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Abstract The cost of experiments aimed at determining 
linkage between marker loci and quantitative trait loci 
(QTL) was investigated as a function of marker spacing 
and number of individuals scored. It was found that for a 
variety of experimental designs, fairly wide marker spac- 
ings (ca. 50 cM) are optimum or close to optimum for 
initial studies of marker-QTL linkage, in the sense of 
minimizing overall cost of the experiment. Thus, even 
when large numbers of more or less evenly spaced 
markers are available, it will not always be cost effective 
to make full utilization of this capacity. This is particu- 
larly true when costs of rearing and trait evaluation per 
individual scored are low, as when marker data are 
obtained on individuals raised and evaluated for quanti- 
tative traits as part of existing programs. When costs of 
rearing and trait evaluation per individual scored are 
high, however, as in human family data collection car- 
ried out primarily for subsequent marker - QTL analy- 
ses, or when plants or animals are raised specifically for 
purposes of m a r k e r - Q T L  linkage experiments, opti- 
mum spacing may be rather narrow. It is noteworthy 
that when marginal costs of additional markers or 
individuals are constant, total resources allocated to a 
given experiment will determine total number of indi- 
viduals sampled, but not the optimal marker spacing. 

Key words Quantitative trait locus �9 Genetic 
mapping"  Marker-QTLlinkage �9 Experimental 
design 

Introduction 

With the advent of DNA-level genetic markers 
(Beckmann and Soller 1983, 1990; Botstein et al. 1980) it 
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is possible to cover the genome completely with a more 
or less evenly spaced set of segregating genetic markers 
in specific crosses or families. In a single experiment, 
such a spanning set allows linkage relationships be- 
tween marker loci and quantitative trait loci (QTL) that 
affect a particular trait or group of traits to be evaluated 
for an entire genome in a single experiment. A variety of 
experimental designs provide data amenable to such 
analyses, including F 2 and backcross (BC) populations 
derived from crosses between inbred lines (Edwards 
et al. 1987; Darvasi and Soller 1992; Darvasi et al. 1993; 
Haley and Knott 1992; Kahler and Wehrhahn 1986; 
Knapp et al. 1990; Lander and Botstein 1989; Soller 
et al. 1976; Van Ooijen 1992; Weller 1987; Weller et al. 
1988), replicated progenies and recombinant inbred 
lines (RIL) (Soller and Beckmann 1990), half-sib families 
(Beever et al. 1990;.Geldermann et al. 1985; Gonyon 
et al. 1987; Soller and Genizi 1978; Weller et al. 1990), 
and relative-pairs (Amos and Elston 1989; Blackwelder 
and Elston 1985; Cockerham and Weir 1983; Hill 1975; 
Penrose 1938). 

Within any particular experimental design, the 
power of marker - QTL linkage studies depends on the 
number of individuals raised and scored for markers and 
quantitative traits, on the map distance between 
markers and QTL, on the phenotypic effect of the QTL, 
and on the error variance and the designated type I error 
(Amos and Elston 1989; Darvasi et al. 1993; Lander and 
Botstein 1989; Soller et al. 1976; Soller and Genizi 1978). 

Classically, the number of experimental individuals is 
a parameter that is subject to control. As progressively 
larger numbers of well-mapped markers become avail- 
able, however, the average spacing between markers 
also becomes subject to experimental control. It is of 
interest, therefore, to examine the total cost for marker- 
QTL linkage studies as a function of both marker 
spacing and the number of individuals scored, in order 
to determine the optimum experimental structure in the 
sense of minimizing total costs for given power. The 
experiments analyzed here are those intended to provide 
initial information as to the general distribution of QTL 
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affecting a particular trait across the entire genome. 
Once individual QTL or QTL clusters have been assign- 
ed to specific chromosomal regions, additional experi- 
ments may be necessary to map them more exactly with 
these regions. Optimum experimental designs for such 
second-stage experiments are not considered here. 

Theo~ 

The cost of a marker-QTL mapping experiment, as a 
function of marker spacing, M, has the form: 

f ( M )  = c 1 n ( M ) b ( M )  + c2n(M ) (1) 

where, M = map distance between adjacent markers, in 
Morgans (1 Morgan = 100cM); n(M) = the number of 
individuals required for marker-QTL linkage determi- 
nation with given power and type I error, as a function of 
M, where power is averaged over all possible locations 
of a QTL in the interval M; b(M)= the number of 
markers scored per individual, as a function of M. It is 
immediately evident that b(M) = G/M, where G = total 
genome size in Morgans; c 1 = genotyping costs of a 
single marker; c 2 = phenotyping costs of a single indi- 
vidual, including: rearing, trait evaluation and DNA 
sampling. 

Optimum marker spacing is obtained by minimizing 
f (M) as a function of marker spacing, M. In some cases, 
the costs cl and c 2 will not remain constant as the 
number of individuals or markers increases. These cases 
will be considered in detail in a later section. 

Minimizingf(M) with ci and c 2 constant 

In many cases, costs per individual and costs per marker 
will be essentially independent of the number of individ- 
uals sampled and the number of markers scored. In these 
cases c 1 and c 2 will be constant and dividing Eq. 1 by c 2 
reduces the cost function to the form: 

f*(M) = n(M)(Gc + M) /M (2) 

where c is the ratio c,/c 2 and f*(M) is a proportional 
cost function with the same optimum asf(m). 

Expressions for n(M), the number of individuals re- 
quired for marker-QTL linkage determination with 
given power and type I error rate, as a function of 
marker spacing, M, are not provided directly in the 
literature. Rather, expressions for required sample size 
are given as a function of the proportion of recombina- 
tion, r, between markers and QTL. Such expressions are 
given in the literature for analyses involving single 
markers in BC and Fz designs (Soller et al. 1976), 
replicated progenies and RIL designs (Soller and 
Beckmann 1990; Knapp 1991) and half-sib families 
(Weller et al. 1990). For the purposes of the present 
analysis, these expressions can be considered to consist 
of two components: one, denoted h(r), a function of r; the 

other, denoted k, a function of all of the other par- 
ameters determining required sample size for a given 
experimental design, i.e., QTL effect, error variance, and 
type I and type II error rate. 

For all of the above experimental designs (expect RIL 
and relative pairs) h(r) was found to have the form 
h(r) = 1/(1 - 2r) 2. Expressions for RIL were obtained by 
substituting r* = 2r/(1 + 2r) for r (Haldane and Wad- 
dington 1931). Expressions for relative pairs were taken 
as numerical functions obtained from Table IV of Amos 
and Elston (1989). 

Expressions for h(r) were transformed to the corre- 
sponding map-distance expressions, denoted h(m), 
(where m is the map distance in Morgans between the 
QTL and the nearest marker), by means of the Haldane 
mapping function, r = (1 - e-2m)/2 (Haldane 1919). 
n(M) was then obtained by averaging kh(m) over all 
possible locations of the QTL, relative to the nearest 
marker (i.e., over the interval 0 to M/2). Averaging was 
carried out by assuming that a QTL is equally likely to 
be found at any point within the region M, i.e., that m, 
the distance between QTL and the nearest marker, has a 
uniform distribution over the interval 0 to M/2, thus a 
uniform density function, 9(m), 

g(m) = 1/(M/2 -- O) -= 2/M (3) 

Thus, for these designs and analyses, n(M) can be written 
as~ 

M/2 
n(M) = 2k/M y h(m) dm (4) 

o 

Relationship of marker spacing and all other 
parameters (k) 

Although M does not appear directly in the parameters 
of k, k does include type I and type II errors, both of 
which are affected by M, albeit in opposite directions. 
Namely, as M decreases, more markers are included, 
and type I error should be adjusted downwards to 
obtain the overall type I error desired. At the same time, 
when more markers are included, type II error will 
decrease, since with more markers in the vicinity of any 
given QTL there is a higher likelihood that one or 
another of the markers will give a significant result. 
Consequently, type I! error for any indi.vidual marker 
test should be adjusted upwards in order to obtain a 
given overall type II error. Since in k, type I and type II 
errors appear as the sum of their standard normal 
distribution ordinates z~/2 and z~ (see following 
example), this reduces the overall effect on k. It should 
also be noted that when M is small, further decrease in 
M has no further effect on type I and type II errors, while 
for large M the effects of small changes in M on type I 
and type II errors are mild (Lander and Botstein 1989). 
Thus, if all factors are taken into consideration it would 
appear that within the range of values for M over which 



optimization takes place, net variation in k as a result 
of M acting through type I and type II errors will be 
negligible. Consequently, optimum spacing, M, which 
minimizes the cost function, will not be affected by k and 
can be analyzed as a function of h(r) only. 

Illustrative example 

In order to illustrate the above procedure, the expres- 
sion for the cost function (Eq. 2) for an F 2 analysis 
carried out by ANOVA methods will be derived explicit- 
ly. This will require deriving n(M) as given in expression 
4. Following Soller et al. (1976) for the F 2 case, the 
number of individuals, N, needed to obtain a given 
power equals 

N = 8o-2(z~/2 + z~)2/[d2(1 - 2r)23 

where, o -2 is the population variance, d is the QTL gene 
substitution effect (equal to half the difference between 
the expected quantitative value of the two homozygous 
QTL genotypes), and ~ and fi are designated type I and 
type II error rates, respectively. Using the above nota- 
tion, the components h(r) and k of N are 

h(r) = 1/(1 - 2r) 2, 

and 

k = 8a2(z,/2 + z y / d  2. 

h(m) can now be obtained from h(r) by the substitution, 
r = ( 1 - e - 2 m ) / 2  according to the Haldane mapping 
function to give: 

h(m) = 1/[1 - 2 ( 1  - e - 2 m ) / 2 1 2 =  l ie -4m = e  4~" 

Substituting h(m) in Eq. 4 gives 

M/2 

n(M) = 2 k / M  ~ (en'm)drrt = k ( e  TM - -  1)/2M 
0 

Substituting this expression for n(M) in Eq. 2 gives 

f * ( M )  = k(e TM -- 1)(Gc + M ) / 2 M  2 

Since an analytical solution for the optimization of 
f *  (M) was not available, a numerical optimization was 
carried out. The optimum found for this example would 
be the same for all cases where h(r) = 1/(1 - 2r) 2. 
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ing linkage between marker loci and QTL in dairy cattle 
using the "Daughter" or "Granddaughter" designs 
(Weller et al. 1990), trait information is available on 
many more animals than will eventually be sampled, 
and the costs of obtaining the first blood or semen 
sample are essentially the same as those of obtaining the 
n th sample. The same will apply for plant genetic pro- 
grams when the total number of plants reared for map- 
ping purposes is well within the existing overall re- 
sources of the organization involved. In this case, sample 
size will affect allocation of resources within the organiz- 
ation, but will not require specific investment in addi- 
tional resources, so that costs per plant will be indepen- 
dent of the number of plants or plots dedicated to the 
QTL-marker linkage study. Similarly, for some of the 
newer classes of genetic marker uncovered by poly- 
merase chain reaction (PCR) techniques (Beckmann and 

(5) Soller 1990), costs per marker are independent of the 
number of markers scored per individual. 

Although a constant value for c 1 and c2 is often a 
reasonable approximation, in some instances it will 
clearly not apply. For example, there might be at least 
four stages of data collection in human genetics, with 
increased c 2 costs at each stage: individuals ascertained 
through a clinic, relatives within the geographical area 
of the study, and relatives in distant locations. Finally, at 

(6) some point the available pedigrees ascertained through 
the local clinic may be exhausted; additional pedigree 
collection may then require very expensive methods. 
For animals that require physical space, increasing the 

(7) sample size beyond some limit may involve building or 
buying new facilities. For many plants, an increase in 
sample size might require acquiring additional field 
space or constructing additional greenhouses, etc. Simi- 
larly, substrates and stains for isozyme markers, and 
restriction enzymes for restriction fragment length poly- 

(8) morphism (RFLP) markers, vary widely in costs. Hence, 
the c~ costs of additional markers scored per individual 
can also increase with increased numbers of markers. 
Marker costs are also related to marker information 
content (Botstein et al. 1980). That is, for any particular 

(9) marker some greater or lesser proportion of parents and 
offspring (depending on the number and frequency of 
alleles at the marker) will not contribute information 
useful for linkage analysis. Optimal experimental design 
will require approximately equal degrees of informative- 

(10) ness for the various markers used in the analysis. For 
some chromosomal regions, this will require utilizing 
more than one marker. In this case, it would seem 
appropriate to consider the effective cost of the marker 
for this region as the total cost of all of the markers used 
to obtain the desired degree of informativeness. 

The genotyping and phenotyping costs c I and c 2 

The analysis carried out assumes constant values for c 1 
and c2, as previously defined. This assumption will be 
correct in many experiments. For example, in determin- 

Minimizingf(M) with changing costs of c~ and c 2 

From the above examples, it can be seen that the effect of 
increasing costs with increasing number of individuals 
sampled will often be stepwise in nature. In this case, 
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when sampling N individuals, there will be an initial 
cost, denoted 11, independent of N, and then some 
constant cost, denoted c2,1, for each individual from 
N = 0 to N = nl, where n 1 is the maximum number of 
individuals that can be sampled at cost c2,1. Above this 
number, there would be a further initial cost, I2, inde- 
pendent of N, and then some further constant cost, 
denoted c2,2, for each individual from N = n I + 1 to 
N = n2, where n 2 is the maximum number of individuals 
that can be sampled at a cost of c2, z or less. Additional 
cost levels for further increase in total sample size be- 
yond n 2 can be denoted similarly. Thus, in general, the 
cost of sampling x individuals, denoted as a function 
c2(x ) would be: 

f ! i  + c2 '1  X -i- C2,1 n 1 + 12 + C2, 2 (X - -  h i )  

C2(X ) = "l- C 2 1 n l  -t- 12 + C 2 2(g/2 - -  F/l) 

+ I 3 ' +  C 2 3 (X- -  n2) 

0 < X _ ~ n  1 

n 1 ~ X _ ~ g / 2  

g/2 ~ X ~ g/3 

Since N will be related to anticipated gene effect, error 
variance and type I and type II errors, it will be possible 
to obtain an a priori initial estimate of the sample size 
range, n k_ i to n k, in which N lies. For this estimate, 

c 2 ( N  ) = 11 + c ; , an l  + 12 + c2,2(n2 - -  n l )  

+ .. .  + Ik + c2,k( N -- nk-  1) 

or, 

c z ( N ) = I + c 2 , k ( N - n k - 1 )  n k - l  < N < - n ~  

where, I represents all of the constant terms. Since I is a 
constant, it will not affect the optimum. Consequently, 
using c2, k the marginal cost of sampling an individual in 
the range nk- 1 + 1 < N < nk in Eq. 1 will provide opti- 
mum marker spacing. A similar argument can be made 
for cases where a number of cost levels are present for the 
markers scored. Thus, this derivation shows that for the 
non-linear "stepped" case, the appropriate analysis for 
minimizingf(M) is as previously described, except for c2 
and cl, which will receive the values of the marginal 
costs for the last individuals sampled and the last or 
most costly markers scored, respectively. 

When differences in marginal cost levels are small 
(either for individuals or for markers) it will not be 
possible to obtain a priori estimates of the range in 
which the optimum number of individuals or markers is 
found. Consequently, the cost of the last individual 
sampled and the last marker genotyped will not be 
known. In this case, an iterative solution can be imple- 
mented, where in each step the estimated range of N is 
adjusted according to the estimate given by the prior 
step until the total cost agrees with the values obtained 
for "optimum" sample size and number of markers. 

Numerical results 

Figure 1 shows optimum marker spacing as a function 
of the ratio (c) between the cost of scoring a single 
marker and the cost of raising a single individual for an 
F 2 design and for an RIL design. The results for an F2 
design are also valid for single-marker analyses carried 
out by ANOVA in backcross and half-sib family de- 
signs. Optimum spacing was investigated for two 
genome sizes: 1000cM, representing a typical plant 
genome, and 3000 cM, representing a typical animal or 
polyploid plant genome. Optimum spacing was always 
greater for a total genome size of 3000cM than for a 
genome size of 1000cM. The difference was relatively 
slight when the costs of marker determinations were 
high relative to the costs of raising individuals (c > 0.5), 
but it became marked (spacings up to twofold greater for 
the larger genome size) when the costs of marker deter- 
minations were much less than the costs of raising 
individuals (c < 0.005). This is plausible, since at any 
given spacing, the effect of greater genome size is to 
increase the relative weight of the many more marker 
determinations required per individual, relative to the 
costs of raising an individual. 

Optimum spacing for RIL experiments was about 
two-thirds that of the F2 experiments over the entire 
range of G and c values. This is a direct result of the fact 
that for given marker spacing, the proportion of recom- 
bination between any given marker and nearest QTL 
will be much greater for a population of RIL than for an 
F 2 population. 

Optimum spacings for grandparent-grandchild pairs 
were virtually identical to those obtained for BC and F2 
populations (Fig. 2). Spacings for sib and half-sib pairs 
were very similar to one another but considerably nar- 
rower over all values ofc than spacings for grandparent- 
grandchild pairs. Spacings for avuncular (i.e., uncle and 

Fig. 1 Optimum marker spacing (M) for F 2 (equal to backcross data 
or half-sib families) and for recombinant inbred lines (RIL) as a 
function of genome size (G) and relative cost (c, shown in logarithmic 
scale) of scoring a single marker in a single individual relative to cost 
of rearing, trait evaluation, and DNA sampling for a single individual 
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Fig. 2 Optimum marker spacing (M) for relative-pairs. Spacing is for 
relative pair analysis of pedigree data, based on single markers, as a 
function of relative cost (c, shown in logarithmic scale) of scoring a 
single marker in a single individual relative to cost of rearing, trait 
evaluation, and DNA sampling for a single individual 

for the F 2 1000 cM genome size situation are presented 
(Fig. 3), these can be taken to be representative contours 
for the other analyses as well. The range of marker 
spacings within 10% of the optimum was rather large in 
all cases, indicating that within this range deviation 
from optimum spacing does not greatly affect costs for 
given power. The range for marker spacing at 20 % of the 
optimum was only slightly wider, indicating that costs 
for given power increase steeply beyond a 10% devi- 
ation from the optimum. 

For BC and F 2 designs, a marker spacing of 30cM is 
generally within 10% and always within 20% of the 
optimum for c < 0.1. This also holds for grandparent- 
grandchild pairs. For RIL and the remaining types of 
relative-pairs, the corresponding value was 20 cM. For 
all designs, a marker spacing of 45 cM is generally within 
10% and always within 20% of the optimum for c > 0.05. 

Discussion 

aunt to nephew or niece) and cousin pairs were narrower 
yet, and similar to one another. An intuitive explanation 
for these effects is not evident. 

In order to examine the effect of deviation from 
optimum spacing on total experimental costs for given 
power, spacing contours giving total costs within 10% 
or 20% of the optimum were obtained separately for F 2 
experiments, for RIL analyses and for genome sizes of 
1000 cM and 3000 cM. It was observed that the contour 
widths for a given optimum spacing were virtually 
identical for the different analyses except for somewhat 
narrower widths for RIL in the range c < 0.1 (data not 
shown). Hence, although only curves showing contours 

Fig. 3 Marker spacings providing total costs within 10% (double 
hatching) and 20% (single hatching) of the minimum. Values are 
presented for F 2 backcross or half-sib families, with G = 1000 cM, as 
a function of relative cost (c, shown in logarithmic scale) of scoring a 
single marker in a single individual relative to cost of rearing, trait 
evaluation, and DNA sampling for a single individual 
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The major result of these analyses is the finding that for a 
wide range of experimental designs, fairly wide marker 
spacings are optimum or close to optimum for the initial 
studies of marker-QTL linkage in the sense of minimiz- 
ing overall costs of the experiments. This holds true for 
experiments involving: (1) crosses between inbred lines 
or between lines within selfing species, typical of studies 
in many agricultural plants; (2) half-sib families, typical 
of studies in agricultural animals; and (3) relative-pairs, 
typical of studies in human genetics. The result also 
holds true over a wide range of relative costs of scoring a 
single marker in a single individual, as compared to the 
costs of rearing, evaluation and sampling (c > 0.1). Al- 
though the very wide marker spacings that are optimal 
in these cases may seem counter-intuitive, it should be 
realized that even for a marker spacing of 70 cM, the 
maximum distance between a QTL and nearest marker 
will be 35 cM, equivalent to r = 0.25; while the average 
distance between a QTL and the nearest marker will be 
only 17.5cM, equivalent to r=0.15.  Similarly, for a 
marker spacing of 35 cM, the average distance between a 
QTL and the nearest marker will be equivalent to 
r = 0.09. Thus, very large spacings between markers in 
cM translate into a relatively low average proportion of 
recombination between marker and nearest QTL. 

From the assumption of constant k, it follows that 
sample size will determine power for a given type I error, 
gene effect and error variance, but for a given experi- 
mental design, the same optimal marker spacing will 
provide maximum power for any combination of these 
factors. It also follows that when marginal costs of 
additional markers or individuals are constant, total 
resources allocated to a given mapping experiment will 
affect the number of individuals sampled, but not the 
optimal marker spacing. This will be the situation for the 
newer classes of DNA-level markers involving PCR 
and for many situations involving agricultural or experi- 
mental species. This means that in such cases optimal 
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marker spacing for maximum overall power is unaf- 
fected by budgetary considerations. That is, if budgets 
are reduced, maximum power will be obtained if 
the entire budget reduction is met by reducing the number 
of individuals utilized in the experiment. Conversely, if 
budgets are increased, power will be increased most 
effectively by increasing the number of individuals at the 
same marker spacing. This will not be the case when mar- 
ginal costs of additional markers or individuals vary. In 
this case, a change in experiment size can change the mar- 
ginal costs ratio, and hence the optimal marker spacing. 

When data are analyzed using likelihood-ratio tests 
and interval mapping (Darvasi et al. 1993; Jensen 1989; 
Knapp et al. 1990; Lander and Botstein 1989), the 
number of offspring required for given power increases 
less markedly with r than when ANOVA and single- 
marker analysis are used. This effect, however, was 
found to be slight (Darvasi et al. 1993). Nevertheless, 
when likelihood ratio tests are used, optimal marker 
spacings will be slightly wider than those presented here. 

Relative costs in the range c _> 0.1 might be obtained 
when data and DNA samples are obtained from individ- 
uals that are otherwise reared and evaluated for other 
purposes (e.g., in dairy cattle recording and progeny 
testing schemes, existing fruit tree plantations, or ongo- 
ing family studies for behavioral or health traits in man). 
In this case, costs include only data retrieval (generally 
negligible) and DNA sampling, which can be somewhat 
expensive ($25-$50) per sample, depending on the dis- 
persal of individuals and the costs of extracting DNA 
from tissue. When plants or animals are raised specifi- 
cally for purposes of marker-QTL linkage experiments, 
however, or when human family data collection is de- 
signed specifically for subsequent marker-QTL analy- 
ses, relative costs can be in the range c = 0.01, for annual 
plant, poultry, or mouse experiments, to c = 0.00t, for 
fruit trees, larger livestock, or man. The parameter c will, 
of course, also depend on the cost of evaluating the traits 
under analysis. For example, in experiments currently 
underway in Africa, that are aimed at mapping loci 
conferring trypanotolerance through the analysis of 
crosses between trypanotolerant N'Dama and trypano- 
sensitive Zebu cattle (Kemp 1992; Soller 1992), F~, 
F 2 and BC animals are produced specifically for this 
purpose and must be individually evaluated for 
trypanotolerance and associated traits. In this case, cost 
per animal may be more than a thousandfold greater 
than the cost of an individual marker evaluation, and 
close marker spacing will be optimal. 

Trial calculations were carried out in order to pro- 
vide some notion of the sample sizes and number of 
markers scored per individual that will be required in 
order to obtain given power for a typical marker-QTL 
experiment at optimum marker spacing. The case inves- 
tigated was a BC design with ANOVA analysis, assum- 
ing co-dominance at the QTL, and expected mean 
difference between alternative homozygous genotypes 
at the QTL equal to 0.5 standard deviation units. Calcu- 
lations were carried out to determine the total sample 

sizes and the total number of markers scored that would 
be required in order to detect a QTL with a power of 
0.80 and Type I error of 0.05 at optimum spacing. When 
c _> 0.1 (i.e., it costs no more than ten times as much to 
rear and score an individual for the quantitative traits 
and obtain a DNA sample as it does to score an individ- 
ual marker), a marker-spacing of about 60cM was 
optimal, i.e., 17 markers per individual for a genome size 
of 1000 cM, 50 markers per individual for a genome size 
of 3000 cM. This marker spacing requires scoring about 
1000 individuals for the desired power, i.e., 17000 
markers scored for G -- 1000, 50 000 markers scored for 
G = 3000. When the costs of rearing, trait scoring and 
DNA sampling were 100 times that of scoring an indi- 
vidual marker (c = 0.01), optimal spacing decreased by 
one-half, to 30 cM, and the number of individuals by 
one-third, to about 700. The total number of markers 
scored is now 23 000 (35% greater) for G = 1000, and 
70 000 (40% greater) for G = 3000. Only when the costs 
of marker scoring drop to one-thousandth of the cost of 
rearing, trait scoring and DNA sampling is it optimal to 
use really large numbers of markers for a spacing of say, 
10 cM. Even in this case, it is necessary to raise about 600 
offspring for the desired power. Thus, even with the full 
utilization of marker capacity, marker-QTL experi- 
ments will still require hundreds of individuals for good 
power against QTL of relatively strong effects. 
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