those breeding lines for the four chromo- 
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