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Summary. Methods for the interpretation of genotype- 
by-environment interaction in the presense of explicitly 
measured environmental variables can be divided into 
two groups. Firstly, methods that extract environmental 
characterizations from the data itself, which are sub- 
sequently related to measured environmental variables, 
e.g., regression on the mean or singular value decomposi- 
tion of the matrix of residuals from additivity, followed 
by correlation, or regression, methods. Secondly, meth- 
ods that incorporate measured environmental variables 
directly into the model, e.g., multiple regression of indi- 
vidual genotypical responses on environmental variables, 
or factorial regression in which a genotype-by-environ- 
ment matrix is modelled in terms of concomitant vari- 
ables for the environmental factor. In this paper a redun- 
dancy analysis is presented, which can be derived from 
the singular-value decomposition of the residuals from 
additivity by imposing the restriction on the environmen- 
tal scores of having to be linear combinations of environ- 
mental variables. At the same time, redundancy analysis 
is derivable from factorial regression by rotation of the 
axes in the space spanned by the fitted values of the 
factorial regression, followed by a reduction of dimen- 
sionality through discarding the least explanatory axes. 
Redundancy analysis is a member of the second group of 
methods, and can be an important tool in the interpreta- 
tion of genotype-by-environment interaction, especially 
with reference to concomitant environmental informa- 
tion. A theoretical treatise of the method is given, fol- 
lowed by a practical example in which the results of the 
method are compared to the results of the other methods 
mentioned. 
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Introduction 

In plant breeding, genotype-by-environment interaction 
typically refers to non-additivity in two-way tables of 
genotypes by environments. The data consist of evalua- 
tions of genotypes collected in a number of environments. 
The environments usually are made up of combinations 
of years and locations, but they may also involve different 
treatments. Environments may be characterized by a 
number of variables, e.g., soil, climatological, and treat- 
ment variables. 

The classical approach of Yates and Cochran (1938), 
revived by Finlay and Wilkinson (1963), uses the follow- 
ing model for an observation on genotype j (j = 1, 2 ... .  , m) 
in environment i (i = 1, 2 . . . . .  n) 

Yi3 = # + Gj + Bj E i + eij , (i) 

in which # stands for the overall mean, Gj for the geno- 
typical main effect, Bj for the slope of the linear regression 
of the response of genotype j on the environmental main 
effect Ei, and e~j is an error term. Bj is often interpreted 
as some kind of genotypical stability or sensitivity to the 
complex of environmental variables embodied in the 
environmental main effect E i. Hence the environment 
effectively is reduced to the mean performance of the 
genotypes in that environment, and the genotype-by- 
environment interaction is subsequently described as the 
heterogeneity of the slopes of the regressions of the indi- 
vidual genotypical responses on this mean. For obvious 
reasons this model is referred to as the regression-on-the 
mean model. The environment is modelled in terms of the 
observations of the matrix; no use is made of explicitly 
measured environmental variables. 

Regression-on-the mean provides modelling opportu- 
nities for interactions describable in one dimension. For 
modelling higher dimensional interaction, recourse can 
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be taken to an extension of the form 
L 

Yij = # -I- Gj  q- E i + Z Ulj V~i + eli. (2) 
1=1 

Model  (2) is part ial ly additive, par t ia l ly  multiplicative, 
and was first introduced by Gol lob  (1968) and Mandel  
(1969, 1971). In the multiplicative part,  the U~js denote 
genotypical  scores (sensitivities, stabilities) and the V~s 
environmental  scores (characterizations, indices). L indi- 
cates the number  of multiplicative terms required for an 
adequate  description of the interaction. Least-squares fit- 
ting of this model  can be done in two stages. First,  the 
additive terms are fitted in the usual way, then the re- 
maining residual matr ix is decomposed using the singu- 
lar-value decomposi t ion (Gabriel  1978). This model  was 
already used in the context of p lant  breeding in the early 
70s (Perkins 1972; Freeman and Dowker  1973). Recently 
it received renewed interest through Gauch  and Zobel,  
who also introduced the term A M M I  model, a shor thand 
for Additive Main  effects and Multipl icat ive Interact ion 
effects model  (Gauch 1988; Gauch  and Zobel  1988, 1989, 
1990; Zobel  et al. 1988). Model  (2) certainly provides 
more modell ing opportunit ies  than model  (1), but still 
defines the environment by quantities derived from the 
phenotypical  observations themselves. These environ- 
mental  characterizat ions may afterwards be related to 
explicitly measured environmental  variables, that  is indi- 
rectly, e.g., by regression or correlation. 

Easy ways of directly relating genotype-by-environ- 
ment interaction to environmental  variables are: (a) re- 
gressing residuals from addit ivi ty on environmental  vari- 
ables for each genotype separately, or (b) using concomi- 
tant  information on the environmental  factor in the two- 
way ANOVA of genotypes by environments (Snedecor 
and Cochran 1980). The second case is a form of simulta- 
neous regression, and will be referred to as factorial re- 
gression (Denis 1988). It amounts  to regressing ANOVA 
interaction parameters  on environmental  variables. Fo r  
an early example see Abou-E1-Fit touh et al. (1969). An 
elaborat ion of factorial regression, but  originally arrived 
at via a generalization of the A M M I  approach,  was ob- 
tained by Rao (1964). The method was dubbed principal 
components  of instrumental  variables. It can be under- 
s tood as an A M M I  model  with a restriction on the envi- 
ronmental  scores. These have to be linear combinat ions 
of measured environmental  variables. Subsequently, the 
connection with multiple regression was established, e.g., 
by Hardwick  and Wood (1972), Izenman (1975), Lefko- 
vitch (1986), and Denis (1988). Hardwick  and Wood 
probably  were the first to note the applicabil i ty of the 
technique in a plant  breeding context. So far Wood (1976) 
seems to be the only accessible application,  though in 
rudimentary  form. Finally, Van den Wollenberg (1977) 
developed the same method starting from canonical  cor- 
relation analysis under the name of redundancy analysis. 

Despite its apparent  potential  the technique has re- 
mained practically unknown in plant  breeding. The pres- 
ent paper  intends to stimulate interest in the method by 
describing the key features of the model  together with an 
applicat ion to a real da ta  set consisting of nitrate concen- 
trat ions in lettuce. 

Theory 

Multivariate multiple regression 

In order to describe the relationship between a set of genotypical 
responses and a number of environmental variables one could 
carry out multiple regressions for each of the genotypes on the 
set of explanatory environmental variables. Multiple regression 
aims at maximizing the multiple correlation coefficient; a mea- 
sure of the association between a dependent variable and a set 
of independent variables. It can be shown that the multiple 
correlation coefficient is the maximum correlation between the 
dependent and a linear functions of the independents. The mul- 
tiple regressions for a number of genotypical responses on the 
same set of environmental variables can be written in the form 
of a multivariate multiple regression model as follows 

Y = I C t + X M + E  (3) 

in which the columns of the matrix Yn • m represent the genotyp- 
ical responses, the columns of the matrix X n • q the environmen- 
tal variables; 1 n • 1 stands for a vector of ones, C m • x for the m 
intercepts ,  Mq • m for the matrix of regression coefficients, while 
En • m stands for a matrix of independently distributed normal 
errors with zero expectation and variance a 2. Inclusion of a term 
for the row main effect changes (3) into a factorial regression 
model (Denis 1988), which is more appropriate in the context of 
genotype-by-environment interaction. However, for ease of ex- 
position below, (3) will be used as a reference model, generaliza- 
tions to factorial regression being obvious. Model (3) will be 
called the full-rank regression model for reasons to be explained 
shortly. In the full-rank model each genotype possesses unique 
sensitivities to every one of the environmental variables, no in- 
ter-relatedness between genotypical responses exists. 

The environmental information as collected by the re- 
searcher will generally not have the form that is most relevant to 
the plants. Environmental variables of importance to the plants 
can be approximated by linear combinations of measured vari- 
ables (possibly transformed, and including squares and cross 
products). In addition, it seems reasonable to assume that differ- 
ent genotypes react to similar environmental factors, though 
with varying sensitivity. A model that describes genotype-by-en- 
vironment interaction in terms of heterogeneity in genotypical 
sensitivity to common linear combinations of environmental 
variables is given by the redundancy analysis model (Rao 1964; 
Hardwick and Wood 1972; Izenman 1975; Van den Wollenbe~g 
1977; Davies and Tso 1982). The supposition of common linear 
combinations of environmental variables as the basis of geno- 
type-by-environment interaction marks the distinction between 
the redundancy analysis model and the multivariate multiple 
regression model. The common linear combinations are found 
by rotation of the axes in the space spanned by the fitted values 
of the full-rank regressions for the genotypes. The rotation step 
may be followed by a reduction step in which only the most 
explanatory linear combinations are retained. 

Redundancy analysis 

Instead of maximizing the correlations between the individual 
dependent variables and the set of independent variables, as in 



multiple regression, in redundancy analysis linear combinations 
of independent variables are formed that account for successive- 
ly maximal proportions of the total sum of squares over the set 
of dependent variables. The quantity of central importance is the 
index of redundancy, introduced by Stewart and Love (1968). 

Let Y t = ( Y  1 . . . . .  Y~) and X 1 = ( X  i . . . . .  Xq) be two sets of 
centered variables, and SSSP(Y)=SH,  SSSP(Y,X)=SI2,  
SSSP(X,Y) = S21, and SSSP(X)= $22, with SSSP a sums of 
squares and sums of products matrix. The index of redundancy 
is defined as 

trace(S12 S ~  S21 ) 
R ~ (V :X) = , (4) 

trace (S i l) 

being the proportion of the total sum of squares in the Y-set 
which is accounted for by the linear prediction of Y by X. The 
analogy with the squared multiple correlation coefficient from 
multiple regression is obvious. 

The coefficient vector b for the linear combination of inde- 
pendent variables btX that describes the maximum proportion 
of the total sum of squares in the set of dependent variables Y 
can be found by maximizing the following function of b 

(b) = b t S2~ S~2 b -  2 (b t $22 b - 1) (5) 

(Van den Wollenberg 1977). For understanding (5) one should 
note that the sums of products between the dependent variables 
Y and the linear combination of independent variables b t X, a r e  
given by SSSP(b t X ,Y)=  b t Szi, and the sum of the squares of 
these sums of products is simply b t $2~ S~2 b. For convenience, 
and without loss of generality, the linear combinations are scaled 
to unit sum of squares, explaining the second term on the right 
in (5). 

Differentiating (5) with respect to b and setting the result 
equal to zero leads, after some reshuffling, to the generalized 
eigenvalue problem 

(Szl S l z -  2S22 ) b = 0. (6) 

The first eigenvector, b, contains the weights for the X-variables, 
which are called canonical coefficients. The first eigenvalue, 2, 
represents the amount of the total sum of squares in Y explained 
by the linear combination b t X. This linear combination repre- 
sents the first redundancy variate. Subsequent redundancy vari- 
ates, uncorrelated with preceding ones, can be obtained from 
subsequent eigenvectors. 

Inspection of (6) also reveals the inter-connectedness of re- 
dundancy analysis and principal components analysis. When the 
Y- and X-set are the same S~2 = SE~ = S2z and (6) reduces to the 
equation for the principal components problem. 

In the terminology of the genotype-by-environment prob- 
lem, theoretical environmental variables are formed that mini- 
mize the total residual sum of squares of the regressions of the 
genotypical responses on these linear combinations of environ- 
mental variables. Genotypes, now, can be characterized by their 
covariances with the newly formed theoretical environmental 
variables. 

Reduced rank regression 

An alternative derivation of the method of redundancy analysis, 
which displays more clearly its least squares properties, is given 
by Davies and Tso (1982). They subsumed redundancy analysis 
under the wider class of reduced-rank regression models. The 
basic assumption underlying these models is that the matrix of 
regression coefficients is a matrix of low rank, in any case of 
lower rank than the full-rank multivariate multiple regression 
coefficients matrix. Reduced rank regression models arise natu- 

91 

rally in situations where a number of Y-variables are known to 
be inter-related, as for genotypical responses. 

The reduced-rank equivalent of the full-rank regression 
model (3), assuming the number of environments n to be greater 
than the number of measured environmental variables q, is writ- 
ten as 

Y = I C ~ + Z A + E ,  (7) 

in which Z,  • ~ contains s _< q redundancy variates, linear combi- 
nations of the original environmental variables, that is, Z = X B, 
w i t h  Bq • s a matrix whose columns contain the weights for the 
environmental variables in X, the canonical coefficients. The 
columns of As• m are made up of the covariances of the m re- 
sponses in Y with the redundancy variates in Z, they are com- 
parable with the regression coefficients in the Finlay-Wilkinson 
model. 

Effectively, the reduced-rank argument is carried through by 
a factorization M = B A in (3). When M has rank s = q, model (7) 
represents the full-rank model (3), whereas for s < q (7) denotes 
a reduced-rank model. The factorization can be found following 
a least squares argument (Davies and Tso 1982). 

Methods 

Assessing rank; maximum likelihood 

A major issue arising in the application of redundancy analysis 
concerns the determination of the maximum rank s. It is appeal- 
ing to base this decision on the residual sum of squares from the 
rank s fit 

rank (x~) 
SSro~(~)= ] IY-Y][2+  Z -~i, (8) 

i = s + l  

with ]L D I[ 2=  ,~ dE for a matrix D with elements dij, Y the 
ij 

matrix of fitted values from the full-rank regression, and 2 i the 
i-th eigenvalue from (6) (which is equivalent to the i-th eigen- 
value of ~r ~r or ~ ~t). SSre ~)  consists of the ordinary residual 
sum of squares from the full-rank fit plus a contribution of the 
least significant eigenvalues of (6). 

Assuming the errors making up the matrix E in (7) to be 
distributed independently normal, with zero mean and variance 
G 2, the loglikelihood can be written as 

loglik = - �89 n m [log e (2 ncr 2) + 1], (9) 

with logo denoting the natural logarithm. From (9) the maximum 
likelihood estimator for cr 2 is obtained as 02= tr(~? ]E)/nm, with 

containing the residuals from the rank s fit (Van der Leeden 
1990). The loglikelihood ratio test for the hypothesis of rank t 
against t - 1  is most conveniently written as 

lr = nm loge [_SSr~ 111 
L SSres(t) / '  

(30) 

with Nares(t_ 1) and SSre s(o the residual sums of squares fom the 
rank s - 1  and rank s fit. Asymptotically lr in (10) has a X 2 
distribution with a number of degrees of freedom equal to the 
difference between the degrees of freedom for the rank t model 
and the rank t - 1 model. Assume that the data, Y, are corrected 
for the genotypical and environmental main effect, then the num- 
ber of degrees of freedom for redundancy variates is equal to 
q + ( m - 1 ) - ( 2 t - 1 )  for the t-th redundancy variate, where q 
stands for the rank of the X matrix (n - 1 > q), and (m - 1) for the 
rank of the corrected Yn • m matrix (n > m). 
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Assessing rank; randomization test 

As an alternative for the loglikelihood ratio test a randomization 
test can be used. A possible approach is based on permutation 
of the rows of the X m a t ' ~  (Ter Braak 1988). Calculate the first 
eigenvalue, then permute the rows of X and recalculate the first 
eigenvalue, repeat this v times. The significance level for the first 
eigenvalue is (u + l)/(v + 1), where u is the number of eigenvalues 
of the permuted set greater than the eigenvalue for the unper- 
muted X. For testing the second eigenvalue, correct Y for the 
first axis, etc. When the errors are uncorrelated, the columns of 
X, the environmental variables, may be permuted independently. 

Variable selection and model building 

Selection of variables in redundancy analysis can be performed 
either by techniques akin to those in discriminant analysis or, 
alternatively, by techniques used for multiple regression prob- 
lems. One possibility is a stepwise procedure within a factorial 
regression set-up, in which the usual ANOVA tests for contrasts 
can be used (Snedecor and Cochran 1980). Subsequently, the 
rank of the matrix of regression coefficients, and simultaneously 
the number of axes to retain, can be assessed by means of the test 
given in (10). This procedure was recommended for modelling a 
matrix in terms of concomitant variables for rows (and/or 
columns) by Gabriel and Odoroff (1985). 

An alternative, using backward elimination, ~s inspired by 
an idea of Jolliffe (1986, p. 108) in the context of principal com- 
ponents. Discard variables with high absolute coefficients in 
redundancy variates which express exact or nearly exact linear 
relationships between the explanatory variables, i.e., with zero or 
near-zero eigenvalues. This can be done iteratively. Fit the full- 
rank model, test whether or not the last redundancy variate 
contains significant information, e.g., by (10), and if yes discard 
the variable with highest absolute coefficient. Repeat this for the 
now reduced set of explanatory variables until the last redun- 
dancy variate appears no longer non-significant. Note that we 
will end up with a full-rank model, but a reduced set of explana- 
tory variates. Nevertheless, the rotation in the space spanned by 
the fitted values of the individual genotypes can add to the 
interpretation of the interaction. 

A word of caution should be expressed with respect to too 
heavy reliance on statistical variable selection procedures. Espe- 
cially for genotype-by-environment problems, a reasonable 
choice of variables expected to be most influential should be 
possible beforehand, thereby reducing the need for elaborate 
statistical selection procedures. 

Goodness of fit for individual genotypical responses 

Evaluation of individual fits to responses can be done by con- 
sidering the reduced-rank regression as a method to derive best 
linear predictors, the redundancy variates, for the set of re- 
sponses. The regressions of the responses on the s redundancy 
variates then can be treated in a univariate fashion, making use 
of univariate evaluation procedures. Mean square errors of fit 
can be compared with known levels of precision for the type of 
response. In addition, prediction error on an independent set can 
be a useful evaluation criterion. 

Precision of estimates of canonical coefficients 

In order to say something about the precision with which canon- 
ical coefficients are estimated, a result of Tyler (1982) can be used. 
This shows that the canonical coefficients corresponding to the 
i-th redundancy variate, b i, can be interpreted, if scaled appro- 
priately, as the vector of regression coefficients for the regression 

of ati Y, a linear combination of the responses Y weighted by 
their covariances with the i-th redundancy variate, on the X-set. 
Using the normalization a ' ia i=l  the regression of a~Y on X 
gives as regression coefficients a~ b~. Standard errors and t-values 
from the regression may be used for exploratory purposes. 

Visualization of results 

An important aid in the interpretation of the results of eigen- 
value techniques is the biplot (Gabriel 1971). For an exposition 
on the use of biplots in genotype-by-environment problems see 
Kempton (1984). 

In case of the AMMI model it is customary to depict scores 
for genotypes and environments on the first two axes in two-di- 
mensional biplots. A rank-two approximation of the matrix of 
interaction residuals can be found from the biplot using the 
inner-product definition. Imagine the scores for the genotypes 
and the environments to determine vectors in two-dimensional 
space. Then, the interaction effect of a certain genotype in a 
certain environment is approximated by the inner-product be- 
tween their respective vectors. The inner-product between two 
vectors is simply the length of the orthogonal projection from 
one vector onto the other, multiplied by the length of the other. 
A factor - 1 or 1 is used as a multiplication factor depending on 
the angle between the two vectors; - 1  for obtuse angles, 1 for 
acute angles. Ranking of interaction effects for all the genotypes 
in a particular environment can easily be done by just consider- 
ing the ordering of the orthogonal projections of the genotypical 
vectors on that environmental vector. 

For redundancy analysis the story is about the same as for 
the AMMI analysis. The major difference is that for redundancy 
analysis it is not the matrix of interaction residuals, but the 
matrix of fitted interaction residuals, which forms the raw mate- 
rial. Biplots for redundancy analysis have as an additional fea- 
ture the possibility of representing measured environmental 
variables. For details on this and related aspects see Ter Braak 
(1990). 

Computation 

The calculations for a redundancy analysis can be done by any 
package that includes facilities for the singular value decomposi- 
tion of matrices (in which case the matrix of full-rank fitted 
values must be the input) or for solving generalized eigenvalue 
problems such as (6). The calculations for the Application sec- 
tion were programmed in Genstat (1987). The package 
CANOCO (Ter Braak 1988) includes redundancy analysis 
among a number of other multivariate techniques, all furnished 
with facilities for forward selection of variables and permutation 
tests. 

Application: nitrate concentration in lettuce 

Data 

In  the per iod  be tween M a r c h  1987 and June  1988 eight 

let tuce (Lactuca sativa L.) genotypes  (Table 1) were evalu-  
a ted at 18 harves t ing  t imes (Table 2) with respect  to their  

ni t ra te  concen t ra t ions  (Reinink 1991). Each  eva lua t ion  
consis ted of  an exper iment  in eight blocks. The  18 evalu- 

at ions in t ime were t reated as env i ronment s  in which 
genotypica l  per formances  were assessed. The  average  ni- 
t ra te  concen t ra t ions  (g/l) of  the eight genotypes  observed  

in the 18 env i ronment s  are given in Table 3. After a pre- 



liminary selection eight environmental  variables thought 

to exert influence on nitrate concentration (Tables 4, 5) 
were chosen for a characterization of the circumstances. 
Their usefulness to describe the genotype-by-environ- 
ment interaction was investigated. 

Preliminaries 

Before searching for an explanation in terms of environ- 
mental  variables, the existence of interaction has first to 
be proven. This involves testing for interaction [see 

Table 1. Lettuce genotypes (Lactuca sativa L.) and their abbre- 
viations 

Pa Panvit 
DM Deci-Minor 
Pi Pinto 
GT Grol3e Brune Tame 
RW Reichenauer Winter 
Wi Winterbutterkop 
Tr Trocadero 
Ls Lactuca sativa capitata 

Table 2. Trial numbers and harvesting times (day-month-year) 
of the trials corresponding to the environments 1 to 18 

Trial Harv. time Trial Harv. time Trial Harv. time 

1 08-04-1987 7 25-11-1987 13 10-05-1988 3 
2 06-05-1987 8 06-01-1988 14 18-05-1988 4 
3 03-07-1987 9 19-02-1988 15 03-06-1988 5 
4 10-09-1987 t0 08-03-1988 16 14-06-1988 6 
5 07-10-1987 11 30-03-1988 17 20-06-1988 7 
6 05-11-1987 12 26-04-1988 18 30-06-1988 8 
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Krishnaiah and Yochmowitz (1980) for a review] and, 

when present, determining whether the interaction is not 

due to a few outliers or removable by transformation. 
Then various methods should be tried to relate environ- 
mental variables to the interaction. In what follows the 
results of the following methods will be used: (a) stepwise 

regression of residuals from additivity on the set of 
environmental  variables for each genotype separately; 
(b) factorial regression on the environmental  variables; 
(c) A M M I  analyis; (d) redundancy analysis. Different 
methods will elucidate different aspects of the data. At the 
same time, however, certain main features should become 
evident, as if looked upon from different angles. 

Testing interaction in the two-way analysis of vari- 
ance set-up (Table 6), using the mean intra-block error as 
an estimate for the error gave a highly significant result, 
P ~ 0.001. Another estimate for the error can be obtained 
via principal components analysis of the matrix of inter- 

action residuals, which is part of the A M M I  analysis, 
using the non-significant eigenvalues. The eigenvalues ex- 

Table 4, Measured environmental variables in the environments 
of Table 2 

Number Variable 

Electrical conductivity of the medium 
Summed global radiation in Joule/cmZ/day on 

eighth last day before harvest 
As 2 on fourth last day before harvest 
As 2 on second last day before harvest 
As 2 on last day before harvest 
Daylength on sowing day in hours 
As 6 on introduction NFT system 
As 6 on harvesting day 

Table 3. Mean nitrate concentrations (g/l) over the eight replicates of a randomized blocks design for the genotypes from Table t in 
the environments of Table 2 

Environ- Genotype 
ment 

Pa DM Pi GT RW Wi Tr Ls 

1 3.113 2.835 2.629 1.988 2.199 2.414 1.248 2.380 
2 3.379 3.222 2.848 2.823 3.002 2.950 2.176 3.196 
3 3.067 2.326 2.511 2.120 2.692 2.598 1.032 2.355 
4 3. 202 2. 663 2. 230 1.638 2.187 2.171 1.062 1. 599 
5 3.921 3.365 3.028 2.653 2.935 2.931 2.007 2.942 
6 4.153 3.970 3.444 2.813 2.865 3.232 2.341 3.289 
7 4.851 4.512 4.010 3.504 3.135 3.624 3.080 3.612 
8 4.547 4.203 3.429 2.944 2.616 3.052 2.817 3.070 
9 3.721 3.505 3.337 2.425 2.177 2.525 1.917 2.830 

10 3.581 3.298 3.287 2.389 2.159 2.681 1.744 2.726 
11 3.312 3.130 2.959 2.280 1.797 2.152 1.365 2.178 
12 3.439 3.329 3.254 2.561 2.843 3.035 1.927 3.058 
13 3.195 3.047 2.948 2,696 2.610 2.902 1.914 3.138 
14 2.890 2.297 2.295 2,237 1.930 2.414 1.462 2,274 
15 2.700 2.430 2.172 2,004 2.194 2.392 1.374 2.144 
16 3.143 2.710 2.429 2,260 2.406 2.438 t. 536 2.464 
17 2.746 2.470 2.226 2,126 2.332 2.185 1.287 2.621 
18 3.273 2. 384 2. 555 2.167 2.545 2. 386 1.616 2,813 



94 

Table 5. Values of the environmental variables of Table 4 in the environments of Table 2 

Environ- Environmental variable 
ment 

1 2 3 4 5 6 7 8 

1 2.1 1,136 993 911 881 14.75 11.23 13.15 
2 2.1 1,345 1,277 1,250 1,815 11.78 13.28 14.93 
3 2.1 1,700 2,191 2,586 2,556 16.14 16.48 16.37 
4 2.1 1,076 1,090 1,323 1,065 14.81 13.61 12.74 
5 2.2 960 779 539 457 13.61 12.46 10.89 
6 2.0 316 482 421 556 12.81 11.23 9.04 
7 2.0 145 117 102 42 11.91 10.29 8.05 
8 1.9 109 93 127 42 10.96 8.71 7.73 
9 2.2 555 504 415 383 9.64 8.50 9.90 

10 2.0 641 663 596 780 8.45 7.98 11.78 
11 2.0 676 666 541 546 7.70 9.04 12.60 
12 1.6 1,951 2,427 2,413 2,286 9.22 12.05 14.39 
13 1.5 1,651 1,789 1,276 1,518 11.78 13.01 15.21 
14 1.5 2,281 2,359 2,376 2,514 13.15 14.45 15.62 
15 1.5 1,244 1,456 1,604 1,398 14.07 15.37 16.23 
16 2.3 1,398 1,852 2,719 2,975 14.51 15.96 16.45 
17 1.5 2,041 1,515 1,350 988 14.93 16.23 16.48 
18 1.5 1,326 1,416 1,779 1,580 15.26 16.39 16.41 

Table 6. Two-way analysis of variance on the genotype-by-envi- 
ronment matrix of Table 3. The error is the mean intra block 
error over the 18 trials 

Source Df SS MS 

Genotypes 7 31.333 4.476 
Environments 17 29.325 1.725 
Interaction 119 6.772 0.057 
Error 882 0.009 

Table 7. Sum of squares for interaction per genotype, selected 
explanatory set from a stepwise regression, percentage sum of 
squares explained, R 2, by the selected set, and by the first and 
second redundancy variate (linear combinations of variables 7 
ad 8), and residual mean square from regression on first and 
second redundancy variate 

Geno- SS int. MR-set R 2 RMS- 
type RA 

MR RAI RA2 

Pa 0.970 3 4 5 8 80 44 17 0.023 
DM 1.297 6 8 81 84 0 0.013 
Pi 0.674 4 7 61 35 30 0.015 
GT 0.314 6 7 39 31 10 0.012 
RW 1.744 1 3 5 7 85 75 3 0.024 
Wi 0.440 2 3 4 6 75 49 0 0.014 
Tr 0.495 1 2 3 5 8 67 9 5 0.027 
Ls 0.840 2 31 27 4 0.036 

plained respectively 61, 16, 11, 5, 4, 2, and 1% of the 
interaction sum of squares. Eigenvalues below 0.7 times 
the average percentage (i.e., 0.7 x 100 /7=  10%) can be 
interpreted as noise (Jolliffe 1986). So the first three eigen- 
values represent structure, the rest noise. Approximate 
degrees of freedom can be attributed using Mandel 's 

(1971) simulation studies. Summing the last four eigen- 
values and dividing by the appropriate degrees of free- 
dom, 34.8, led to an error estimate of 0.023, again leading 
to a highly significant interaction. A reason for the differ- 
ence between both estimates of error might be the extra 
contributions of environment-by-block, and genotype- 
by-environment-by-block interactions, to the estimate 
derived from the non-significant eigenvalues. As a corol- 
lary it can be remarked that the dimensionality of three 
for the interaction implied inappropriateness of the re- 
gression-on-the-mean model. 

A check on outliers revealed no severe anomalies in 
the data. The maximum normed residual, the maximum 
absolute interaction residual divided by the square root 
of the interaction sum of squares (Stefansky 1972), 
amounted to only 0.21, which was far from significant. 
The estimate for the Box-Cox parameter for a power 
transformation (see Atkinson 1982) included the value 1 
in its 95% confidence interval, so that there was no rea- 
son for a transformation either. 

Multiple regression 

The environmental  variables from Table 5 were used as 
the explanatory set in stepwise regressions for the interac- 
tion residuals of the individual genotypes. The cut-off 
values were chosen as Fin =Fou t = 4 (Montgomery and 
Peck 1982). The results are given in Table 7. Substantial 
parts of the interaction sums of squares can be described 
by the environmental  variables. The problem, however, is 
that no pair of genotypes has the same set of explanatory 
variables. In fact all environmental  variables end up three 
times in the eventual explanatory set, except variable 1 
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Table 8. Selected sets of variables for factorial regression, with 
order of variables within sets reflecting stepwise selection. Fur- 
ther columns; distribution of explained sums of squares over 
redundancy variates, and total sums of squares explained. All 
subset regressions and redundancy axes are significant at at least 
5%, unless non-significancy (ns) is indicated 

Variable (s) RA-I RA-2 RA-3 Total 

7, 8 3.645 0.514 4.158 
8, 6 3.593 0.522 4.117 
7, 2 3.647 0.393 4.040 
7, 3 3.586 0.378 3.965 
2, 6 3.444 0.499 3.943 
5, 6, t 3.290 0.537 0.112 ns 3.938 
3, 6 3.404 0.441 3.845 
7, 6 3.430 0.413 3.844 
4, 6, 1 3.139 0.495 0.159 ns 3.794 
5, 6 3.062 0.348 3.441 
7 3.361 3.361 
8 3.360 3.360 
4, 6 3.012 0.326 ns 3.338 
2 3.019 3.019 
3 2.846 2.846 
6, 1 2.287 0.469 2.756 
4 2.535 2.535 
5 2.403 2.403 
6 1.952 1.952 
1 0.903 0.903 

Table 9. Correlations between environmental variables and en- 
vironmental scores from AMMI- and redundancy analysis (axes 
are linear combinations of variables 7 and 8) 

Variable AMMI-I AMMI-2 AMMI-3 RA-1 RA-2 

1 --0.40 --0.45 --0.11 --0.42 0.13 
2 0.85 0.10 --0.12 0.84 --0.24 
3 0.82 0.02 --0.17 0.83 --0.23 
4 0.78 --0.13 --0.07 0.85 --0.12 
5 0.76 --0.03 --0.07 0.80 -0.19 
6 0.63 --0.45 0.36 0.66 0.59 
7 0.89 --0.19 0.26 0.95 0.30 
8 0.90 0.05 --0.12 0.95 --0.30 
RA-1 0.94 -- 0.08 0.07 1.00 0.00 
RA-2 - 0.01 - 0.40 0.63 0.00 1.00 

(only two times) and variable 3 (four times). The multiple 
regression approach thus leads to a highly idiosyncratic 
description of the interaction. 

Factorial regression 

More parsimonious descriptions of the interaction resid- 
uals are possible with factorial regression. Just as in the 
case of separate multiple regressions, the interaction is 
related directly to environmental variables, but this is 
done simultaneously for all genotypes. Testing of the con- 
tributions of one or several variables can be done by 
means of usual F-tests. With the inclusion or exclusion of 
a variable, 7 degrees of freedom from the interaction are 

involved. Contributions were tested against the remain- 
der of the interaction at 5%. The remainder might be 
tested against an independent estimate of the error, e.g., 
0.023. 

Table 8 gives the results of an all-subsets procedure. 
For  pairs and trios, variables are given in order of inclu- 
sion following a stepwise procedure: for pairs starting 
from every one of the individual variables, which were all 
found significant at 5%, for trios starting from each of the 
pairs remaining after the elimination part of the preced- 
ing step. The pair consisting of variables 7 and 8 (day- 
lengths at the introduction of the N F T  system and at 
harvesting time) performs best with respect to the amount  
of the interaction sum of squares explained. However, the 
pair 8 and 6 (daylength at sowing date) does only slightly 
worse. 

AMMI analysis 

Part of the A M M I  analysis was already presented above 
under Preliminaries (testing for interaction). To gain 
some insight into the meaning of the axes, the correlation 
of the environmental scores for the axes 1 to 3 with the 
environmental variables was calculated (Table 9). Only 
axis 1 shows a relationship with the environmental vari- 
ables, especially with variables 7 and 8. For  an easier 
understanding of the meaning of this result one can look 
at the biplots of axis 2 against 1, 3 against 1, and 3 against 
2 (Fig. i a, b, c). The scaling is such that the score vectors 
for the environments have squared lengths equal to the 
eigenvalues, whereas the genotypes have squared lengths 
of 1. With this scaling in the biplot of axis 2 against 1 the 
squared distance between the environmental approxi- 
mates to twice the amount  of interaction between them 
(Kempton 1984). 

A M M I  axis 1, AMMI-1,  can be seen in Fig. 1 to rep- 
resent roughly a contrast between summer (environments 
2, 3, 13, 15, 17, and 18, having high positive scores) and 
and winter (environments 7, 8, 9, and 11, having high 
negative scores). This conclusion is in accordance with 
the high positive correlations of A M M I - I  with daylength 
at introduction NFT, variable 7, and harvesting date, 
variable 8. Daylength is greater in summer than in winter. 
AMMI-2  is dominated by the environments 4 (highly 
positive) and 13 (highly negative). To say AMMI-2  repre- 
sents a contrast between spring and autumn would be 
overinterpreting. Just as AMMI-2  is not very easily relat- 
able to environmental circumstances, neither is AMMI-3.  

Redundancy analysis 

One way of starting the redundancy analysis is by inves- 
tigating the possibilities for rank reduction of the ma- 
trices of regression coefficients of the factorial regressions. 
In Table 8 the distribution of the interaction sum of 
squares over the redundancy variates is given for each 
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factorial regression. It seems natural  to take the best set, 
pair  7 and 8. The test for a rank reduction using (10) 

[ 6 . 7 7 2 - 3 . 6 4 5  1 
reads: lr = 18 x 8 x log e 6.772-(3.645 + 0.514) = 25.859. 

The quant i ty  lr is, under the null-hypothesis,  of no sec- 
ond dimension, asymptot ical ly  distr ibuted as a )~2 with 
q + (m - 1) - (2 t - 1) = 6 degrees of freedom, q = 2, m = 8, 
t = 2  (see Methods  section). This means that  no rank 

point  for Z6 = 12.592. The reduction is possible, as the 5% 2 
necessity for the full-rank model  was confirmed by a 
permuta t ion  test for the second dimension, condit ional  
on the first dimension, P _< 0.05 (see Methods  section). 
The coefficients for the (standardized) variables in the 
first redundancy variate were 0.13 for 7, and 0.13 also for 
8, approximate  t-values (see Methods  section) were 3.36 

and 3.37. Corresponding values of the second redundan-  
cy variate were 0.40 and -0 .40 ,  with t-values of 4.85 and 
- 4.85. The coefficients were scaled in such a way that  the 
sum of squares for the environmental  scores was 1. 

The first redundancy variate is the sum of the day- 
lenghts at harvesting time and a month  earlier, so high 
values will be found in summer and low values in winter 
(recall that  X-variables were centered to mean zero), 
while intermediate values will be found in spring and 
autumn. The second redundancy variate is the difference 
between both daylength variables. Dur ing summer and 
winter daylength will not  change very much, resulting in 
almost zero values for this redundancy variate. However, 
in spring and autumn daylength changes, and the second 
redundancy variate will become positive in autumn and 



97 

negative in spring. The two redundancy variates together 
thus describe a reaction of nitrate concentration to day- 
length throughout  the year. 

The biplot for the nitrate data (Fig. 2) immediately 
reveals that the genotype-by-environment interaction is a 
season-dependent phenomenon;  the environments are 
arranged in a closed curve running counter-clockwise 
from summer at the right via autumn at the top, winter 
at the left, and spring at the bottom, to summer again at 
the right. Scaling is just as for the A M M I  biplots; that is, 
environmental scores have sum of squares equal to the 
eigenvalue of the corresponding axis. The distance be- 
tween environments is proportional to the amount  of 
interaction between them. Most  interaction can be identi- 
fied between the extreme winter environments 7, 8 and 9 
on the left, and the extreme summer environments 3, 15, 
16 and 17 on the right. 

The data set offers the opportunity for an internal 
check of the adequacy of the model because, for some 
dates, data are available from 1987 as well as 1988. To be 
more specific; environment 1 (8-4-87) may be expected 
to be located between 11 (30-3-88) and 12 (26-4-88), 2 
(6-5-87) has to be in the neighbourhood of 13 (10-5-88) 
and 14 (8-5-88), and 3 (3-7-87) has to be near 18 (30-6-88). 
Inspection of Fig. 2 corroborates these expectations, 
thereby vindicating the chosen model. 

Further evidence for the correctness of the redundan- 
cy solution is given by the position of the genotype RW 
in the biplot. This genotype was selected for its extremely 
low nitrate concentrations under low light conditions 
(Reinink et al. 1987). The genotype RW has above aver- 
age nitrate concentrations in summer, so that highly pos- 
itive inner-products results from the projection of sum- 
mer points (3, 15, 16, 17, 18) on the RW vector, whereas 
RW has below average nitrate concentration in winter, 
and highly negative inner-products result from the pro- 
jection of winter points (8, 9, 10) on the RW vector. 

The cosine of the angle between the genotypical vec- 
tors may be interpreted as an estimate of the correlation 
between genotypical responses over environments. 
Genotypes RW and D M  seem to behave as antipodes. 

Information about the fits for the individual genotyp- 
ical responses (in fact individual genotypical deviations 
from additivity) to the redundancy variates is given in the 
last three columns of Table 7. There it can be seen that the 
genotypes with the greater amounts of non-additivity, 
D M  and RW, seem especially to determine the first re- 
dundancy component;  that ist, their explained sums of 
squares are the highest. For  the second component,  geno- 
types Pa and Pi seem to be the most important. The 
proportion of variance explained by the regressions on 
both redundancy variates is a measure for the quality of 
the representation of the individual genotypes in the bi- 
plot. Genotypes D M  and RW are well represented, 
genotypes Tr and Ls are poorly represented. 
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Table 10. Backward elimination of variables by discarding vari- 
able with highest coefficient on non-significant last redundancy 
variate 

Vari- Coefficients 
able 

1 0.02 0.02 -0.13 0 . 0 3  0.07 0.26 - 
2 -0.44 -0.70 - - - 
3 0.58 0.40 -0,02 -0.73 -0.45 - - 
4 -0.32 0.38 -0,19 0.77 - - - 
5 0.60 . . . . . .  
6 -0.16 -0.30 0,46 0 . 1 8  0.08 -0.13 0.26 
7 0.14 0.44 -0,60 . . . .  
8 -0.43 -0.33 0,44 -0.18 0.36 0.21 -0.19 

Last 0.000 0,003 0.012 0.041 0.061 0,194 0.522 
eigenvalue 
Sum 5.512 5.370 4,998 4.775 4.449 4.365 4.117 
eigenvalues 

The residual mean squares for all genotypes except Ls 
are quite comparable, supporting the view that the re- 
dundancy analysis has taken up almost all structure from 
the data. The exception, Ls, has a higher residual mean 
square, probably due to interaction caused by factors 
other than the amount  of light. The mean of the residual 
mean squares over the genotypes is 0.021, which is close 
to the 0.023 that was derived from the A M M I  analysis. 

An alternative to the above procedure is to start off 
from a full-rank model incorporating all environmental 
variables, and then test the significance of the last redun- 
dancy variate. Upon non-significance the variable with 
the highest coefficient is discarded (see Methods section). 
This process is repeated until the last redundancy variate 
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turns out to be significant. The results are given in 
Table 10. The test for the fourth redundancy variate 
for the model with the variables 1, 3, 6, and 8 reads 

, [-6.772 - (4.459 - 0.061)-] 
l r =  18 x8  x l O g  e L . . . .  6.772--4.459 J = 3.748. Com- 

pared to the 5% value of Z42, 9.488, this means non-sig- 
nificance. As variable 3 had the highest coefficient it 
was discarded. The test for the third redundancy variate 
for the model with the variables, 1, 6, and 8 reads 

~ 6.772_ - (4.365 - 0.194) 
lr =18 x8  xl~ L 6 .772-4 .365  J = 11.162. The 

5% value for )~2 is 11.070. On this criterion the final set 
would be 1, 6, and 8. However  the loglikelihood ratio test 
is slightly over-sensitive (see Discussion) and, therefore, it 
is better to continue until clearer significance for the last 
redundancy variate is found. After removing variable 1, a 
final set, 6 and 8 (daylength at sowing and at harvest time) 
is found for which both redundancy variates are clearly 
significant; lr for the second redundancy variate is 25.847 
(P < 0.001). The interpretation is equivalent to the one 
arrived at earlier. The first redundancy variate is again a 
sum of both environmental variables, with most extreme 
values in summer and winter, and the second their differ- 
ence, being extreme in spring and autumn. This is not 
surprising; in Table 8 it could already be seen that the 
pairs 7 and 8, and 8 and 6, explain the interaction almost 
equally well. Variables 6 and 7 have a correlation of 0.82, 
and should be exchangeable in combination with 8. In 
fact all pairs of variables selected in Table 8, except those 
including variable 1, would have led to the interpretation 
given above. 

Discussion 

Comparison of analyses 

Various methods can lead to a very similar interpretation 
of the interaction. This important  conclusion follows 
from the analyses in the Application section. In analysing 
genotype-by-environment tables one should use different 
approaches and, upon agreement, interpretation is 
straightforward, whereas upon disagreement closer in- 
spection is necessary thereby acknowledging the differ- 
ences between the method and the kind of structure they 
are supposed to detect. 

For  the nitrate data, A M M I  and redundancy analysis 
gave comparable  results, though the first extracts envi- 
ronmental  scores as linear combinations of residuals 
from additivity, whereas the second forms environmental 
scores from linear combinations of measured environ- 
mental  variables. The first A M M I  axis paralleled the first 
redundancy axis, while the second and third A M M I  axis 
more or less collapsed into the second redundancy axis 
(Table 9). The resemblance of A M M I  and redundancy 
solutions means that for the redundancy analysis all rele- 

vant variables were selected (Ter Braak 1987). This is a 
useful diagnostic for the interpretation of interaction. 

The individual regressions per genotype were mainly 
given as a reference point for the other analyses. Individ- 
ual regressions have the advantage of high specificity, but 
the disadvantage of low parsimony. Moreover,  it seems 
more likely that genotypes react to common environmen- 
tal factors as can be uncovered by redundancy analysis. 
The dimension reduction property of the redundancy 
analysis was eventually not used for the redundancy anal- 
ysis departing from factorial regression. Nevertheless, the 
interpretation of the interaction was certainly facilitated 
by the rotation, and the axes do bear on the physiology 
of the plants, as witnessed by the repeatability of the 
environmental scores in time. Besides, the fact that the 
positions of the genotypes in the redundancy biplot 
(Fig. 2) were scattered over all four quadrants means that 
the axes transcend a purely statistical interpretation, be- 
cause in the latter case genotypes would be more likely to 
be situated near the lines y = x and y = - x ,  since geno- 
types would bear no particular relationship to the ex- 
tracted axes. 

The dimension-reducing faculty of redundancy analy- 
sis proved very beneficial in the backward elimination 
procedure in the search for a good subset. However, 
strictly speaking, after final selection of variables 6 and 8, 
further rank reduction was not allowed. Real rank reduc- 
tion can be seen to occur in Table 8 for the sets 5, 6, 1; 
4, 6, 1; and 4, 6. For  these sets the last redundancy variate 
turned out to be non-significant. Though one would not 
base an interpretation on these sets, since better ones are 
available, the estimation of the regression coefficients for 
these sets should be more accurate using the lower rank 
approximation of the matrix of regression coefficients due 
to the separation of structure in the retained dimen- 
sion(s), and noise in the discarded dimension(s) (Gauch 
1982). 

In the Application section a slight over-sensitiveness of 
the loglikelihood ratio test was mentioned. This phenom- 
enon is best illustrated by situations for which F-tests, as 
well as loglikelihood ratio tests, can be calculated. Con- 
sider the inclusion of variable 1 in the model after having 
fitted main effects. The loglikelihood ratio test is l r =  
144 x loge [6.772/(6.772-0.903)] = 20.608 (see Table 8), 
to be compared with a ;~2 distribution, so P = 0.004. The 
F-test is f = [0.903/7]/[6.772-0.903)/112] = 2.46, to be 
compared with an Fc7; 112] distribution, giving P = 0.022. 
Somewhat less obvious is the following example. Take the 
pair 8, 6, and the trio 8, 6, 1. F rom Table 8 we know that 
6 and 8 together explained a sums of squares of 4.117. 
Adding i raises this amount  to 4.365 (see Table 10). An 
F-test for inclusion of 1 has the form f~7;981= 
[(4.365 - 4.117)/7]/[(6.772-4.365)/98] = 1.44, P = 0.198, 
so inclusion of variable i seems not to be supported by 
this F-test. On the other hand having found that both 



redundancy variates are significant for the pair 8 and 6 
(Table 8), a possible test for the need of the inclusion of 1 
is to test the third redundancy variate for the trio 8, 6, 1. 
The loglikelihood ratio test here gives P = 0.048 (see Ap- 
plication section). A reason for the liberality of the log- 
likelihood ratio test could be that, though it is based on 
the comparison of two estimates for the residual variance, 
it does not take into account the different degrees of 
freedom on which the estimates are based. However, in 
general, F-test and loglikelihood ratio test do not deviate 
much, and it seems recommendable anyway, not to ad- 
here too strictly to the results of significance testing. They 
are best used as rough guides. 

Extensions and other applications 
of the redundancy analysis model 

An appealing extension of redundancy analysis is the so 
called partial redundancy analysis, in which not only 
environmental variables, but also one or more covari- 
ables, are present (Davies and Tso 1982). To obtain the 
partial redundancy analysis solution the environmental 
variables are first regressed on the covariables, after 
which the residuals of these regressions replace the envi- 
ronmental variables in the subsequent redundancy analy- 
sis. In this way the contribution of particular environ- 
mental variables conditional on the contribution of other 
environmental variables is testable. 

In the same vein, A M M I  analysis and redundancy 
analysis can be combined. First, extract the significant 
redundancy variates; next, search for structure in the 
residuals by performing a singular value decomposition 
on them to see whether there is any structure left. Of 
course, covariables or conditioning can again be incorpo- 
rated in this analysis. 

Instead of interpreting the genotypical responses as 
variables and the environments as sample points, one 
could analyse the reversed situation of the genotypes 
within environments constituting variables and the geno- 
types over environments being sample points. Explanato- 
ry variables can then express either group structure in the 
genotypes or contrasts between them. A straightforward 
generalization of the redundancy analysis model even 
makes it possible to investigate both types of dependence 
simultaneously (Denis 1988; Velu 1991). 

Another interesting application of redundancy analy- 
sis lies in the search for informative genotypes with re- 
spect to environmental circumstances, say indicator 
genotypes. Consider the model consisting of the genotyp- 
ical main effect and the first dimension of the singular- 
value decomposition of the data corrected for the geno- 
typical main effect. This model is almost equivalent to a 
regression on the mean model; the genotypical scores, in 
a reparameterized form, are estimates for the regression 
coefficients, and the environmental scores are estimates 
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for the environmental main effects. Rewrite this model as 
a redundancy model by choosing as explanatory vari- 
ables the (centered) genotypical responses themselves. 
When subsequently a subset selection procedure is ap- 
plied to the explanatory genotypical responses a maxi- 
mally adequate subset of informative genotypes will be 
retained. A similar approach is possible with respect to 
the environments. 
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