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Abstract. Recently, 1If fluctuations have been discov- 
ered in the single-unit activity of mesencephalic reticu- 
lar formation (MRF) neurons during REM sleep. In a 
previous paper, such behavior could satisfyingly be 
interpreted on the basis of the clustering Poisson pro- 
cess. The question of applicability of this model to 
other MRF neurons remained unanswered. The present 
paper reports on I / f  fluctuations in 12 MRF neurons all 
of which can satisfyingly be modeled by the clustering 
Poisson process. 

1 Introduction 

In previous papers, evidence of 1If fluctuations in sin- 
gle-unit neurons of the mesencephalic reticular forma- 
tion (MRF) of the cat during REM sleep was reported 
(Yamamoto et al. 1986; Kodama et al. 1989a,b). Re- 
cently, the 1/f spectrum of one specially selected MRF- 
neuron could very well be modeled by the clustering 
Poisson process (CPP) (Grfineis et al. 1989, 1990). 

In the present paper, we present a more elaborate 
analysis of 12 MRF-neurons all of which exhibit l/f- 
like spectra over about 2 decades. Spectral shapes can 
satisfyingly be modeled by the CPP. 

The single-unit activity of neuronal outputs can be 
regarded as a stochastic point process. However, its 
statistical properties have not yet been clarified. Clearly, 
the appearance of I / f  fluctuations in single unit neurons 
is suggestive of a complicated stochastic process that 
cannot be characterized by a single rate or time con- 
stant. It is expected that a great deal of biological 
information can be obtained once the underlying 
stochastic process has been identified (Wise 1981). 

The phenomenon of 1If fluctuations in various 
physical systems is one of the most widely discussed 
topics in statistical physics (Weissman 1988). Recent 
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experiments revealed evidence of I / f  fluctuations also in 
biological systems: besides the MRF-neurons investi- 
gated by us, it has been discovered in nerve membranes 
(Verveen and Derksen 1968), impulses of a squid giant 
axon (Musha et al. 1981), heart beat rhythm 
(Kobayashi and Musha 1982), spike trains of giant 
snail neurons (Musha et al. 1983) and in the lower 
auditory pathway of cat (Teich 1989; Teich et al. 1990). 

The origin of 1If fluctuations in both physical and 
biological systems is still a mystery. Nevertheless, sev- 
eral mathematical models have been proposed to de- 
scribe 1If fluctuations: superposition of Lorentzian 
spectra (Bernamount 1937), fractal Brownian motion 
(Mandelbrot 1982), scaling Brownian noise (Kiss and 
Hajdu 1989), the clustering Poisson process (Griineis 
1984; Griineis and Musha 1986) and fractal shot noise 
(Lowen and Teich 1989)to name only a few. 

In this paper, the clustering Poisson process (CPP) 
is applied for modeling output of 12 MRF-neurons. 
Data recording of spike trains, estimation of spectra 
and the fitting procedure have been described for one 
specially selected neuron in a previous paper (Griineis 
et al. 1989) and apply also for the 12 MRF-neurons 
investigated here. Spectral properties of the CPP has 
been discussed in previous papers (Griineis and Baiter 
1986; Griineis and Musha 1986; Griineis et al. 1989). 

All 12 MRF-neurons show I / f  characteristics which 
are most significant during REM-sleep; we found a 
dynamical transition of single neuronal activities of the 
MRF from an almost fiat spectrum during SWS (slow- 
wave sleep) to a 1/f-like spectrum during REM-sleep 
(Yamamoto et al. 1986a). 1If neuronal dynamics is 
expected to underly physiological functions of REM 
such as dreaming. Possible generation mechanisms of 
1If fluctuations in neuronal spike trains have been 
investigated in applying pharmacological techniques 
(Mushiake et al. 1988; Kodama et al. 1989a,b) and 
computer simulations (Nakao et al. 1990). 

The purpose of this paper is twofold: first, to em- 
phasize evidence of 1If fluctuations in MRF-neurons 
and secondly, to demonstrate applicability of the duster 
model for modeling neuronal spike trains. 
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The paper is organized as follows: Chapter 2 sum- 
marizes methods applied. In Chap. 3, I / f  characteristics 
in spike trains of  12 neurons are demonstrated in 
applying spectral analysis. Empirical findings are inter- 
preted on the basis of  the CPP which is dealt with in 
Chap. 5. A fitting procedure is described in Chap. 6 
which is followed by a chapter with discussion and 
summary of results. 

2 Methods 

Detailed description on the experimental procedure ap- 
peared in our previous paper (Yamamoto et al. 1986a). 
Briefly, adult cats were prepared for chronic unit 
recording, in which recording electrodes were implanted 
to monitor the cortical EEG, LGN EEG, hippocampus 
activity, EOG, E M G  signals from the neck and orbicu- 
laris oculi muscles. In order to record single-unit activ- 
ity from the MRF,  bundles of  35 micro-meter wire 
electrodes were inserted bilaterally to the target regions. 
Single-unit activity of  M R F  neurons as well as other 
activities such as EEG, E M G  and EOG were recorded 
during 2 - 3  SWS and REM ultradian cycles. Recorded 
neurons were located in the central tegmental field, 
A2.0 to 4.0, L2.0 to 3.5, D0.5 to - 3 . 5  in the atlas of 
Jasper and Ajmone-Marson (1954). The histology of 
those neurons is presented in our previous paper 
(Yamamoto et al. 1986a). 

Data segments were selected based on polygraphic 
assessment of  sleep-waking states. Sleep states were 
classified into one of  the two following states which 
continues for a relatively long period (several 100 s): 

(1) slow-wave sleep (SWS), characterized by the low- 
frequency and high-amplitude cortical EEG with fewer 
spindle bursts; 
(2) REM sleep, by cortical EEG desynchronization, 
continuous hippocampal theta-wave activity and com- 
plete abolition of  tone in neck muscles. 

3 Evidence of lfff luctuations in neuronal spike trains 

The output of  neurons generates a spike train which 
can be represented by a point process as 

y( t )  = ~ 6(t  - tn) . (1) 
n 

tn is the random occurrence time of the n-th spike. 
Spectral analysis has been applied to neuronal spike 
trains of  12 MRF-neurons.  Weakly stationary spike 
trains have been selected by the side test (Bendat and 
Piersol 1971). 

Power spectral density of  neuronal spike trains has 
been estimated by Blackman-Tukey algorithm (Bendat 
and Pearsol 1971) and is shown in Fig. la-1. All of  them 
reveal a spectrum G y ( f )  proportional to 1/f be over 
about 2 decades with 0.8 < b e < 1.38. In almost all cases 
(except in Fig. l j) a plateau appears at frequencies 
below 10 -1 Hz. A distinct minimum is found in the 

frequency range between 6 - 2 0 H z .  In the high fre- 
quency range a white noise plateau is observed; this 
white noise plateau is due to the overall occurrence of  
events. 

4 Fractal character of neuronal spike trains 

Occurrence of neuronal spike trains can be represented 
by (1). One may also describe these events by cumula- 
tive number of  events N(z )  which occurred during a 
time period from to to to + z. N(z) can be expressed by 

t o + Z  

m(z)  = S y ( t ' )  d t ' .  (2) 
to 

Fractal point processes are characterized by self-simi- 
larity: scaling of the time axis results on the average in 
an amplitude-scaled version of  the same signal. Define a 
scaling region which ranges from tmi n t o  tma x. Then, for 
train to tma• N(az )  and a H N ( Q  have the same distribu- 
tion functions. The scaling exponent H is the so-called 
Hurst-exponent (Mandelbrot 1982). From this it fol- 
lows that the variance of counts in an interval of  length 
z is 

var[N(0] oc ~2n. (3) 

It can be shown (Grfineis et al. 1991) that (3) is giving 
rise to 

Gy( / )  oc a 1I f  2H' ' for fmin to fmax (4) 

whereby H ' />  H, H '  being a function of  tmi,, tmax and 
H. fmi, ~ 1/tmax and fmax ~ 1/tmi,. For  a well extended 
scaling region (more than about 6 decades) H ~ H' .  

For  H = 1/2, the process is characterized by totally 
uncorrelated spikes which can be modeled by the Pois- 
son process. For 1/2 < H < 1, the process is character- 
ized by long-term correlations, indicating some 
clustering or correlations between spikes. Such a behav- 
ior can be modeled by the CPP discussed below. 

Scaling properties can also be expressed by fractal 
dimension D. D can be determined from the sample 
path of  N(z )  in applying box-counting method. It can 
be shown that D = 2 - H (Mandelbrot 1982). 

Neuronal spike trains investigated reveal a spectrum 
as G y ( f )  oc 1/f be which has the same form as (4) with 
be = 2H'  - 1. Neuronal spike trains investigated in this 
paper can thus be identified as fractal point processes. 

5 Review of the clustering Poisson process 

The clustering Poisson process (CPP) consists of  a 
random sequence of  clusters; for an illustration see Fig. 
2. There is a random series of  primary events which 
trigger a secondary series of events, called clusters. The 
clusters are assumed to be independent of  one another 
and constitute finite renewal processes. The complete 
process is the superposition of events originating from 
different clusters and can be represented by 

Sk 
y( t )  = ~, ~, 6(t  - I i - tij ) . (5) 

i j = l  
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Fig. l a - l .  Power spectral density (PSD) versus frequency in a double-logarithmic scale of 12 MRF-neurons and best fit spectrum (bold lines) with 
parameters characterizing the CPP 
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Fig. 2. Illustration of  the clustering Poisson process 

Herein, ti are time points of the primary process and i 
ranges from minus to plus infinity, tij are time points of 
the secondary process and N k is the number of events in 
the k-th cluster. The complete process y(t) consists of 
an indistinguishable series of  events, whereby the dus- 
ter formation may no longer be obvious. Such a situa- 
tion is illustrated in Fig. 2 where point events 
originating from different clusters are strongly overlap- 
ping. The occurrence of  events in the complete process 
can be expressed in the form of (1) whereby t, is in a 
complicated manner dependent on the parameters of  
the cluster model. 

The primary process is a Poisson process with mean 
rate (n c ). The secondary process is a renewal process; 
intervals 2 are assumed F-distributed with index v. A 
plot of this distribution functions for several values 
of  v can be found in Grfineis et al. (1989). ( N )  is the 
mean number of events in the cluster (in our previous 
paper (Grfineis et al. 1989) the mean cluster size was 
denoted ( rn) ;  all other notations have been left un- 
changed). Thus, the mean overall rate of events is 
( n t o t )  = ( n o ) ( N ) .  

The number of  events within the clusters is a statis- 
tical variable N with distribution function 
p,, = prob{N = m} which is called cluster-size distribu- 
tion. m can take on values 1, 2 . . . . .  No; No is a maxi- 
mum cluster-size. 

The spectrum of  the CPP can be described by five 
parameters: (no)  for the primary process; z, N 0, ( 2 )  
and v for the secondary process. 

5.1 Conditions for I/f fluctuations in the CPP 

When the clusters are distributed according to a power- 
law with cluster-size distribution Pm 0C m ~, the cluster 
model was shown to exhibit a 1/f ~ spectrum whereby 
b = z + 3  with - 3 < z < - I  (Griineis and Baiter 
1986). Long-term correlation length of the cluster 
model is given by the duration of  the shortest and 
longest cluster of  length tmi n ~,~ ( 2 )  and /max "~ No(2) .  
The scaling region in the time and frequency domain is 
given by tmax/ tmi  n ~'fmax/fmin "~ NO" The spectrum can be 
derived analytically and can in the scaling region be 
expressed by 

Gy(f) oc 1/f b for 0 ~< b <~ 2.  (6) 

A schematic plot of  Gy(f) is shown in Fig. 3; numeri- 
cally computed spectra can be found in a previous 
paper (Grfineis et al. 1989). Below fmin , Gy(f) shows a 

o I = . . . . . . .  _]_M,N ]w" 
f I :'- 

log f 

Fig. 3. Schematic plot o f  power spectral density and parameters 
which can be derived from the spectrum 

plateau; for moderate values of  v a minimum is ob- 
served which is followed by a white noise plateau. 
Comparing (6) with (4), the clustering Poisson process 
can be identified as a fractal point process; scaling 
exponents are related by b = 2H'  - 1. 

Thus, the CPP shows spectral behavior which is 
characteristic for all of  the MRF-neurons investigated 
and appears appropriate for fitting. 

6 Fitting procedure 

Empirically found spectra of neuronal spike trains of 
Fig. 1 are characterized by 5 parameters: the white 
noise level WN, the depth of  the minimum below the 
white noise level MIN, an upper and lower limit F0 and 
F1 to 1/f-like shape and the noise plateau in excess to 
white noise EXN; for an illustration see Fig. 3. A fit of 
the spectrum of the CPP to empirically found spectra 
can be achieved in varying the five free parameters of  
the CPP. 

A fitting procedure described in (Griineis et al. 
1989) has also been applied here. The results can be 
found in Fig. 1 which shows the best fit spectra (bold 
line) and the five parameters characterizing the CPP. 
The agreeement between empirical and fitted spectra is 
satisfying. 

7 Summary of results and discussion 

In this paper, single-unit activities of 12 MRF-neurons 
of  cat during REM-sleep have been investigated by 
means of spectral analysis. All spectra reveal 1/f-like 
fluctuations. 

Empirical findings can be modeled by the clustering 
Poisson process (CPP); it consists of  a primary process 
with triggers a secondary series of  events called clusters. 
1/f characteristics are due to fluctuating clusters. 

Spectra of all 12 MRF-neurons can satisfyingly be 
fitted by the CPP. The CPP suggests that at least 5 
parameters are needed to adequately model neuronal 
spike trains investigated: (no)  for the primary process 
and z, No, ( 2 )  and v for the secondary process. It is 
concluded, that simple stochastic models, like Poisson 
or renewal processes, cannot adequately model empiri- 
cal findings. 
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Recent ly ,  a f racta l  doub ly  s tochast ic  Poisson  po in t  
process  ( F D S P P )  has  been discussed in contex t  wi th  the  
cochlear  neurona l  spike t ra in  (Teich et al. 1990). The  
F D S P P  is l ike the cluster  mode l  also a compl i ca t ed  
s tochas t ic  process  which m a y  adequa te ly  mode l  neu- 
rona l  activities.  

In  accordance  with  a compl i ca t ed  s tochast ic  process  
is also analysis  o f  spike t ra ins  by  a m e t h o d  which was 
in t roduced  by  ( N a k a h a m a  and  Y a m a m o t o  1983). 
Based u p o n  a h igher  o rde r  M a r k o v  process,  a new 
measure  dependency  Dm is in t roduced:  it  is a mos t  
compressed  measure  for  express ing the h igher  o rde r  
s ta t is t ical  p roper t i e s  o f  a t ime series. This  m e t h o d  was 
app l ied  to spike t ra ins  in M R F - n e u r o n s  dur ing  R E M -  
sleep; it  c lear ly  revealed tha t  occurrence  o f  a spike is 
s t rongly  dependen t  on  the occurrence  o f  spikes in the 
pas t  ( Y a m a m o t o  et al. 1986). This  is also expressed by  
a 1/f-l ike spec t rum which is character is t ic  for  a spike 
t ra in  wi th  long- te rm cor re la t ions  showing cor re la t ion  
be tween occurrence  o f  spikes. Thus,  the occurrence  o f  
neu rona l  spikes can  in general  no longer  be regarded  as 
pure ly  r a n d o m  because  this would  give rise to a white  
spec t rum only.  

Re la t ion  to the cluster  mode l  is suggestive and  can 
be expla ined  as follows: the cluster  mode l  consists  o f  
the  superpos i t ion  o f  r a n d o m l y  occurr ing  clusters,  which 
are  c o m p o s e d  o f  r a n d o m l y  occurr ing  events.  Thus ,  
doub ly  r a n d o m l y  occurr ing  events c o m p o s e  the cluster-  
ing process.  Obvious ly ,  successive events m a y  or ig inate  
f rom different  clusters.  Thus,  unl ike  for  a pure ly  ran-  
d o m  process ,  the cluster  f o r m a t i o n  in t roduces  a new 
proper ty :  the occurrence  o f  an  event  can be addressed  
to a cer ta in  cluster  which or ig ina ted  p r io r  to tha t  event  
and  thus  is dependen t  on  its past .  

Desc r ip t ion  on the cross cor re la t ion  analyses  were 
pe r fo rmed  on neu rona l  pai rs  which were a rb i t ra r i ly  
d i s tan t  ( Y a m a m o t o  et al. 1986b). The  results  showed 
tha t  the M R F  neurona l  activit ies dur ing  R E M  were 
a lmos t  mu tua l ly  independen t ,  as concerns  the l imited 
number  o f  pa i rs  invest igated.  A l t h o u g h  some cross  
cor re la t ions  were s ta t is t ical ly  significant,  the pa t t e rn  o f  
cross co r r e log ram could  not  be easily general ized,  and  
no  synchronous ly  firing pai rs  o f  units  were observed  
especial ly in such an  ext remely  low f requency band .  In  
this context ,  our  fur ther  s tudy  will include the appl ica-  
t ion o f  a new measure ,  the t r ans in fo rma t ion  (Pawelz ik  
1991), which m a y  give insight  into poss ible  synchronous  
activit ies as observed  in visual  cor tex  o f  cat  ( G r a y  et al. 
1989). 

In  s u m m a r y ,  it  is conc luded  tha t  appea rance  o f  1If 
f luctuat ions  in neurona l  spike t ra ins  are indicat ive  for  
cor re la t ion  be tween spikes. This  p r o p e r t y  m a y  have 
impl ica t ions  for  dynamic  i n fo rma t ion  process ing  in the 
neura l  system. In  this context ,  the CPP  is a powerfu l  
tool  for  charac te r iz ing  neurons .  

Acknowledgements. The authors are very grateful to the Toyota 
foundation for their support of this research. All computations were 
carried out by using the VAX-8350 VMS system in the Education 
Center for Information Processing of Tohoku University in Sendal 
We are also gratefully indepted to Dr. Barbara Herzberger for 
reading the manuscript. 

References 

Bernamont J (1937) Fluctuations in the resistance of thin films. Proc 
Phys Soc London 49:138-139 

Bendat JS, Piesol AG (1971) Random data. Wiley Interscience, New 
York 

Gray CM, Krnig P, Engel AK, Singer W (1989) Oscillatory re- 
sponses in cat visual cortex exhibit inter-columnar synchroniza- 
tion which reflects global stimulus properties. Nature (London) 
338:334-337 

Griineis F (1984) A number fluctuation model generating 1/f pat- 
tern. Physica 123A:149-160 

Griineis F, Baiter H-J (1986) More detailed explication of a number 
fluctuation model generating I/f  pattern. Physica 136A:432-452 

Griineis F, Musha T (1986) Clustering poisson process and l / f  
noise. Jpn J Appl Phys 25:1504-1509 

Griineis F, Nakao M, Yamamoto M, Musha T, Nakahama H 
(1989) An interpretation of 1If fluctuations in neuronal spike 
trains during dream sleep. Biol Cybern 60:161-169 

Griineis F, Nakao M, Yamamoto M (1990) Counting statistics of 
1/f fluctuations in neuronal spike trains. Biol Cybern 62:407- 
413 

Griineis F, Nakao M, Yamamoto M, Musha T (1991) 1/f fluctua- 
tions in stochastic point processes: new tools for characterizing 
neuronal outputs. In: Musha T, Sato S, Yamamoto M (eds) 
Noise in physical systems and I/f fluctuations. Ohmsha, Ltd., 
Japan 

Jasper HH, Ajmone-Marsan CA (1954) Stereotaxic arias of the 
diencephalon of the cat. Natl. Res. Council Canada, Ottawa 

Kiss LB, Hajdu J (1989) Transient diffusion l / f  noise model. Solid 
State Commun 72:799-802 

Kobayashi M, Musha T (1982) l / f  fluctuations of heartbeat period. 
IEEE Trans BME 29:456-457 

Kodama T, Mushiake H, Shima K, Nakahama H, Yamamoto M 
(1989a) Slow fluctuations of single unit activities of hippocam- 
pal and thalamic neurons in cats. I. Relation to natural sleep 
and alert states. Brain Res 487:26-34 

Kodama T, Mushiake H, Shima K, Hayashi T, Yamamoto M 
(1989b) Slow fluctuations of single unit activities of hippocam- 
pal and thalamic neurons in cats. II. Role of serotonin on the 
stability of neuronal activities. Brain Res 487:35-44 

Lowen SB, Teich MC (1989) Fractal shot noise. Phys Rev Lett 
63:1755-1759 

Mandelbrot BB (1982) The fractal geometry of nature. WH Free- 
man and Company, Oxford New York 

Musha T, Kosugi Y, Matsumozo G, Suzuki M (1981) Modulation 
of the time relation of action potential pulses propagating along 
an axon. IEEE Trans BME 28:616-623 

Musha T, Takeuchi H, Inoue T (1983) 1/f fluctuations in the spon- 
taneous spike discharge intervals of giant snail neuron. IEEE 
Trans BME 30:194-197 

Mushiake H, Kodama T, Shima K, Yamamoto M, Nakahama H 
(1988) Fluctuations in spontaneous discharge of hippocampal 
theta cells during sleep-waking states and PCPA-induced insom- 
nia. J. Neurophysiol 60:925-939 

Nakao M, Takahashi T, Mizutani Y, Yamamoto M (1990) Simula- 
tion study on dynamics transition in neuronal activity during 
sleep cycle by using asynchronous and symmetry neuronal net- 
work model. Biol Cybern 63:243-250 

Pawelzik K (1991) Nichtlineare Dynamik und Hirnaktivit~it. Verlag 
Harri Deutsch, Frankfurt/Main Thun 

Teich MC (1989) Fractal character of auditory neural spike train. 
IEEE Trans Biomed Eng 36:150-160 

Teich MC, Johnson DH, Kumar AR, Turcott RG (1990) Rate 
fluctuations and fractional power-law noise recorded from cells 
in the lower auditory pathway of cat. Hear Res 46:41-52 

Verveen AA, Derksen HE (1968) Fluctuation phenomena in nerve 
membrane. Proc IEEE 56:906-916 

Weissman MB, (1988) 1/f noise and other slow, nonexponential 
kinetics in condensed matter. Rev Mod Phys 60:537-571 

Wise ME (1981) Spike interval distribution for neurons and random 
walks with drift to a fluctuating threshold. In Taille C, (ed) 
Statistical distributions in scientific work, vol 6. D. Reidel Pub- 
lishing Company, Dordrecht, pp 211-231 



198 

Yamamoto M, Nakahama H (1983) Stochastic properties of sponta- 
neous unit discharge in somatosensory cortex and mesencephylic 
reticular formation during sleep-walking states. J Neurophysiol 
49:1182-1198 

Yarnamoto M, Nakahama H, Shima K, Kodama T, Mushiake H 
(1986a) Markov-dependency and spectral analyses on spike 

counts in mesencephalic reticular neurons during sleep and atten- 
tive states. Brain Res 366:279-298 

Yamamoto M, Nakahama H, Shima K, Aya K, Inase M (1986b) 
Low frequency fluctuations of spontaneous activities of midbrain 
reticular neurons and their cross correlation. J Physiol Soc Jpn 
48:281 


