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Abstract. We present experimental and theoretical results concerning immiscible displacements 
(drainage) in 2-dimensional permeable media. When capillary forces are predominant, the injected 
fluid presents very thin fingers and the 'Representative Elementary Volume' concept cannot be used 
for describing the partial saturations. The purpose of this paper is to show how this classical concept 
can be replaced by a statistical approach based on 'fractal' geometry. 
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1. Introduction 

The displacement of one fluid by another nonmiscible fluid in a porous medium is 
of importance in many processes, especially petroleum recovery. In this domain, 
an understanding of the relevant mechanisms is very important, because fingering 
leads to very inefficient recoveries. 

The classical approach to describe monophasic or multiphasic flows in porous 
media is based on the Representative Elementary Volume concept (Bear, 1972). 
For instance, a property such as the porosity e can be measured as a function of 
the radius l of a sphere centered on a point M (Figure 1). For values of l smaller 
than In, of the order of the grain size, we see the microscopic effects due to the 
pores and for values larger than In, the porosity becomes constant if the medium 
is homogeneous (for heterogeneous media, the porosity varies at the macroscopic 
scale L). Consequently, the porous medium can be studied as a continuum in the 
range lo-L. Generally, the same kind of assumption is made for the study of 
multiphasic flows, the REV concept being extended to the partial saturations of 
the various fluids (Marie, 1981; Scheidegger, 1974). With this assumption, one 

* Communication presented at the International Symposium on the Stochastic Approach to Subsur- 
face Flow, Montvillargenne 4-7 June 1985. 
** Now at Institut Franqais du P6trole, BP 311, 92506 Rueil Malmaison, France. 



600 ROLAND LENORMAND AND CESAR ZARCONE 

CO 
0 
fr- 
O 
0_ 

10 

Fig. 1. Porosity and representative elementary volume. 

can define any property (partial saturations, pressures) at each mathematical 
point. This approach leads to the classical notions of relative permeabilities, 
generalised Darcy's laws and capillary pressure curves. 

This approach, however, does not seem suitable for describing some kinds of 
two-phase displacements in porous media. For instance, the scaling of various 
free imbibition experiments does not fit (Lefebvre du Prey, 1978), and visualisa- 
tions in transparent media show large-scale heterogeneities (or fingers) in the 
fluid patterns (Chuoke et al., 1959; Paterson, 1983; Paterson et al., 1984). This 
fingering may be due to various causes, especially viscous instabilities (Saffman 
and Taylor, 1958; Lenormand and Zarcone, 1985a) or capillary mechanisms. 

The purpose of this paper is to describe experimental displacements in a 
two-dimensional permeable medium when capillary forces are important, and 
then to discuss a theoretical model. In this case, all the displacement mechanisms 
are linked to capillary forces and to the random sizes of the pores in a porous 
medium. 

The first part of this study presents the set-up (a two-dimensional etched 
network) and the experimental results. In the second part, we show how these 
results can be described by a statistical theory known as invasion percolation (IP). 
In this approach, the shape of the fingers can be characterized by one parameter 
called the fractal dimension and, in the final part, we present a technique for 
measuring the fractal dimension of the injected cluster. 
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2. Experimental Resulls 

Some experiments have been carried out in transparent three-dimensional media 
(Chuoke et al., 1959; Paterson et al., 1984), but it is difficult to see the details of 
the structure. So, as a first approach, we prefer to use a two-dimensional medium 
which is easier to observe and describe. 

We have developed a technique (Bonnet and Lenormand, 1977) using photo- 
chemical etching and transparent resin molding. Figure 2 shows our method: 

�9 A negative film is made from a photograph or from a network drawn by a 
computer. The black parts will be the channels of the micromodel. 

�9 A photosensitive plastic plate (used to make printing plates) is illuminated by 
ultra-violet light through the negative. The plastic under the white parts of 
the negative polymerizes and becomes tough (Figure 2a). 
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Channels 

(e) Protecting the 
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Fig. 2. Procedure for the making of the etched networks. 
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�9 The soft part of the plate is washed by a warm sodium hydroxyde solution. 
The depth of each etched channel is constant (equal to the 1 mm thickness of 
the photosensitive plate) and its cross-section is rectangular, with a minimum 
width around 0.1 mm (Figure 2b). 

�9 This plate is not transparent. So, a transparent replica made in polyester 
resin is cast in a rubber mold of the pattern (Figure 2c and 2d). 

�9 The channels are filled with paraffin wax under vacuum and the surface is 
carefully cleaned (Figure 2e). 

�9 A thick layer of polyester resin is cast on this plate to make the cover 
(Figure 2f) and, after polymerisation, we obtain a block of transparent resin, 
with the inside of the channels filled with the paraffin wax (Figure 2g). 
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Distribution of the widths of the capillaries in the 42 000 ducts network. 
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�9 The paraffin is removed by heating the micromodel and the channels are 
cleaned by flowing toluene, which dissolves paraffin. 

The cross-section of each duct of the etched network is rectangular with a 
constant depth x = 1 mm and a width d which varies from throat to throat 
(generally d > 0.1 ram). For this study, we used two kinds of networks: (i) a 
42 000 duct network (150 x 150 mm) with seven classes of channels (width from 
0.1 to 0.6 mm) distributed with a log-normal law (Figure 3) and a random 
location; (ii) a very large network (300 x 300 mm) containing 250 000 ducts, used 

Figure 4. Cluster generated by injecting a non-wetting fluid (air, in white) in a 40 000 duct network 
filled with a wetting fluid (oil, in black). Situation at the percolation threshold. 
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for statistical measurement. The distance between two sites of the network is 
about 1 mm. 

Generally speaking, when one fluid (oil, say) is slowly displacing another 
nonmiscible fluid (water, say) in a capillary tube, the fluid for which the contact 
angle 0 (between the tube and the meniscus) is smaller than ,r/2 is called the 
wetting fluid; the other one is the nonwetting fluid. 

The wetting fluid is paraffin oil (viscosity /x = 20 cP or 0.020 SI), the nonwet- 
ting fluid is air (~ = 0.02 cP), the contact angle is zero and the surface tension 
7 = 20 dyne/cm (0.020 SI). The nonwetting fluid is injected by slowly decreasing 
the pressure in the wetting fluid (constant level container) and different experi- 
ments are run from 1 to 96 h. This time scale is characterized by the capillary 
number (calculated for the wetting fluid), which is a dimensionless form of the 
flow rate q: 

In this equation, /x is the viscosity of the wetting fluid. In a three-dimensional 
medium ~ is the cross-section area of the sample and, for the two-dimensional 
network, we will take the product of the total width (150 mm) by the channel 
depth (1 ram), q/~ being a mean velocity of the fluid in the channels. This 
capillary number characterizes the ratio between viscous and capillary forces. 
The fluids are pumped through the micromodel using constant flow rate syringe 

Fig. 5. Close-up of the situation of the wetting fluid (black).and the nonwetting fluid (white) in the 
ducts of the etched network. 
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pumps. The micromodel is held horizontal to avoid gravity effects and the 
wetting fluid, which initially fills the network, is displaced by the nonwetting fluid 
(drainage). 

For a given capillary number, the experiments are reoroducible. During the 
displacement, the nonwetting fluid presents very thin and ramified fingers 
(Figure 4) and at the end of the experiment, the cluster size of the trapped phase 
varies from the pore scale (Figure 5) to the network scale (large clusters in black, 
Figure 4). 

3. Theoretical Model 

Capillary forces prevent the nonwetting fluid from spontaneously entering a 
porous medium. It can only enter a throat (diameter Do) when the pressure 
exceeds the pressure in the wetting fluid by a value P, called the capillary 
pressure and linked to the surface tension y by the Laplace law: P =  
4y  cos( O)/ D:). Assuming that the porous medium can be described by a network 
of pores (nodes or intersections of the lattice) connected by ducts (bonds), from a 
statistical point of view, a duct with D > Do is an active or conductive bond and a 
duct with D < Do an inactive bond. The fraction p of active bonds can easily be 
deduced from the throat size distribution (Lenormand, 198l). 

The geometrical and transport properties of a lattice with active and nonactive 
bonds can be described by percolation theory. This approach is described in detail, 
e.g., Guyon et al. (1984) but it is perhaps appropriate to mention a few important 
features of percolation theory here. Let us imagine a regular electrical network 
containing a fraction p of resistances and a fraction ( 1 - p )  of open bonds at 
random locations. When the fraction p is small, the network as a whole is 
nonconductive: all the clusters of connected resistances are smaller than the size 
of the network. For a given value of the fraction p (the percolation threshold p*) 
the network becomes conductive because a large cluster of resistances (the 
infinite cluster in percolation theory) joins the opposite faces of the network. 
Theoretical calculations and computer simulations can predict the value of p*, 
the geometrical properties of the clusters and also the transport properties of the 
whole network near the threshold. For instance: 

�9 For a square network the value of p* is 0.5. 
�9 Above the threshold, the conductance o" of the whole network varies as 

( p -  p*),~. 

�9 The fraction of bonds Y belonging to the infinite cluster is proportional to 
(p - p*)~. 

In these equations, /.t and /3 are called critical exponents and do not depend on 
the details of the network (shape of the mesh) but only on the dimensionality of 
the Euclidean space. For instance, in a two-dimensional network, /~ = 1.1 and 
/3=o.14. 
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Another important property of the infinite cluster near the percolation 
threshold is that it has a fractal structure (fractal geometries are described in 
Mandetbrot, 1977). If we consider a box of dimension L • L centered on a point 
of the cluster, the number N of bonds belonging to the cluster and lying within 
this box scales as a power law 

N ~ L ~  (2) 

where D,  the [ractal dimension is not an integer (D = 1.89). For comparison a 
cluster is homogeneous (in a two-dimensional space) if the value of the exponent 
is 2. 

It has been proved that the injected fluid invades all the percolation clusters 
connected to the injection face (De Gennes and Guyon, 1978; Lenormand and 
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Fig, 6. Computer simulations of invasion percolation (after Lenormand and Bories, 1980), The bold 
line shows the continuous path between the opposite faces. 
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Bories, 1980; Chandler et al., 1982). This mechanism has been called invasion 
percolation. 

This percolation theory, however, does not take into account the trapping 
mechanism which occurs when the displaced fluid is incompressible. During the 
displacement, the wetting phase is trapped in the network when the invading 
nonwetting fluid breaks the continuous path toward the exit. Computer simula- 
tions of this invasion percolation with trapping using two-dimensional networks 
(size up to 100 x 100) are shown in Figure 6 and our experiments qualitatively 
agree with this simulation (cf. with Figure 4). Computer simulations also show a 
fractal behavior at the percolation threshold and at the end of the displacement, 
when all the bonds are active (p = 1) but not necessarily displaced (effect of 
trapping). In both cases, the fractal dimension D is found to be 1.82 in a 
two-dimensional network (Wilkinson and Willemsen, 1983) and the difference 
with ordinary percolation (D = 1.89) seems significant. 

To check the validity of this approach, we have measured the fractal dimension 
of the injected cluster on the experiments. 

4. Fractal Dimension 

This study has been published with more details in Lenormand and Zarcone, 
(1985b). 

The experiments were run in the large network (250000 ducts) at various 
capillary numbers and photographs were taken at the end of the displacement 
(Figure 7). Digitization of the photographs was quite impossible because of the 
black meniscus which surrounds the nonwetting phase in each pore and we had to 
use a simple but laborious technique: from an origin O roughly at the center of 
the network, we count the number N of invaded ducts in an L x L square 
centered on O. A duct is counted only when the nonwetting fluid has invaded 
both the duct and the pore (intersection) next to this duct (ducts where the 
meniscus remains at one or both ends are not counted). At the end of the 
displacement, the variation of N as a function of L (measured in units of the 
mesh size) for different capillary numbers was plotted on a log-log scale (Figure 
8). The curves are linear when the size L is greater than about 40 meshes and a 
least square fit for the slope leads to D = 1.83+0.01 for the three slowest 
displacements (Ca = 3.3 • 10 -8, 6.5 • 10 -8, 1.2 x 10 -7) and D = 1.80 for Ca = 
6.2 • 10 -7. These measurements are in good agreement with the theoretical value 
D = 1.82. 

We can conclude that experimental displacements of a wetting fluid by a 
nonwetting fluid in a two-dimensional random network are consistent with 
computer simulations of invasion percolation. In particular, the measured fractal 
dimension of the injected cluster is close to the simulation value of 1.82. While it 
is true that the range of L-values used is less than one decade, this is also the case 
for the computer experiments, the latter being limited by the time required at 
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Fig. 7. Displacement of the wetting fluid (black), which initially fills the 250 000 duct network, by 
the nonwetting fluid. Situation at the end of drainage. 

each step to check if part of the displaced fluid has been trapped. Thus, we 
cannot strictly exclude the possibility that, in both the experiment and simulation, 
the fractal dimension should really be the same as the value 1.89 for classical 
percolation. Nevertheless, these experiments do show that the saturation is not 
homogeneous at the scale of the network and that this result is strongly linked to 
capillary effects. 

5. Discussion 

Now, we can compare this ~ractal approach with REV concept described in the 
introduction. 

First of all, we have measured the size of the REV corresponding to the 
porosity in the etched network. Figure 9 shows that for three points, chosen at 
random locations, the porosity E is constant when the radius r of the circle is 
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Figure 8. Number N of filled ducts versus size of the L • L bos for different capillary numbers Ca. 
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picture. 

larger than abou t  five mesh sizes a. Now, we can  do the same ca lcula t ion  for the 

sa tura t ion  of the in jec ted  fluid for one  of the d isp lacements  descr ibed previous ly  

(Ca = 1.2 x 10-7). We measure  the f ract ion S of displaced ducts  (proper ty  very  

close to the sa tura t ion)  in a L x L square  (2r --- L) and F igure  10 shows that  S is 

slowly decreas ing  when r increases.  

The  f ract ion S is defined by S = N / L  2, so we can deduce  the var ia t ion  of S 
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Fig. 9. Porosity E and REV in the 40 000 duct etched network. 

from Equation (2): 

S ~ L (~ (3) 

and, consequently, the exponent (D - 2) is negative when D < 2. 
Thus, the fractal approach can be understood as an extension of the REV 

concept when the property studied (for instance, porosity or saturation) is not 
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Fig. 10. Fraction of filled ducts S in a 2r x 2r box. 
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constant but can be approximated by a power law. The classical approach is only 
a special case, when the exponent is integer. Also notice that the power law is 
limited to values r/a > 20 (or L > 40, Figure 8). 

This fractal approach can also be very useful to describe the porosity of very 
inhomogeneous media, the surface area of the pores (Katz and Thomson, 1985) 
and also viscous fingering in a porous medium (Paterson, 1984) or a Hele Shaw 
cell (Nittmann et al., 1985). 

6. Conclusion 

We obtained some results concerning the displacement of a wetting fluid by a 
nonwetting fluid in a two-dimensional etched network. At low flow rate (quasi- 
static displacement), the nonwetting fluid forms very thin fingers. This kind of 
capillary fingering is well described by invasion percolation theory and the 
measured fractal dimension is consistent with computer simulations D = 1.82. 

Consequently, it seems to us that a statistical approach would be more suitable 
for describing capillary displacement in porous media than the classical equations 
based on the continuum approach. 

7. Note 

Since the presentation of this paper at the International Symposium on the 
Stochastic Approach to Subsurface Flow, in June 1985, some new results have 
been published in this domain: (i) calculation of injection conditions (capillary 
number and viscosity ratio) required for 'pure' capillary fingering (Lenormand, 
1985 and 1986a); (ii) development of a technique for digitizing the pictures by 
using a photographic substraction of an image taken before the displacement (see 
results in Lenormand, 1986b); (iii) publication of an overview on applications of 
fractals by Williams and Dawe. 
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