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Abstract. Many problems in transport planning and management tasks require an origin- 
destination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained 
through a large scale survey such as home or roadside interviews, tend to be costly, labour 
intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available 
data is particularly attractive. 

The need of low-cost methods to estimate current and future O-D matrices is even more 
valuable in developing countries because of the rapid changes in population, economic activity 
and land use. Models of transport demand have been used for many years to synthesize O-D 
matrices in study areas. A typical example of this is the gravity model; its functional form, plus 
the appropriate values for the parameters involved, is employed to produce acceptable 
matrices representing trip making behaviour for many trip purposes and time periods. 

The work reported in this paper has combined the advantages of acceptable travel demand 
models with the low cost and availability of traffic counts. Three types of demand models have 
been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three 
estimation methods have been developed to calibrate these models from traffic counts, namely: 
non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximum- 
likelihood (ML). 

The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They 
were found to perform satisfactorily since each calibrated model reproduced the observed O-D 
matrix fairly closely. The tests were carried out using two assignment techniques, all-or- 
nothing and the stochastic method due to Burrell, in determining the routes taken through the 
network. 

1. Introduction 

Travel has become an integral part of our daily (urban) life. This activity 
generates its good share of problems to any community, including traffic 
congestion, delay, air pollution and visual intrusion. Any measure to 
alleviate these problems, presupposes an understanding o f  the underlying 
travel pattern. The concept of an "O-D matrix" has been adopted by 
transport planners to represent the most important features of this travel 
pattern. When an O-D matrix is assigned onto the network, a flow pattern 
will be produced. From examining this, one can identify the problems and 
some kind of solution may be devised. Therefore, an O-D matrix plays a 
very important role in various transport studies. 

Unfortunately, "conventional methods" for estimating O-D matrices rely 



much on extensive surveys which make them fairly expensive in terms of 
time, manpower and also disruption to trip makers. All of these have led 
researchers to investigate alternative, less expensive methods for estimating 
O-D matrices. A popular option in this respect is the use of traffic counts 
because of their availability, low-cost and non-disruptive nature. Traffic 
counts are routinely collected by many authorities due to their multiple uses 
in traffic and transport planning tasks. Therefore, there is always a basic set 
of traffic counts available in almost any city. Secondly, traffic counts are 
inexpensive in terms of time, manpower, organizational and management 
requirements. Furthermore, they can be collected without disrupting trav- 
ellers. Finally, the automatic collection of traffic counts is well advanced 
and good accuracies can now be expected from such methods. This makes 
them particularly useful in studying hourly, daily and seasonal variations in 
demand together with their corresponding O-D matrices. 

2. Previous research 

One can interpret traffic counts as resulting from a combination of two 
elements: an O-D matrix and the route choice pattern selected by drivers to 
travel on the network. These two elements may be linearly related to traffic 
counts, see eq. (4.1) below, but under normal circumstances there will never 
be enough traffic counts to identify a single O-D matrix as the only possible 
source of the observed flows. Traffic counts alone are not enough to 
estimate O-D matrices, something else is needed. 

The methodology adopted to provide the additional information re- 
quired to estimate a unique O-D matrix may be used to classify research 
work in this area into two main groups: unstructured and structured 
methods. Under the first group we include all methods attempting to 
estimate an O-D matrix without imposing any external structure or model. 
Researchers working with this approach employ general principles like 
entropy maximization (or information minimization) to estimate a matrix 
with the minimum of assumptions. Workers in the second group prefer to 
benefit from the wealth of experience in the calibration and use transport 
demand models and therefore impose such structure to their matrices. They 
seek to calibrate these models from low cost data like traffic counts instead 
of using more expensive surveys. For an early review of these approaches 
see Willumsen (1978, 1981). 

Unstructured methods 

In this case the additional information required to estimate a matrix is 
provided by a general principle reflecting the probability of observing a 



particular matrix given our current state of knowledge about the conditions 
~that this matrix should meet. This principle often use the concept of 
"information" or "entropy" for defining a most likely trip pattern and the 
knowledge about the properties of the matrix must meet is embodied in the 
form of restrictions to an optimization programme. Pioneers of this ap- 
proach were Van Zuylen and Wilumsen (1980). A number of related 
models have been developed to improve estimation techniques allowing for 
errors in the traffic counts or introducing a variation in the estimation 
method. 

Transport demand model estimqtion 

This approach assumes that the trip making behaviour in the study area is 
well represented by a certain general model form, e.g. a gravity model. As 
usual, the link flows are expressed as a function of the O-D matrix but in 
this case the matrix is a function of a model form and relevant parameters, 
for example the exponent beta in a gravity model. The parameters of the 
postulated model are then estimated, so that the errors between the 
estimated and observed link flows are minimized. 

Estimation methods of this kind have been proposed by Low (1972) with 
a simple gravity model and linear-least-squares and by Robillard (1975) 
and Hrgberg (1976) using non-linear-least-squares estimation techniques. 
Other relevant methods have been proposed by Holm et al. (1976) and 
Tamin (1985). There has been, however, little validation of these techniques 
and there is scope for exploring more advanced and flexible model forms. 

3. Definitions 

For the rest of the paper we define the following terms: 

[T,A 

Di 
k k Ai~Ba 

~k~ ~k 
v +, v, 

= the observed O-D matrix from origin i to destination d 
= the ordered O-D matrix from origin i to the jth destination in 

ascending order of distance away from i 
= the total trips of each trip purpose k generated by origin i 
= the total trips of each trip purpose k attracted by destination d 
= the balancing factors for each trip purpose k for origin i and 

destination d 
= the trip cost of travelling from origin i to destination d 
= the unknown estimated parameters to be calibrated 
= the estimated and observed link flows, respectively 
= the trip assignment proportion for trips from origin i to destina- 

tion d which use link l 
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= the total number of links observed 
= the total number of  trip purposes or commodity types 
= the total number of  origins or destinations 
= the observed and ordered proportionality factors relating origin 

i and destination j, respectively for each trip purpose k 

= the transformations relating [Tid] and [Z °] 
= the opportunity function relating i and the pth destination away 

from i 
= transformation parameters 

We use the notational convention that ZE k means the summation begins at 
k = 1 and continues over the entire range of  the subscript. 

4. Transport demand model estimation from traffic counts 

The basic principles 

Consider a study area which is divided into N zones, each of  which is 

represented by a centroid. All of these zones are inter-connected by a road 
network which consists of series of  links and nodes. Furthermore, the O-D 
matrix for this study area consists of  N cells. [N -At]  cells if intra-zonal 

trips can be disregarded. The most important stage for the estimation of  a 
transport demand model f rom traffic counts is to identify the paths 
followed by the trips from each origin to each destination. The variable P~d 
is used to define the proportion of  trips from zone i to zone d travelling 
through link I. Thus, the flow on each link is a result of: 

- trips from zone i to zone d ( = Tid), and 
- the proportion of trips from zone i to zone d whose trips use link l which 

is defined by p~-d(0 --< pild --< 1). 

The flow (Vt) in a particular link ! is the sum of the contributions of all 
trips between zones that use that link. Mathematically, it can be expressed 
as follows: 

V~ = ~ ~ T~d " P~d (4.1) 
i d 

The variable P~d c a n  be estimated using various trip assignment tech- 
niques ranging from a simple all-or-nothing to more advanced equilibrium 
methods. Assuming a good estimation of the P~d and given a set of  observed 
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traffic counts (lit), then there will be N 2 unknown T~d'S to be estimated 
from a set of L simultaneous linear equations (4.1) where L is the total 
number of traffic counts. 

In principle, N 2 independent and consistent traffic counts are required in 
order to determine uniquely the O-D matrix [Tid], (N 2 -- N) if intra-zonal 
trips can be disregarded. In practice, the number of observed traffic counts 
is much less than the number of unknowns Tid'S. Therefore it is impossible 
to determine uniquely the solution. In general, it can be said that there will 
be more than one O-D matrix which will satisfy the traffic counts. One 
possible way to overcome this problem is to restrict the number of possible 
solutions by modelling the trip making behaviour in the study area. But 
first, we must discuss the alternative route choice or traffic assignment 
models which can be used to estimate the t P id" 

Some trip assignment techniques 

One of the main objectives of trip assignment methods is the identification 
of the routes taken through the network and from them the total number 
of trips using each particular link. Robillard's (1975) classification of traffic 
assignment techniques is relevant to this problem: "proportional" and 
"non-proportional" methods. 

If  the proportion of drivers from an O-D pair using a particular link is 
independent from flow levels the method is said to be "proportional". The 
most common example is "all-or-nothing" assignment. It is assumed that 
all drivers wish to minimize their perceived travel costs, all the drivers 
perceive these costs in the same way and that these costs do not depend on 
flow level; hence drivers from one zone to another will use the same 
minimum cost route. This assignment is considered to be unrealistic for 
many networks because it does not consider variations in the perception of 
costs nor the effects of congestion. However, it is the fastest and simplest 
assignment technique and is useful for sparse networks where there are few 
alternatives O-D paths. The value of P~d for this assignment is defined as 
follows: 

P~'d = ~1 if trips from origins i to destinations d use link l 
(0 otherwise or i = d 

Most "stochastic" assignment techniques, like Burrell's and Dial's, are 
also "proportional" methods. They have been developed to take into 
account variations in individual perceptions of cost. They often ignore 
congestion effects but they produce a more realistic spread of routes than 
all-or-nothing. 



Burrell (1968) proposed the multi-flow model where average link costs 
are defined, coupled with a form for the distribution of individual perceived 
costs about the mean. A different set of "perceived link costs" can then be 
generated by taking random samples of these link cost distributions. 
Random numbers, for example based on a rectangular distribution, are 
used to repeatedly select costs for each link. The model then find and load 
the quickest routes minimizing the sum of their perceived travel costsl 
Therefore, one can build several sets of minimum perceived cost trees, one 
for each set of sampled perceived costs. The O-D matrix is then divided 
into M fractions and each fraction is assigned to a set of minimum cost 
routes. This is repeated M times. 

Under congested conditions, the cost of travelling on a link depends on 
the flow on that link and a cost-flow relationship. Several techniques have 
been developed to explicitly consider these effects and they are usually 
called "capacity-restrained" methods. Some of them are: repeated all-or- 
nothing, iterative loading, incremental loading and equilibrium assignment. 

Wardrop proposed in 1952 the basic idea behind rigorous equilibrium 
assignment techniques in the form of a "principle". This may be written as: 
"Under equilibrium conditions, traffic arranges itself in such a way that all 
routes actually used by trips between a given origin and destination have 
equal and minimum costs and all unused routes have greater (or equal) 
costs". In other words, under equilibrium conditions no driver can switch 
to another route and thereby lower his travel cost since all routes have 
either same cost as his own or greater. 

The most appropriate assignment technique in each case would depend 
on the characteristics of the study area. The level of congestion, the 
availability of alternative routes and their corresponding costs and some 
idea of drivers variability in the perceptions of costs should help in 
choosing the best assignment technique to estimate the values of t P ia. The 
matrix estimation problem is simpler when a "proportional" assignment 
model is considered to be sufficiently realistic. The use of "non-propor- 
tional" assignment methods requires an iterative estimation process where 
the assumed PiCa are used to estimate a matrix which in turn is used to 
improve the estimation of the pild values. This issue is discussed in greater 
detail in Willumsen (1984). In this paper we will concentrate on p~ based 
on proportional assignment methods. 

Gravity model (GR) as a transport demand model 

This model was originally developed by analogy with Newton's law of 
gravitational force Fia between two masses mi and ma separated by a 
distance did, see Wilson (1967): 



Fit = ~ "  m i "  ma/(dit) 2, 1~ is a constant (4.2) 

The analogous transport gravity model is then, 

Tit = k • Oi" Dd/(dit) 2, k is a constant (4.3) 

This model has some sensible properties. It proposes that the number of 
trips from zone i to d is directly proportional to each trips emanating from 
i (Oi) and those attracted to d (Da) and inversely proportional to the 
square of the distance between them. But eq. (4.3) has at least one obvious 
deficiency. If  a particular O~ and a particular Dd are each doubled, then the 
number of trips between these zones would quadruple accordingly, when it 
would be expected that they would only double. Therefore, it is often 
advisable to constrain the model so that: 

~_, Tit = O, and ~ Tit = Da (4.4) 
d i 

These constraints can be satisfied if a set of variables Ai and Bd, 
associated with production and attraction totals respectively, are intro- 
duced. They are sometimes called "balancing factors" and must be calcu- 
lated as part of the estimation process to ensure the constraints (4.4) are 
met. Furthermore, there are no good reasons to use just distance and a 
power of 2 in the denominator. Therefore, a more general deterrence 
function and generalized costs are often used instead of distance squared in 
the model. Assuming that there are K trip purposes travelling between 
zones, then the modified gravity model can be expressed as: 

Tit = E [0~ . D~t" A~ . B~ "J'~a] (4.5) 
k 

where: 

- A k and B k = the balancing factors expressed as: 

1-1 - A~ = ( B ~ . D ~  "fa) 

- B, =[E (A,. 

- flit = the deterrence function, often e x p ( -  flk " C-e) 

(4.6) 

(4.7) 

Eq. (4.5) expresses the doubly-constrained gravity model (DCGR). 
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Gravity-opportunity model (GO) as a transport demand model 

A different framework to modelling trip making behaviour is incorporated 
in the opportunity model. Consider first a single origin and its destinations, 
embedded in a two dimensional surface allowing the full effects of contigu- 
ity to operate between all destinations; the destinations are then ordered by 
distance (or generalized cost) from the origin. Select one destination and 
induce change in its attributes, for example an increase in the shopping area 
there. Such a change is likely to lead to a different, and lesser, effect on trips 
from the origin to those destinations nearer to it, compared with those 
which are more distant. 

The magnitude of this difference is a consequence of the intervening- 
opportunity effect of that destination, and it is an intuitively clear phe- 
nomenon that the gravity model fails to recognize. Whereas the gravity 
model is deficient in intervening-opportunity effects, the opportunity model 
constructed is equally deficient in omitting the trip impedance. It seems 
logical that an ideal model should contain both these distinct effects. 

Wills (1986)developed a flexible gravity-opportunity (GO) model for 
trip distribution in which standard forms of the gravity and opportunity 
model are obtained as special cases. The choice between gravity or oppor- 
tunity approach is decided empirically and statistically by restrictions on 
parameters which control the global functional form of the trip distribution 
mechanism. 

10 if destination d is the j  th position in ascending 
Given that 6~d = order of distance away from i 

otherwise 

then the ordered O-D matrix can be obtained by the following transforma- 
tion: 

Z U = • [6}a" Tia] (4.8) 
d 

While the ordering transformation 6j;d produces an ordered O-D matrix, 
its inverse 6~f I allows the observed O-D matrix to be recovered by: 

Tid = ~ [6~a I " Z;j] (4.9) 
J 

It should be noted that this part of transformations is applicable to any 
variable based on the O-D matrix, notably the cost matrix and the 
proportionality factor, in addition to the O-D matrix. 
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Transformations 
In order to provide a monotonic scaling of variables in such a manner as 
to generate families of specific functional forms, the Box-Cox transforma- 
tion is used. The theoretical basis, and motivation for, these transforma- 
tions are extensively covered in Box-Cox (1964). The direct Box-Cox 
transformation of a variable y is defined as: 

y(~) = ) ' ( y~ -  1)/e e :/:0 (4.10) 
[In y e = 0 

and the inverse Box-Cox transformation as: 

j'(ye + 1) 1/' e ~ 0  y(1/.) (4.11) h /exp y ~ = 0 

These transformations may be combined into a new function which we 
introduce as a convex combination in/~: 

y(,,,) = #y(O + (1 - B)y o/'), 0 </~ < 1 (4.12) 

The proposed model 
Assuming that there are K trip purposes travelling between zones, the 
proposed model is: 

Tid = ~ ,  [ 0 ~  " D ~  " A ~  " B §  " f~d] (4.13) 
k 

where: 

- A~, B~ defined as eqs. (4.6) - (4.7), respectively; 

- f~zd = ~ [ ~ a  l "  F~] (4.14) 
J 

The opportunity function (Uk), see eq. (4.16), is incorporated into a 
general proportionality factor (Fk.) which is defined by the difference in 
functions of the cumulative opportunities from i and jth destination away 
from i, and from i to the ( j  - 1) th destination away from i, and can be 
defined as: 

(4.15) 
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- U~ = exp[(1 - e) • o~ k • In Dipk -- ilk" Cip] (4.16) 

- Dj., = ~ [6~a" D ~ ]  (4 .17)  
d 

- the (e,/0 transformtion is defined by eqs. (4.10)-(4.12). 

The general proportionality factor is subjected to a convex combination 
of  direct and inverse Box-Cox transformations. From this general form 
several special cases may be derived by setting e and/ l  to a particular value, 
see Fig. 1. Three specific models are easily identified: the gravity (GR), the 
logarithmic-opportunity (LO) and the exponential-opportunity (EO). 

Fundamental equation 

By substituting eq. (4.5) to eq. (4.1), then "the fundamental equation" for 
the estimation of  a transport demand model from traffic counts is: 

V t = ~  ~, ~, [Of .  D~.  A~. S*a" f~,a "P~] (4.18) 
k i d 

£ 

11,00 

0.90 

D.7S 

3,50 

0 . 2 5 /  

0 0.25 0.50 0.75 1.00 

Fig. 1. Diagrammatic structure of the prqportionality factor and its special cases (Source: 
Wills 1986). 
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It is important to note that It 's  are not available for each trip purpose 
but they are available for all trip purposes taken together. Assuming that 
we use the GO model, eq. (4.18) constitutes a system of L simultaneous 
equations with 2K unknown parameters for estimation. The problem now 
is how to estimate the unknown parameters so that the model reproduces 
the estimated link flows as close as possible to the observed ones. 

5. Methods  of  estimation 

Non-linear-least-squares estimation method (NLLS) 

The main idea of this method is to estimate the unknown parameters 
which minimizes the sum of the squared differences between the estimated 
and observed link flows. This method gives more importance to the 
reduction of differences at high flows than at low flow levels. To compen- 
sate for this one could use a weighted-non-linear-least-squares (WNLLS) 
method, where weights (in our case equal to the reciprocal of the ob- 
served flows) are associated to each difference and the resulting sum of 
squares is minimized. 

If  we choose the gravity-opportunity (GO) model to represent the trip 
making behaviour the problem becomes: 

to minimize S = ~ [(V~ + - Vt)/V*] (5.1) 
1 

where: V* = 1 for NLLS or V* = Vt for WNLLS 
Having substituted eq. (4.1) to eq. (5.1), the following two sets of 

equations are required in Order to find a set of unknown parameters ~k 
and/~k which minimizes eq. (5.1), they are: for k = 1 . . . . .  K. 

6S/6~k=~[2(~Tia'p~--Vt)(~6Tia/6~k'p~a)/V*]=Od 

"Pia-- Vt 6T~a/6flk "P~a /Vl =0 
(5.2) 

Eq. (5.2) is a system of 2K simultaneous equations which has 2K 
unknown parameters 0t k and flk for estimation. It is possible to determine 
uniquely all the parameters provided that L > 2K and preferably much 
greater. Newton's method could then be used to solve eq. (5.2). 
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Maximum-likelihood estimation method 

A different approach to model estimation results from maximum likelihood 
techniques. Suppose we have a probability model, a set of statistical 
hypotheses and data, which form the foundation of statistical inference. Let 
P(R/H) be the probability of obtaining results R given the hypothesis H, 
according to the probability model. This probability is defined for any 
member of the set of possible results given any one hypothesis. It may be 
regarded as a function of both R and H, but is usually used as a function 
of R alone, for some specific H. When considered as a function of R it 
defines a statistical distribution, either discrete or continuous. As suchl if 
we sum or integrate over all possible results R we will obtain unity, by one 
of the axioms of probability. 

The likelihood L(H/R), of the hypothesis H given data R, and a specific 
model, is proportional to P(R/H), the constant of proportionality being 
arbitrary. Whereas with the probability R is the variable and H is constant, 
with the likelihood H is the variable for constant R. This distinction is 
fundamental. 

L(H/R) = cP(R/H) (5.3) 

The arbitrary constant of proportionality enables us to use the same 
definition of likelihood for discrete and continuous variables. The word 
support is suggested by Edwards (1972) to refer to natural logarithm of the 
likelihood, principally in order to change the multiplicative properties into 
additives ones. By taking logarithm, the arbitrary multiplicative constant 
becomes an arbitrary additive one. Support for one hypothesis against 
another ranges from zero to an infinitely large amount. 

Denoting support by S, at the value S = 2 the likelihood in favour of the 
one hypothesis is about 7.4 times the likelihood in favour of the other, and 
at S = 3 the factor is about 20. It is obvious now that the greater the value 
of S, the greater will be the likelihood in favour of the one hypothesis than 
the other. 

The framework of the maximum-likelihood estimation method 
Suppose we have available a traffic count data survey involving a total 
number of Vr vehicles counted in L independent links. If Vl denotes the 
observed independent traffic count in each particular link/, then we must 
have: 

Vt = Vr (5.4) 
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Now, let Pt be the probability of having an estimated independent link flow 
for each particular link l: 

p, = Vi ~ / VT (5.5) 

Following the multinomial distribution, if there are "L"  links and the 
probability of a trial falling in the ,,lth,, link is "pfl', then the probability of 
obtaining "lit" out of "Vr" in the 1 st link, "V2" in the 2 nd link, and in 
general, "lit" in the lth link is: 

p = Vr! i-ip,V 1 (5.6) 
VI!" V2! " V s ! " "  VL ! l 

Then by substituting eq. (5.6) into eq. (5.3), the following equation, often 
referred to as the "Likelihood-Function", is built. 

L = c I-Ip, vt (5.7) 
l 

where the term of Vr!/VI!" 112!" V3!""  VL! has been absorbed into the 
arbitrary constant c. 

The idea of  the maximum-likelihood method is that the choice of the 
hypothesis H maximizing eq. (5.7), will yield a distribution of Vl giving the 
best possible fit to the survey data (Vz). The objective function now is: 

to maximize L = c l i p ,  v, (5.8) 
l 

subject to the total flow constraint: ~ V~- - Vr = 0 (5.9) 
l 

Taking the log term of eq. (5.8) and using the following Lagrangian form, 
eq. (5.8) and eq. (5.9) can then be written into a single equation, that is: 

t° maximize L' = ~ Vt ln p' + ln c - O(~  vi~ - vT (5.10) 

By substituting eq. (4.1) to eq. (5.10), the objective function now is: 

tomax.  L l = ~ I V t ' l n ( ~ d  T i d ' P ~ ) - - O ~ a  T~d'P~dl 

+ 0 V~ - lit  In Vr + In c 

w.r.t. ~k, flk and 0 (for k = 1 . . . .  , K) 

(5.11) 
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In order to find a set of parameters which minimizes eq. (5.11), then the 
following three sets of equations are required (for k = 1 . . . . .  K): 

i . d  

Y.Y. (,~T,<,/<~#k" p~,,) t <~L,/<~ = E V, ' ~  -oEE<~r,<,I<5~.ef.<, 
y. y. (r,~. p~) ' " 
i d 

=0  

= 0  

= "P id - -  V r  = 0 (5.12) 

Eq. (5.12) is a system of 2K + 1 simultaneous equations which has 
2K + 1 unknown parameters ~k, flk and 0 need to be estimated. Newton's 
method can then be used to solve eq. (5.12). Hamerslag and Immers (1988) 
have used a ML estimator with equations similar to that of eq. (5.12) for 
the same problem. There are, however, little differences: the authors 
estimate 0~,/7, 0 and they use the ML estimators for discrete values of 
deterrence functions and groups of balancing factors. 

6. Some basic statistical tests 

The development of good model estimation techniques to ensure that the 
fitted parameters result in flows as close as possible to the observations is 
not enough to show the value of a new technique. We also need an 
indication of how accurate the resulting models are and this requires a 
comparison between estimated and an independently observed O-D matrix 
using appropriate statistical indicators of this fit. In this study, the follow- 
ing goodness-of-fit (GOF) statistic has been used: 

- R o o t m e a n  square error R M S E  

RMSE = '7 -N-(-N~])] for i # d (6.1) 

where: T~, Tid = observed and estimated O-D matrix, respectively. 
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7. Tests with Ripon data (urban vehicle movement) 

Ripon data set 

In order to validate the model estimation technique a real data set of urban 
vehicle movements corresponding to Ripon was used. Ripon is a busy 
market town in North Yorkshire lying north of Harrogate on the A61. 
There are three main groups of movements using the roads in this town. 
First, there is the local traffic from the surrounding area as people come 
into Ripon to work or to make use of the various retail, educational and 
social facilities. Second, Ripon is a popular tourist site with the cathedral 
attracting many visitors each summer. Finally, some traffic passes through 
Ripon on its way to join the A1 further north. North Yorkshire County 
Council (NYCC) conducted roadside O-D surveys in 1978 and 1985 which, 
in conjunction with separate traffic counts collected by Steer, Davies and 
Gleave Ltd. (SDG), form the basis of this data set. The Ripon data set 
comprises the following: 

- The 1985 O-D matrix, a 24 hour average annual daily traffic (AADT) 
matrix, compiled from roadside inteview data collected by NYCC in 
May 1985. 

- The 1985 network description. 
- 63 Traffic counts taken throughout Ripon by SDG in November 1985 

and by NYCC at the interview sites in 1978 and 1985. 

The study area was coded into 19 internal zones and 7 external zones and 
a network with 82 nodes and 188 one-way links connecting pairs of nodes 
and zone centroids. In addition to the network definition, we also have 63 
observed traffic counts (lit) and trip generation/attraction factors (O~ and 
Dkd) for each zone. The units adopted in eq. (4.18) are given as follows: 

V~ = link flow counted for each particular link l in vehicles/day. 

O~, D,~ = trip generation and attraction factor, respectively in vehicles/ 
day. 

Computer programs 

There are several computer packages for transport modelling which include 
the four conventional stages of trip generation, trip distribution, modal 
choice and trip assignment. The suite MOTORS, developed and marketed 
by Steer, Davies and Gleave Ltd. (1984) was used as a basis for our new 
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model fitting software. Our computer programs have been written in such 
a way that they are fully integrated and interactive with MOTORS suite. 
The work was carried out using the Apricot-XEN micro-computer with 
895K RAM, one 720 Kbyte 3.5' floppy disk drive, 20M byte hard disk, and 
running under MS-DOS 3.1. 

Results 

In assessing the value of a new transport model one is of course interested 
in the accuracy of the estimated travel behaviour. In our case, our new 
approach relies on traffic counts as basic data input and offers a choice of 
demand models to represent trip making behaviour. This flexibility en- 
hances the value of the model but it is also important to have some feeling 
on how the choice of model form may affect the accuracy of the resulting 
O-D matrix in at least one real case. We can use the Ripon O-D matrix to 
obtain an indication of the most suitable model in this case. We used the 
observed O-D matrix to estimate demand models directly using the NLLS 
estimation method. Three models were fitted: gravity (GR), opportunity 
(OP) and gravity-opportunity (GO) model. 

In the GO model, the choice between gravity or opportunity is decided 
empirically and statistically by restriction on parameters, e and # ,  which 
control the global functional form of the trip distribution mechanism. By 
setting e = 1, the GO model will behave as the GR model since the 
opportunity part is omitted from the opportunity function (4.16) and 
similarly, by omitting the cost part of eq. (4.16), the OP model is then 
created. 

By using various values of e and #, we can then plot the contour of S. In 
order to show the contours more clearly, the triangular shape is then 
replaced by the standard rectangular one in Fig. 2a. It can be seen from 
Fig. 2b that the minimum value of S is obtained at points e = 0.5 and 
/~ = 1. This means that for the Ripon case it is the GO model the one that 
gets closer to reproduce the observed O-D matrix thus offering some 
improvement over the gravity model. 

The GOF statistic to compare the estimated O-D matrix with the 
observed one, using NLLS method and the real trip matrix information is 
given in Fig. 3. It can be seen that the GO model performs better than the 
GR and OP models since the value of RMSE of GO is less than those for 
GR and for OP. The GOF statistic of the estimated O-D matrix produced 
by the conventional Furness trip distribution is also given in Fig. 3. It can 
be seen that GR and GO performs better than Furness since the values of 
RMSE for GO and GR are less than for Furness. 

It was not unexpected that the performance of GO was better than that 
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Fig. 3. GOF statistic of estimated O-D matrix compared with the observed one, using the 
NLLS method and direct O-D matrix information. 

of GR since GO have more parameters than GR. The question is, later on, 
whether this richness in parameters can be exploited using traffic counts 
only. It was found that the OP model is not-good enough to represent the 
trip making behaviour in Ripon since it is worse than Furness. 

Other factors that also affect the level of accuracy of the estimated O-D 
matrix are the traffic counts themselves, the estimation method and the trip 
assignment technique. It is clear that the traffic counts, the reflection of the 
O-D matrix on the network, are never free from error and the problem now 
is to use this information to estimate the model parameters. 

There are two important key issues that should be considered carefully: 
the estimation method and the trip assignment technique in determining the 
routes taken through the network. A number of tests have been carried out 
using three types of estimation methods (NLLS, WNLLS, ML), in associ- 
ation with two different trip assignment techniques (all-or-nothing and 
Burrell (10%, 30% )), and using 63 independently observed traffic counts 
(10% means that the variance of the link cost is 10% of the mean value). 
Three values of the objective functions (S, $1, L~) in association with three 
different trip assignment techniques are given in Table 1. 

With all-or-nothing and Burrell (10%) assignments, the GO model 



Tab/e 1. The value of S(NLLS), SI(WNLLS) and LI(ML) for each trip assignment and model. 

Objective Trip assignment 
function 
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All-or-nothing Burrell (10%) Bun'ell (30%) 
GR OP( l ) GO( 1 ) GR OP( I ) GO( l ) GR OP( l ) GO( 1 ) 

S( x 10 6) 48.33 78.40 49.04 55.12 83.77 56.06 99.74 107.32 102.27 
Sa( x 103) 31.39 31.12 29.19 35.75 34.60 33.51 45.02 43.31 43.27 
L1( x l04) 1 0 8 . 2 1  107.98 108.25 108.07 107.85 108.07 106.17 106.37 106.15 

Note: (1) ~ = 0.5; # = 1.0 

produced the closest fit to the observed traffic counts of the three models 
and with all three estimation methods. However, with the Burrell (30%), 
the best fit is obtained using the GO model for WNLLS, the OP model for 
ML and the GR model for NLLS. The best overall fits were always 
obtained using all-or-nothing assignment therefore the value of Burrell's 
assignment is in doubt in the case of our Ripon data base. 

A close fit between estimated and observed traffic counts is not enough 
to show the value of a model of this kind. The acid test is to compare 
estimated with observed O-D matrices. Results on these tests, in terms of 
GOF statistic are given in Figs. 4, 5 and 6 to compare the estimated O-D 

RMSE GOF STATISTIC 
TEST8 WITH THE OBSERVED COUNTS 

ALL-OR-NOTHING A881GNMENT 

RMSE 

GR OP GO 

i 

J 
NL WNL ML GR1 NL WNL ML OP1 NL WNL ML GO1 FRN 

ESTIMATION METHOD 

m RMSE 

OZT/UOL/ITB 

Fig. 4. G O F  statistic of estimated O-D ma t r i x  compared with the observed one, using 63 
observed traffic counts and all-or-nothing assignment. 
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Fig. 5. GOF statistic of estimated O-D matrix compared with the observed one, using 63 
observed traffic counts and Burrell (10%) assignment. 

matrices, using 63 observed traffic counts with all-or-nothing, Burrell (10%) 
and Burrell (30%) route choice models respectively. 

The RMSE GOF statistic in Fig. 4 reveals that, with all-or-nothing 
assignment, the NLLS and the ML methods produced the best estimated 
O-D matrix for the GR model whilst the WNLLS performed best for the 
GO model. Although the GO model reproduces the traffic counts best it does 
not estimate the O-D matrix most accurately as shown in Fig. 4. 

The RMSE GOF statistic in Fig. 5 shows that, using Burrell (10%) 
assignment, the GR model produced the best fit for each estimation method. 
With Burrell (10%), the NLLS and ML methods obtained a slightly 
improved estimated O-D matrix compared with all-or-nothing assignment. 

However, using the Burrell (30%), the RMSE GOF statistic in Fig. 6 
shows that, each model produced worse fit for each estimation methods 
compared with all-or-nothing and Burrell (10%) assignments. However, it 
is found that the model which gives the best overall fit at the O-D matrix 
level is the GR model with the NLLS method and Burrell (10%) assign- 
ment. However, it can be seen from Figs. 4, 5, 6 that there is not much 
difference between NLLS and ML, therefore, ML is rather "robust" in that 
the RMSE is not very sensitive to the method of assignment. 
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Fig. 6. GOF statistic of estimated O-D matrix compared with the observed one, using 63 
observed traffic counts and Burrell (30%) assignment. 

8. Conclusion 

Three types of model have been used in this study: gravity (GR), opportu- 
nity (OP), and gravity-opportunity (GO) model. Three estimation methods 
have also been developed: least-squares (NLLS and WNLLS) and maxi- 
mum-likelihood (ML) estimation methods. In all cases the models were 
calibrated using observed traffic counts and this requires assumptions about 
the most appropriate route choice model for the study area. The selected 
methods were then tested using Ripon data (real urban vehicle movement). 
The study area was divided into 19 internal zones and 7 external zones and 
the network has 82 nodes and 188 one-way links connecting pairs of nodes 
and zone centroids. The resulting equations of each method were then 
solved by Newton's method and Gauss-Jordan Matrix Elimination. Two 
trip assignment techniques were used: all-or-nothing and "stochastic" 
Burrell's assignment with dispersion parameters of 10% and 30%. All 
programs were written to be fully integrated and interactive with the 
MOTORS transport planning suite. 
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Some conclusions can be drawn from the result obtained: 

- The number of observed traffic counts required are at least as many as 
the number of parameters. The more traffic counts you have, the faster 
the estimation method will converge and also the more accurate the 
estimated O-D matrix we have. 

- It is found, not unexpectedly, that the GO and OP model are more time 
consuming than the GR model since they use more complicated algebra 
and procedures which require longer time to solve. Also, the use of 
all-or-nothing assignment produces faster cpu times by a factor of 3 than 
with stochastic Burrell, either 10% or 30%. 

- A major problem found in using Newton's method is in finding the best 
starting point for each unknown parameter, otherwise, the method will 
fail to converge. 

- It was found that when calibrated directly from O-D matrix data the GO 
model produces the best fit in Ripon. Both GO and GR models perform 
better than Furness. 

- It is clear that, see Table 1, the choice of Burrell assignment, either 10% 
or 30%, gives no better fit to the traffic counts compared with the 
all-or-nothing. Moreover, the GO model is found as the best model in 
matching the observed traffic counts for all-or-nothing and Burrell (10%) 
assignment. 

- Although the GO model performs as the best model in matching the 
traffic counts, it cannot be guaranteed that it will also produce the best 
O-D matrix, see Figs. 4, 5, 6. It was found that gravity model (GR) gives 
this best fit and the best estimation method in this case is non-linear- 
least-squares coupled with Burrell (10%) assignment. However, it is 
concluded that ML is rather "robust" in that its RMSE is not very 
sensitive to the method of assignment. 

- The adoption of a more realistic assignment technique to include conges- 
tion effects is suggested in order to obtain the more accurate estimated 
O-D matrix. Capacity-restrained and equilibrium assignments are pro- 
posed for future work. 

- The level of accuracy of the estimated O-D matrix reproduced by the 
model whose parameters calibrated from traffic counts depends on some 
following factors: 
• the transport demand model itself in representing the trip making 

behaviour within the study area, 
• the estimation methods used to calibrate the model from traffic counts, 
• the trip assignment techniques in determining the routes taken through 

the network, 
• errors in traffic counts, 
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• finally, the level o f  resolu t ion  o f  the zoning system and  the ne twork  

definit ion.  This  in fo rmat ion  should  be specified carefully in o rde r  to 

ob ta in  the required level o f  the accuracy.  I t  is expected tha t  the more  

deta i led ne twork  represen ta t ion  and the more  d isaggregated  the zoning 

system, the bet ter  the level o f  accuracy.  Some tests by using higher  level 

or  resolu t ion  o f  ne twork  and  zoning  defini t ion is suggested for  future  

work.  
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