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Abstract 

The recent findings on a more general involvement of phospholipids in signal transduction and on the 
different roles of inositolphospholipids in particular, thoroughly complicate research in this field. It becomes 
increasingly evident that measuring [3H]inositolphosphate formation alone will never provide insight into the 
complex machinery of cellular signalling. Certainly for the heart in which the role(s) of the inositol- 
phospholipids is far from clarified, the novel trends provide new directions for research. 

Introduction 

In recent years our knowledge of the signal trans- 
ducing systems involving phospholipids has rapidly 
progressed. Especially the inositol containing 
phospholipids came into focus after the discovery 
of the second messengers diacylglycerol and in- 
ositoltrisphosphate [1, 2]. Since then, several hor- 
mones and neurotransmitters have been demon- 
strated to stimulate a phospholipase C in a recep- 
tor-mediated manner, apparently correlated with 
functional responses such as secretion, contraction 
and metabolic activities (for review see [3]). In the 
heart, similar correlates have been proposed, but 
their relevance remains far from clear. Recent find- 
ings on the involvement of different phospholipas- 
es in signal transduction and the putative role of the 
phosphoinositides in other cellular processes might 
add to the understanding of the complex machinery 
of transmembrane signalling. 

In this paper I will discuss some representative 
data obtained from studies on the heart and high- 
light important new developments in phospholipid 
research. 

Inositolphospholipids: chemistry and metabolism 

Phosphoinositides constitute 2 to 8% of the cell 
membrane lipid. The most abundant form is phos- 
phatidylinositol (PI) (Fig. 1), which in the sn-1 and 
sn-2 positions is esterified with two fatty acids. The 
sn-3 position is phosphodiesterified with myo-in- 
ositol at the D-1 position. PI can be phosphorylated 
to phosphatidylinositol-4 phosphate (PIP) by PI 
kinase [4, 5]. Very recently, it was found that a PI 
kinase (type I) could phosphorylate PI at the D3- 
position [6]. PIP kinase further phosphorylates PIP 
to phosphatidylinositol 4,5 biphosphate (PIP2) [7]. 
These phosphorylation processes can be reversed 
by PIP2- and PIP phosphomonoesterase [8] and 
appear on a metabolic scheme like futile cycles. 

The regulation as well as the subcellular distribu- 
tion of these phosphorylation-dephosphorylation 
processes is still unclear. Inositolphospholipids are 
substrates for different phospholipases [3, 9 10]. 
Especially PIP2 specific-phospholipase C is under 
intensive investigation in view of its importance as 
a primary step after receptor activation. One of the 
phosphodiesteratic cleavage products is diacylgly- 
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Fig. 1. The chemical structure of the inositolphospholipids. 
Myo-inositol is a hexahydroxycyclohexane. The molecule can 
be likened to a turtle in which the four legs and the tail are five 
equatorial hydroxyls, the turtle's head is the axial hydroxyl at 
position D-2 (V) [87]. 

cerol, ,which activates protein kinase C, a key en- 
zyme in this signal transducing system [1]. The 
remaining product,  inositoltrisphosphate (IP3) has 
been shown to mediate the release of Ca 2+ from 

intracellular non-mitochondrial  stores [2]. An IP 3- 
kinase has been identified in different tissues and 
phosphorylates this sugar phosphate at the D3- 

position; this te trakisphosphate was reported to 
stimulate Ca2+-influx through plasma membrane  

channels in oocytes [11]. These observations, 

which might be crucial in the understanding of how 
receptor activation leads the influx of Ca 2+, still 
needs confirmation in other cell types. The metab-  

olic scheme for the resynthesis of inositolphospho- 
lipids is presented in Fig. 2. 

I n o s i t o l p h o s p h o l i p i d s  in  the hear t  

Cardiac function is subject to control by the auton- 
omic nervous system and the interaction between 
the sympathic and parasympathic  nervous system is 
complex. In the heart ,  researchers have tried to 
correlate changes in mechanical activity with alter- 
ations in inositolphospholipid metabolism induced 
by different agonists. Interpretat ion of these data is 
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Fig. 2. Inositol phospholipid metabolism 
PIP2 : Phosphatidylinositol 4,5-bisphosphate 
PIP : Phosphatidylinositol 4-phosphate 
PI : Phosphatidylinositol 
DAG : Diacylglycerol 
CDP-DAG : Cytidine diphosphodiacylglycerol 
PA : Phosphatidic acid 
IP3 : Inositol trisphosphate 
IP2 : Inositol diphosphate 
IP : Inositol phosphate 
I : Inositol 
1 : PI kinase 
2 : PIP phosphomonoesterase 
3 : PIP kinase 
4 : PIP2 phosphomonoesterase 
5 : phospholipase C 
6 : DAG kinase 
7 : CTP-phosphate cytidyltransferase 
8 : CDP:I,2-DAG inositol phosphatidyltransferase 
9, 10, 11, 13 : Inositol phosphate phosphomonoesterases 
12 : IP~-kinase 

hampered  by the fact that the tissue preparat ions 
used for measuring mechanical activity, are very 

heterogeneous and contain, besides cardiac myo- 
cytes, also smooth muscle and endothelial cells, 
nervous and connective tissue, etc. The different 
cell types have their particular biochemical and 
functional responses when stimulated; likewise, 
the chemical changes measured in the total prep- 
aration do not necessarily correlate with the alter- 
ation in mechanical properties.  Fur thermore,  spe- 
cies differences and the use of different cardiac 
tissue and cell preparat ions limits the number  of 
general conclusions as yet to be drawn. I will there- 
fore present  some recent data that are representa- 
tive for the work on the heart  and should reflect its 
complexity. 



al-Adrenergic response 

By analogy with other tissues, al-adrenoceptor 
stimulation induces inositolphospholipid break- 
down in tissue preparations [12-14] as well as in 
cardiac myocytes [14, 15]. In rat ventricular myo- 
cytes, epinephrine, the most potent agonist at elic- 
iting [3H]inositolphosphate release, is somewhat 
better than norepinephrine; phenylephrine and 
methoxamine are partial agonists [16]. The relative 
weak response of phenylephrine in inducing IP 
release contrasts with its efficiency in increasing the 
inotropy of the heart [17]. Recently Otani and co- 
workerg [18] presented a study in which they com- 
pare the a~-adrenoceptor mediated phosphoinos- 
itide breakdown with the inotropic response in rat 
left ventricular papillary muscles. In [3H]inositol- 
labeled tissue, the authors found that phenyl- 
ephrine induced a rapid decrease in PIP2 and an 
increase in IP3; PI was broken down slowly con- 
comitantly with a long-lasting accumulation of IP. 
The mechanical response induced by the agonist 
consisted of a small transient increase in inotropy 
within the time scale of IP3 formation, a subsequent 
drop in inotropic response followed by a long-last- 
ing strong increase in contractile force. Phor- 
bol-12,13-dibutyrate, a protein kinase C activator 
which, when given alone, had no effect on the 
inotropic response, strongly amplified the long- 
lasting inotropic effect of phenylephrine. As was 
suggested by the authors, these data are indicative 
of a role of Ca 2+ mobilized by IP3 in the fast, short 
increase in inotropy, while the sustained inotropic 
effect may be provoked by the activation of protein 
kinase C, consequent upon the long-lasting phos- 
pholipase C activity. 

Muscarinic response 

Stimulation of the cardiac muscarinic receptors al- 
so provokes the breakdown of inositolphospholi- 
pids, but in contrast to phenylephrine, induces a 
marked decrease in chronotropy and inotropy. At 
first glance it therefore appears that both neuro- 
transmitters use the same transducing pathway to 
serve opposing physiological functions in the heart. 
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However, the cardiac muscarinic receptors not 
only confine their primary message to inositolphos- 
pholipids, but are negatively coupled to adenylate 
cyclase by means of Gi, a guanine nucleotide bind- 
ing protein [19]. Decreased formation of cAMP 
apparently diminishes the entry of Ca 2+ through 
voltage-dependent channels [20, 21]. In the atrium, 
muscarinic receptors are also linked to K ÷ chan- 
nels, again by means of Gi and/or Go, without 
further involvement of a second messenger [22, 
23]. Subsequent to receptor stimulation, K ÷ con- 
ductance is increased, which leads to hyperpolar- 
ization of the sarcolemma and decrease in action 
potential duration [24]. Together with the reduced 
influx of Ca 2+, the increased influx of K + might 
contribute to a decrease in the mechanical activity 
of the heart. More insight in the relative import- 
ance of these primary biochemical alterations in 
cardiac function is obtained by comparing the po- 
tency of different muscarinic agonists in the sep- 
arate responses and by studying their agonist con- 
centration-dependency. Carbachol stimulation in- 
duces the hydrolyses of inositolphospholipid in a 
concentration range from 10 -6 to 10 -4M [14, 25, 
26]; decrease in Ca2+-conductance [24] increase in 
K+-conductance [24] and inhibition of isoprotere- 
nol induced cAMP formation [27, 28], are already 
obtained between 10 8 and 10 -6 M of this agonist. 
Even more remarkable is the effect of oxotremo- 
rine, which effectively antagonizes contraction at 
the low dose range but is ineffective in provoking 
inositolphospholipid breakdown even at 3 x  
10 -4M [25]. From these data it becomes evident 
that the negative inotropic and chronotropic effect 
of muscarinic agonists on the heart is probably not 
mediated by changes in inositolphospholipid 
breakdown. Evidence in favor of a causal relation- 
ship between inositolphospholipid breakdown and 
contraction, even when the muscarinic receptor 
was stimulated, was obtained in experiments in 
which the guanine nucleotide binding protein acti- 
vation was blocked by pertussis toxin [25]. In these 
conditions, muscarinic inhibition of adenylate cy- 
clase is abolished and the hyperpolarization result- 
ing from increased K+-conductance is inhibited. In 
chick atria, carbachol (10-6-10-3M) induces the 
hydrolysis of inositolphospholipid, depolarizes the 
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membrane and increases the contraction force [25]. 
Although acetylcholine itself is an agonist for the 
different biochemical and contractile responses de- 
scribed above, the functional significance of the 
positive inotropic effect of muscarine receptor 
stimulation in pertussis toxin-treated tissue is as yet 
not clear. 

Other receptors coupled to inositolphospholipids 

Besides the muscarinic and al-adrenergic receptor 
agonist, angiotensin [29], vasopressin [30], throm- 
bin [31], adenine nucleotides [32] and atrial dilata- 
tion [33] have been reported to induce the hydroly- 
sis of inositolphospholipid in cardiac cells. Al- 
though a stimulatory effect of this transducing sys- 
tem on the contractile response can not be ex- 
cluded, it remains tempting to look for another 
common functional response. For the atrium, atrial 
natriuretic peptide (ANP) secretion might be such 
a response. Indeed, muscarinic agonists, adrena- 
line, vasopressin [34] and dilatation [33] have been 
demonstrated to induce ANP release. As found in 
many other cell types, inositolphospholipid break- 
down might, at least in the atrium, be involved in 
stimulus-secretion coupling. Other roles for the PI 
pathway have been proposed, but for more in- 
formation I would like to refer the reader to the 
excellent review by Brown and Jones [16]. 

From the experimental data presented in the 
literature, it is evident that cardiomyocytes carry 
receptors that induce changes in inositolphospholi- 
pid labeling. More insight into the molecular link 
between the phospholipid- and the functional re- 
sponse awaits further investigation. 

Inositolphospholipids, a complicated matter 

A major problem in studying the involvement of 
inositolphospholipids in signal transduction and its 
functional repercussion, is the often underestimat- 
ed complexity of the inositolphospholipid metab- 
olism itself. In the last part, I would like to focus on 
the new developments in lipid-mediated signal 
transduction and on the various 'non-second mess- 

enger' roles of the inositolphospholipids that might 
be implicated in cellular function. 

Quantifying the formation of [3H]inositolphos- 
phates in [3H]inositol-labeled tissue and cells is 
easy, inexpensive, and has definitely proven to be 
successful as a measure for phosphodiesteratic 
breakdown of inositolphospholipids. However, 
these measurements do not evidence the activation 
of a receptor-coupled inositolphospholipid-specific 
phospholipase C. This frequent overinterpretation 
becomes even more evident in the light of recent 
data on the existence of receptor-coupled (not in- 
ositolphospholipid-specific) phospholipase C [35- 
39]. The consequent abundant amount of DAG 
formed compared to the probably negligible 
amount of IP3 likewise points to a major role of 
protein kinase C in triggering the functional re- 
sponse. Furthermore, receptor-mediated activa- 
tion of inositolphospholipid kinases [40-44]is often 
overlooked. As long as the coupling (either medi- 
ated by a guanine nucleotide binding protein or 
not) of a receptor-type and the phospholipase C 
remains unproven, activation of inositolphospholi- 
pid kinases deserves consideration as primary 
steps. Indeed activation of these enzymes can lead 
to an increased formation of IP3 and DAG due to 
the increased level of substrate for phospholipase 
C. These few examples of putative errors do not 
question the importance of IP3 and DAG as second 
messengers, but emphasize the importance of care- 
ful biochemical analysis before the involvement of 
inositolphospholipid-specific phospholipase C is 
decided to be the primary step. Careful interpreta- 
tion of the data that illustrate the activation of the 
second messenger 'acceptor' systems is important, 
too; that is to say the mobilization of intracellular 
Ca 2+ and the activation of the protein kinase C. 
Although IP3 has repeatedly been demonstrated to 
be selective among the inositolphosphates to in- 
duce CaZ+-release from intracellular stores, evi- 
dence is accumulating that other metabolites such 
as GTP [45-47], NADP [48], phosphatidic acid [49] 
and arachidonic acid [50, 51] can mediate intracel- 
l u l a r  C a  2+ liberation. Especially the latter two 
might be important i n  signal transduction since 
their formation is also under receptor control. As 
for protein kinase C, the matter appears to be even 



more complicated. Consistent with the recent iden- 
tification of 7 subtypes of the enzyme that mainly 
differ in their regulatory region [52], evidence ac- 
cumulates that regulating co-factors are also differ- 
ent. Again GTP [53] arachidonic acid [54-56], but 
also polyphosphoinositides [57], lipopolysaccha- 
rides [58], lysophospholipids [59], sphingomyelin 
[60] were shown to affect C kinase activity. Al- 
though the importance in vivo of most of these 
'mediators' remains to proven, these data empha- 
size that activation of intracellular Ca 2+ mobiliz- 
ation and of protein kinase C does not necessarily 
imply the activation of inositolphospholipid-speci- 
fic phospholipase C. 

Inositolphospholipids apparently have other 
functions besides being the substrate for second 
messengers. It is suggested that inositolphospholi- 
pids regulate protein kinases [61--63], DNA poly- 
merase [64], hexokinase [65] and ATPase activity 
[66-69]. An outstanding example is the work of 
Vansanayi and his colleagues, which shows that 
skeletal muscle sarcoplasmic reticular CaZ+-trans - 
port ATPase drastically increases when associated 
PI is phosphorylated to PIP [70]. Furthermore, 
polyphosphoinositides affect the assembly of actin 
[71-76]. The enzymatic activities mentioned above 
as well as the activation of the cellular contractile 
system are mostly under receptor control. Protein 
kinase C activity as well as changes in cAMP levels 
may affect the formation of polyphosphoinositides 
[77-81], which implies that receptor-mediated sec- 
ond messenger generation can regulate the level of 
inositolphospholipid and likewise enzymatic and/ 
or contractile activity. A direct link between, how- 
ever, remains to be proven. 

Finally, it has been known for many years that 
glycosylated forms of PI serve as a covalent anchor 
for proteins (f.e. alkaline phosphatase, acetylcho- 
linestase) to membranes (for review see [82]). 
More recently, glycosyl-PI was found to be in- 
volved in the action of insulin [83]. Both the pro- 
tein-linked and the protein-free forms can be 
cleaved by phospholipase C, which yields diacyl-or 
dialkylglycerol. Free inositolglycan regulates at 
least in cell-free assays several insulin-sensitive en- 
zymes such as cAMP phosphodiesterase, adenylate 
cyclase, pyruvate dehydrogenase and phospholipid 
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methyltransferase [84-86]. A role for insulin-in- 
duced glycerolipid metabolism in mediating insu- 
lin-stimulated glucose transport in myocytes has 
recently been evidenced [87]. In future, inositolgly- 
can as a novel second messenger will undoubtedly 
be the object of intensive research. 
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