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Summary. The use of information from flanking 
markers to estimate the position and size of the effect 
of a quantitative trait locus (QTL) lying between two 
markers is shown to be affected by QTLs lying in 
neighbouring regions of the chromosome. In some 
situations the effects of two QTLs lying outside the 
flanked region are reinforced in such a way that a 
'ghost' QTL may be mistakenly identified as a real 
QTL. These problems are discussed in the framework 
of a backcross using a regression model as the analyti- 
cal tool to present the theoretical results. Regression 
models that use information obtained from three or 
more nearby markers are shown to be useful in 
separating the effects of QTLs in neighbouring regions. 
A simulated data set exemplifies the problem and is 
analysed by the interval mapping method as well as by 
the regression model. 
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Introduction 

The concept that the inheritance of many quantitative 
characteristics results from the segregation of genes, 
each of small effect, at many loci with expression 
modified by the environment is now well accepted. 
Until recently the accurate estimation of the number, 
location and effect sizes of these genes was practically 
impossible, because the effects of the individual quan- 
titative trait loci (QTLs) could not be identified. How- 
ever, the situation has changed with the advent of 
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molecular polymorphisms that can be used as codo- 
minant markers. When there is both such a marker 
map and a segregating population for a characteristic 
of interest, it is often possible to obtain information 
about the number, effects and positions of the QTLs 
affecting the trait (Paterson et al. 1988). 

The simplest, but obviously incorrect, approach for 
the estimation process is to assume that the QTLs can 
only occur exactly at the marker loci and thus use the 
differences between the phenotypic means of each 
marker class in a given cross to infer the existence and 
size of the effect of the QTLs. Because linkage with the 
marker locus is never complete, the QTL will be 
incorrectly located and the size of its effect will be 
underestimated. These difficulties in the methodology 
have been discussed by Lander and Botstein (1989). To 
remedy them they proposed the 'interval mapping' 
approach in which they calculated, for each chromo- 
some interval flanked by markers, the LOD score for 
the hypothesis that there is a QTL in the interval 
compared with the hypothesis that there is not. This 
score is a function of the position within the interval 
and the size of the effect of the hypothesized QTL. The 
size of the effect is estimated for all possible positions 
of the QTL, and the resulting maximized LOD score 
is plotted against position. A QTL is said to be present 
when this maximized LOD score exceeds some thres- 
hold value. 

As Lander and Botstein (1989) mention, when the 
model specified for this method is correct, i.e. when 
there is only one QTL segregating and it lies between 
the markers being studied, this method has all the 
desired properties of maximum likelihood estimators. 
In contrast, if there is a QTL in a neighbouring region 
of the chromosome, the procedure is no longer a 
maximum likelihood approach and, as we shall see, can 



lead to erroneous results. An analytical study of the 
likelihood function of the data is difficult. We present 
here a regression model closely related to the LOD 
score approach whose performance is much easier to 
study. 

R e g r e s s i o n  m a p p i n g  

To explain regression mapping, we consider a back- 
cross where the usual genetical and statistical assump- 
tions are made. Thus, all of the individuals in the 
parental lines are homozygous for different alleles of 
the genes of interest and for the markers; the effects of 
the QTLs are additive between and within loci, and the 
environmental error has a normal distribution with the 
same variance for all the genotypes. The assumption 
of only additive effects within loci for the QTLs is not 
necessary if we consider doubled haploid lines instead 
of a backcross, and all the results of the model below 
are directly applicable to doubled haploid lines. 

Let M~, m~ and M2, m2 be the alleles at the two 
marker loci MI and M2, and B, b be the alleles of a 
QTL B located between these markers. This can be 
represented diagrammatically by 

M1 B M2 

I- ~ 0 "14 0' ~'1 

I"  - 6  ~'1 

where the distance between the markers (6) is known. 
We wish to estimate the distance between one of the 
markers and the QTL, say 0 or equivalently 0' ,  as well 
as the size of the effect of the B locus. 

We need to consider which mapping function will 
be used to measure the distance between loci; the 
decision depends on biological considerations that 
take into account the degree of interference exhibited 
in the particular species. Two extreme situations are 
possible: (a) complete interference, in which no double 
recombination is allowed, when 6 = 0 + 0', or (b) no 
interference, where recombinations in neighbouring 
regions are independent events, when 6 = 0 + 0' - 200'. 
Both situations were studied, but only the results for 
the more complex case of no interference (b) are 
presented, with some comments about the differences 
that arise when complete interference is assumed. 

The genotypes of the parental lines wilt be P, - 
mlbm2/mlbm2 and P 2 -  M1BM2/M1BM2, and the 
F1 - M1BM2/mlbm 2. The backcross (B 1 = F1 x P1) 
will have four distinguishable marker groups, say 
1 - MlmlMzm2, 2 -  Mlmlmzm2, 3 - m l m l M a m  2 and 
4 -  mamam2m> For simplicity of notation we will 
identify these marker groups by the marker alleles 
inherited from the F 1 parent, say 1 - M1M2, 2 - M~m> 
3 - m l M  2 and 4 - m l m  2. 
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Let Yu be the observation on the i-th plant in the 
j-th marker group, for i =  1, 2 . . . .  nj (the number of 
individuals in the j-th group; j = 1, 2, 3, 4) and Fj be 
the probability that an allele B is present in an 
individual from the particular marker group j. Then, 
under the hypothesis of only additive effects at the B 
locus, say B and b, the expectation of Yij is given by 

E[Yu] = 2b + (B - b)Fj 

= rio +/~lrj  

where flo = 2b and fll = B - b. 

We consider the model 

Yij = E[Yij] + gij 

=/~o +/~IFj + ~u (1) 

where eij is normally distributed with mean zero and 
variance o-2. Thus, we can regress the phenotypic values 
of the individuals on the probabilities that an allele B 
is inherited from the F1 parent. In the case of no 
interference (b) we find 

0(~-0) 
F1 = P[M1BM2IM1M2] = 1 = 1 - F  4 

(1 -6X1-20)  

(1 - 0 ) ( a  - 0)  
F2 = P[M1BmzIMlmz] = 1 - -  F 3 .  (2) 

6(1-20) 

In the case of complete interference (a), the equations 
for the F's in (2) are simplified to F~ = 1 - F4 = 1 and 
F2 = 1 -- F3 = (6  - 0 ) / 6 .  In both situations, the Fj's are 
functions of an unknown parameter, 0 or equivalently 
0'. However, instead of (1) we can consider 

Yij = ri0(t) + fll(t)Fj(t) + gij (3) 

where now Fj(t) is the value of Fj at some hypothetical 
value of 0, 0 = t. Consider the least squares estimators 
of the parameters of this model with this value of 0, say 
rio(t) and fl~(t). That is, for each putative value of 0, we 
obtain a fitted value for the phenotype, 

Yij(t) =/~o(t) +/~l(t)Fj(t). (4) 

A measure of the fit of the model is given by the residual 
sum of squares, 

RSS(t) = { j =~1 i[~t (Yij - ~ffij(t))2 } . (5) 

If we graph RSS(t), 0 <  t_< 6, against the corres- 
ponding chromosome positions t, we obtain a measure 
of the evidence of the presence of a QTL between the 
markers involved. A clear minimum value of RSS(t) 
would be evidence for the presence of a QTL. If we 
accept that a QTL is present in the interval, we can 
select as an estimate of its position the value of t that 
minimizes the RSS(t), say 0 = tm. If there is no segrega- 
tion distortion in the cross, i.e. if each of the marker 
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groups appears in their expected proportion, then 
E[fll(0)] = B - b, E[flo(0)] = 2b and t m is a consistent 
estimator of 0. 

The function RSS(t) behaves in a way approxi- 
mately proportional to the inverse of the LOD score 
obtained with the Lander and Botstein (1989) method 
of interval mapping; a large RSS(t) corresponding to a 
low LOD score and conversely. The difference between 
the two methods arises solely because in (3) the error 
term (sij) does not have a normal distribution, being a 
random variable from one of a number of normal 
distributions. The regression method proposed does 
use the same information as the interval mapping 
method, and the efficiency of the use of the information 
is unlikely to be substantially less than the maximum 
likelihood approach. The regression mapping approach 
does provide a tool by which to study algebraically the 
performance of procedures that use the information 
from flanking markers in situations when there may be 
more than a single QTL segregating in the cross. Such 
a study is not feasible with the LOD score procedure. 

Expected value of RSS(t) under different 
hypothesis about the QTLS 

To investigate the effect of QTLs in neighbouring 
regions of the chromosome, consider the following 
situation: 

4 

E[RSS(t)] = ~ p j [ V [ Y j ] -  2C[Yj,C/j(t)] 
j = i  

+ V[Yj(t)] + (E[Yj] - E[Yj(t)])2], 

and neglecting terms resulting from the variance of the 
marker group means we can write 

4 4- 

E[RSS(t)]-~ ~ pjV[Yj] + ~ pj(E[Yj] - E[~'~(t)]) 2 
j = l  j = 1  

= V w + h(t) (6) 

where the pj, j = 1, 2, 3 and 4, are the expected propor- 
tions of each marker class, 

Pl = P[MM],  P2 = P[Mm], P3 = P[mM], 

P4 = P[mm]; 

E[Yj] are the expected values of the quantitative 
characteristic in the j-th marker class and 

g[C/j(t)] = E[fi0(t)] + E[fll(t)-lrj(t) (7) 

for each j = 1,2,3 and 4. Thus E[Yj] is the true 
expectation of the observed characteristic for indivi- 
duals in the j-th marker class for the given genetic 
situation. As an illustration, suppose that r different 
gametes (G1, G2,. . .  Gr) can be inherited from the F1 
parent, each one having the corresponding genetic 
value gl, g: . . . .  gr and with probabilities P[Gi = gll 
markers group j] for the j-th marker class, then 

M1 A M2 B M3 C M4 
l ~1 01 1~[41 02 I~[~ 03 ~[ql 04 "1" 05-----~1 "l 06---~1 

where loci A, B and C can contain alleles A, a; B, b 
and C, c, these symbols denoting the QTLs alleles 
affecting the characteristic as well as their effects; 
where, as before, each M i is a codominant marker and 
where the distances in the chromosome are given by 0i 
( i=  1,2 . . . .  6). The B 1 segregating population is the 
product of the cross 

M~AMzBM3CM4/mlam2bmacm4 

x mlam2bm3cm4/mlam2bm3cm 4. 

We are interested in the behaviour of the estimation 
procedure when there is more than one QTL segre- 
gating in the cross. By modifying the values of the 
parameters we can study different situations, for 
example: (1) A = C = 0 and B > 0 - only the B QTL is 
present, and (2) A = C > 0 and B = 0 - two QTLs are 
present, and one empty flanked region (M 2 - M 3 )  
exists between them. 

The expected value of the residual sum of squares 
for the model presented in (3), averaged over the 
frequencies of the marker groups as well as over the 
data set, is given by 

ElY j] = ~ giP[Gi = gi[markers group j]. (8) 
j = l  

EI-/~o(t)] and E[/~l(t)] in (7) are evaluated using (8). 
4 

The term Vw = ~ pjV[Yj] in (6) represent the expected 
j = 4  

variance within each one of the four marker groups and 
does not depend on t but on the markers selected to be 
used in the model, h(t) depends on the putative position 
of the QTL, say t, as well as on the markers selected to 
be used in the model. 

We shall use E[RSS(t)] to study the average per- 
formance of RSS(t) as a measure of the fit of the model 
for the different values of t. We shall not investigate the 
additional effects on the procedure of the random 
variation between the traits of individuals of the same 
marker genotype. Unfortunately h(t)is the ratio of two 
polynomials of degree eight in t. Therefore, the beha- 
viour of E[RSS(t)] can only be studied numerically. 
The function E[RSS(t)] will now be evaluated at a grid 
of values for t within each flanked region. Ideally, 
E[RSS(t)] would be flat within flanked regions where 



there is no QTL, and would show a single clear 
minimum at the true position of the QTL when one is 
present. 

When analysing real data, the usual ANOVA table 
can be constructed for the model presented and the F 
test used to determine the approximate significance 
of any minimum value of the RSS(t). An extra degree of 
freedom needs to be subtracted from the degrees of 
freedom for the RSS(t) to account for the estimation 
of the position of the proposed QTL. The level of signi- 
ficance will only be approximate because the model 
is non-linear in t when no interference is assumed 
(see Eqs. 2), and in general the variation between 
plants within the same marker group is not normally 
distributed. 

Numerical results 

This section presents numerical values for E[RSS(t)] 
under different genetical situations. We are interested 
mainly in the shape of the function for different values 
of the parameters of interest, the effects and positions 
of the QTLs in the studied and in the neighbouring 
regions. Since an appropriate expected recombination 
value for the flanking markers appears to be 0.20 
(Lander and Botstein 1989), we shall fix recombination 
between markers at that value. Two flanking markers 
give the least information about the position and effect 
of a QTL between them when the QTL is exactly 
halfway between the markers (0 = 0'), so that situation 
will be assumed. Without loss of generality we can put 
the effect of the alleles a, b and c equal to zero. Two 
cases of interest will be discussed, first (1) A = C = 0 
and B = 1 - only the B QTL is present, and B = 1 by an 
arbitrary choice of scale, second, (2) A = C = 1/2 and 
B = 0 -  two QTLs with effects of the same sign are 
present in different flanking regions, with their effects 
adding to B in (1). In both circumstances we shall study 
no interference and comment on the results obtained 
with complete interference when there is an important 
difference. 

A = C = 0 a n d B = l  

Figure 1 presents the chromosome map and the 
graph of the function E[RSS(t)] for each point on the 
chromosome between the markers M~ and M 4. The 
graph for each one of the three flanked regions, 
M1 - M2, M 2  -- M3 and M 3 - M 4 was obtained using 
only the information of the corresponding flanking 
markers and varying the value of t between 0 and 0.20 
in each region. An increment of 0.01 was used, and then 
a smooth function was employed to interpolate between 
the data points. From this graph we can see that the 
absolute minimum (equal to Vw = 0.055) is achieved 
exactly in the chromosomal position of the QTL, 

483 

0 . 1 9  - 

0.18 

0.17 

0.16 

0.15. 

0.14 

0.13 .~ 

0.12 

LU 0.11 

0.10 

0.09 

0.08 

0.07 

0.06 

0.05 
o. o ' ' ' o 1 0 . 2  . 3  o .6  0 . 6  

M1 M2 B M3 M4 

Fig. 1. E[RSS(t)] for each point between the markers M1 and 
M4. Size of the effect B = 1. No interference 

t = 0.10. The corresponding size of effect for this point 
is E[/~I(0.1)] = 1.00, confirming the fact that the method 
is consistent for both position and size of the effect. It 
is important to note that the function EI-RSS(t)] is 
affected by the presence of the QTL B even when the 
model does not use the flanking markers between 
which that QTL is located (M2 and M3); i.e. when the 
model is applied to the neighbouring regions flanked 
by M1 - M 2 and M 3 -- M4,  the function EI-RSS(t)] is 
not fiat, but has a minimum (for each interval) at the 
position of the marker that is closer to the QTL B. 

A = C =  1/2 and B = 0  

Figure 2 presents the chromosome map and the 
graph of the function E[RSS(t)] for each point in the 
chromosome between the markers M1 and M 4. The 
function E[RSS(t)] was calculated as before, but taking 
into account both QTLs when obtaining E[Yj]. Two 
points of main interest can be noted from this graph. 
First, the method is no longer consistent for the 
positions, nor for the effects of the QTLs present. The 
minimum in the M1 - M2 region is 0.06 and is achieved 
at the position 0.13 (the real position of the QTL being 
0.1); the minimum in the M 3 - M 4 region is again 0.06 
and is found at distance 0 .47-  the QTL being at 
position 0.50. Second, the absolute minimum of the 
function is 0.045 and is achieved in position 0.30. This 
is a 'ghost' QTL, with estimated effect 0.82, that results 
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Fig. 2. E[RSS(t)] for each point between the markers M 1 and 
M4. Size of the effects A = C = 1/2. No interference 

from the presence of the two QTLs in the neighbouring 
flanking regions, each one with effect 0.5; so the 'ghost' 
QTL in the region M2 - M3 accounts for 82% of the 
total effect of the two real QTLs. 

If the effects of the genes A and C are of different 
sign, that is if, for example, A = 1/2 and C = - 1/2, then 
the 'ghost' effect will not be present, but the size of the 
effects will be underestimated and their positions 
moved closer to the outside markers (M1 and M 4 in 
this case). 

Summarizing, in analysing real data, when only one 
QTL is present it affects the function RSS(t) not only 
in its flanked region but also in neighbouring regions; 
when two QTL are present, the RSS(t) function can 
present a global minimum somewhere in between the 
two QTLs. This 'ghost' effect can be wrongly inter- 
preted as a true QTL. 

Regression mapping with three markers 

The results presented in the last section show that when 
more than one QTL is present in the same region of a 
chromosome, methods using information only from 
the flanking markers can lead to misleading conclusions. 
The natural way to avoid this problem is to use 
information from more than one pair of consecutive 
markers, for example, the information from three 
consecutive markers, say Mr, M 2 and M 3. 

If we assume that two QTLs are present, one in 
each interval, we have 

M 1 A M 2 B M 3 

01-'--~1 0 2 : 1 ~  03_...__~1 ~ 04 ~ 
61 - 32 (9) -I 

with a backcross B 1 w e  now have eight different 
markers groups, say 1-MMM, 2-MMm, 3-MmM, 
4-mMM, 5-Mmm, 6-mMm, 7-mmM and 8-mmm (with 
the order of the markers being: 1, 2, and 3), and the 
model 

Yij(t) = flo(t) + fll(t)Fj(t) + flz(t)Aj(t) 4- fl3(t)Wj(t) + eli 
(10) 

where j is the marker class of the Yij individual (j = 1, 
2 . . . .  8) and i = 1, 2 . . . .  nj, the number of individuals in 
the j-th marker class. Now t' = (tl, t2) is a vector with 
two components, tl the putative distance from M1 to 
A; 0 _< tl --61, and t 2 the putative distance from the 
marker M 2 t o  B,  A _< t2 _< 62, and 

Fj(t) = P[AB [j-th marker class, and t], (11) 

Aj(t) = P[Ab Ij-th marker class, and t], (12) 

~ j ( t )  = P[aB [j-th marker class and t]. (13) 

From the least square estimators of the parameters, 
]~o(t)to fl3(t), we can obtain estimates of each Yu value, 
say Yij(t), and so for each value of t (in the bivariate 
space: 0 _< tl -< 61, and 0 ___ t2 _< 52) we can measure the 
fit of the model by the RSS(t), defined by (5), but now 
summed over j = 1, 2 . . . .  8. We select as estimators of 
the positions of the two assumed QTLs the values in 
the vector t that minimize RSS(t), say t = t m. If the 
assumption of the model is true, that is there are only 
two QTLs segregating, one between M 1 and M 2 and 
the other between M 2 and M3, the procedure is 
consistent with respect to both the positions and sizes 
of the effects of the QTLs. 

Because the parameterization of this model accounts 
for the effect of each one of four possible QTL geno- 
types, aabb, AaBb, Aabb and aaBb, estimated by/~o(t) 
to fl3(t), respectively, 

rio(t) + ill(t) -- fi2(t) -- fi3(t) 

will estimate a component of epistatic effects of the two 
loci. 

As before we can use the function E[RSS(t)] to 
study the behaviour of the model when there are other 
QTLs present in neighbouring regions of the chromo- 
some. The next section presents numerical results for 
two cases of interest; when the model is correct and 
there are two QTL's, one in each interval and when 
there is only one QTL. In each case only the results for 
no interference are presented. The results for complete 



interference were very similar, despite the fact that the 
data are then much more informative about  the exis- 
tence of the QTLs. For example, with complete inter- 
ference we can be sure that the marker class M~M2M 3 
has the QTLs A and B (if the situation assumed in Eq. 9 
is true), because only double recombination could 
produce gametes such as MIaM2BM 3. With complete 
interference marker  classes 3-MmM and 6-mMm will 
not exist and the F functions are linear in t. It  is 
important to remark that our results only indicate that 
the cases of no interference and complete interference 
are similar on average, i.e. when the sample size is very 
large. 

A = B = I/2 

The map of the genes involved in this case is 

M 1 A M e B M 3 

L" 0.1 ~[ I ~ 0.1------~l 

where as before the recombination between the con- 
secutive markers is 0.20 recombination units. Figure 3 
shows the graph of the E[-RSS(t)] bivariate surface 
generated by values of t = (h, t2) for tl between 0 and 
0.19 and t :  between 0 and 0.20. The surface in Fig. 3 
has a global minimum at the point tl = 0.1, t z -~ 0.1; 
the real position of the QTLs. At that point El-A] = 
E[[I] = 1/2, the real sizes of the QTL effects. This 
confirms the consistency of the procedure. At the point 
tl = 0, t2 = 0, corresponding to assuming that A is at 
M~ and B is at M2, there is a high value of E[RSS(t)], 

0.0524 

I 0.0440 

tO 
tO 
n," 
tu 0.0357 

0.0274 
0.19 0.20 

0 U 

Fig. 3. Three markers regression mapping. E[RSS(t)] for regions 
M1-M2(T1) and M2-M 3 (T2). No interference. Two QTLs 
present, one in the middle of each region; see text 
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0.0362. If we vary tl, with t2 constant at t2 = 0 there is 
no appreciable change in E[RSS(t)]. This is because 
when we assume that one of the QTLs (B in this case) 
is in the middle of the region (the position of M2), this 
Q T L  can account for a large part of the variation in 
the data. The right-hand corner of the graph, the point 
tl = 0, t2 = 0.20, corresponds to the assumption that 
the QTL A is at M~ and the QTL B a t  M 3. At this 
point E[RSS(t)] has the highest value, 0.0524. If we set 
t 1 = 0 and change the value of t2, the graph is very 
informative, giving a local minimum at t2 = 0.1. The 
same occurs if we set t2 = 0.2 and then change h.  In 
the left-hand corner of the graph the value for t~ = 0.20, 
t2 = 0 is not given. An indeterminacy occurs in the 
function E[RSS(t)], at that point both QTLs are 
assumed to be at M 2, constituting a single QTL, and 
so the effects of A and B are not separately estimable. 

In general we see from the graph that when the 
assumptions of the model are correct an accurate 
estimation of the positions and effects of both QTLs 
should be possible. 

A = 0 ,  B = I  

In this case the chromosome situation is 

M1 M 2 B M 3 

and the results are presented graphically in Fig. 4. In 
this case the global minimum of E[RSS(t)] is reached 
in a line, all the points where t2 = 0.1, independently of 

O.09nn 

0.0; 
CO 

0.066 

0.0549 
0.190 

0.143 

I 0.095 
i , - -  

0.048 

0 
0 0.05 0.10 0.15 0.20 

T2 

Fig. 4. Three markers regression mapping. E[RSS(t)] for regions 
M1-M2(T1 ) and Me-M3 (T2). No interference. One QTL 
present in the middle of the region M2-M 3 (T2); see text 



Simulation 

the values for h. Along this line the expected values for 60 
the size of the QTL effects also take their real values 
E[A] = 0 and E[B] = 1. This is because the position of 
a non-existent QTL is irrelevant. Figures 3 and 4 show 
that bivariate regression mapping with three markers 
can discriminate between the presence of one and two 60 
QTLs. 

The regression model presented above can be 
generalized to use the information of any number of 
markers. However, simultaneous analysis of many 

o 

markers is restricted because the sample sizes required t,0- 
D for a given accuracy increase exponentially with the 9 

number of markers. 

30 

A single simulation will be used to illustrate how a 
'ghost' QTL arises when using both the Lander and 
Botstein (1989) interval mapping and the regression 
mapping approach using flanking markers only. 

Because the aim of the simulation was to observe 
systematic biases rather than sampling variation a 
large sample size of 2000 observations was selected. 
The phenotypic scale was chosen so that the environ- 

2 1. A model with two QTLs mental variance was (re = 
A and C with size of effects equal to 1/2 for each locus 
was used. The genetical situation was simulated corres- 
ponding to the backcross, 

F1 x P1 
M1AMzM3CMJmaam2m3cm4 maam2m3cm4/m~am2m3cm 4 

where the map of the genes involved is given by 

M 1 A M 2 M 3 C M 4 

6 ff l  o?2 o?4 o?5 o?6 

No interference was allowed. The analysis was per- 
formed by both the Lander and Botstein interval 
mapping (see Fig. 5) and the regression mapping pro- 
cedure (Fig. 6). Figure 5 and 6 illustrate how the two 
measures, LOD score and RSS(t), are closely although 
inversely related. Table 1 presents the estimates where 
/31(0) is the estimate of the genetic effect obtained by 
regression mapping and minimum RSS(0) denotes the 
local minimum of the residual sum of squares, reached 
at the value t = 0. The corresponding estimates of the 
position of the putative QTL obtained by selecting the 
position that maximizes the LOD score in the interval 
studied is denoted by 0~, and the estimated size of 
the effect is denoted by G(0). 

The interval between the markers M2 and M 3 does 
not have any QTL, however the global maximum of 
the LOD score and the global minimum of the RSS(t) 
functions are both located between M 2 and M 3 and at 
the same position between the markers, 0 = 0.29. This 
is a ghost QTL produced by the effects of the QTLs A 
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Table 1. Estimates for the QTL sizes of effect and positions for 
a simulated data set using Interval Mapping and two marker 
regression mapping procedures 

Markers Regression mapping Interval mapping 

Minimum Maximum 
RSS(O) 0 fi~(O") LOD 0 G(O) 

M1-M2 1.0594 0.14 0.8205 54.2637 0.14 0.8216 
M2-M 3 1.0416 0.29 0.9136 58.6804 0.29 0.8847 
M3-M4 1.0764 0.44 0.7599 49.4325 0.44 0.7493 

and C reflected within the M 2 - M  3 region from 
outside the region. 

Discussion 

When there is only one QTL segregating in a popula- 
tion the interval mapping procedure or the regression 
model using pairs of markers can be confidently 
applied to estimate the effect and the position of the 
QTL. Even in this simple situation problems can arise; 
for example, if a QTL A is at one end of the chromo- 
some, the order of the loci being A, M~, M 2 . . . .  M r ,  

then a local maximum of the LOD score is likely to 
arise between the markers M 1 and M2, giving a 
mislocalization of the QTL and an under-estimation 
of its effect. An example of this situation appears to 
have happened in barley with the gene Yield 1 (Hyne 
and Snape 1991). The local minima will tend to appear 
in the marker position that is closest to the real QTL 
(see Fig. 1). 

Greater problems arise if more than one QTL is 
segregating. We have seen that the effects of QTLs in 
neighbouring regions affect the estimation of the posi- 
tion and size of effect of a QTL between the pair of 
markers. Of particular interest are the results presented 
in Fig. 2. In this case two QTLs are segregating, each 
one in a different flanking region - QTL A in M1 - M 2 

and QTL C in M 3 - M  4. In this situation, if we assume 
the erroneous hypothesis that there is only one QTL 
segregating, the method is likely to locate a ghost QTL 
in the region M 2 - -  M 3 ,  i.e. a QTL where none exists. 
The problem is that the method cannot discriminate 
between very different hypotheses; in fact, for any 
threshold proposed, it is not difficult to place two 
QTLs in neighbour regions of a central flanked region 
so that only the ghost effect in the empty region will 
pass the proposed threshold and hence only the 'ghost' 
will be detected. The 'ghost' minimum may not only be 
a local minimum, but the global minimum of the 
function for all regions searched. The ghost effect is 
much more important than a simple 'false positive' 
given by random variation; the ghost effect can be 
present whatever the sample size. 

As mentioned by Knapp (1991), if multiple QTLs 
affect a trait then estimates of the sizes of the effects of 

QTLs from individual locus models are biased. There 
can be ghost effects present in the models presented by 
Weller (1986), Jensen (1989), Luo and Kearsey (1989, 
1991), Simpson (1989) and Knapp et al. (1990), because 
they do not take into account the possible presence of 
more than one QTL. 

Lander and Botstein (1989) suggest that when a 
LOD score graph shows evidence of two QTLs, each 
of the QTLs should, in turn, be fixed at their estimated 
positions. The difference between the LOD scores 
calculated for the fixed QTL and a possible second 
QTL and the LOD scores for the fixed QTL only is 
then plotted against distance along the chromosome. A 
high peak indicates the presence of a second QTL. This 
procedure is incorrect in that the estimated positions 
and sizes of effects of the two QTL are not independent. 
The search must be over all possible pairs of values of 
the two positions and the two sizes of effect. The 
Lander and Botstein procedure will probably be a 
good approximation when the two QTLs are sufficiently 
well separated. However, in the case shown in Fig. 2, 
when the distance is not great, the procedure fails in a 
major way because the ghost QTL has the larger 
apparent effect and, when fixed, there will be little 
evidence of any other QTLs, their effects having 
already been almost completely attributed to the ghost 
QTL. The global minimum of the E[RSS(t)] function 
is reached in position 0.30, and the expected value of 
the estimates for the size of the effect of the 'ghost' 
QTL is 0.91. The effects of the real QTLs, A and C, 
have A + C = 1, so the ghost accounts for 91% of the 
effects of the QTLs. The correct approach is to search 
the bivariate or multivariate LOD or RSS(t) surface 
generated when taking into account the presence of all 
possible QTLs by using information from all the 
markers involved. 

Taking the information from three markers into 
account will result in a search for one or more QTLs 
over a bivariate surface. This search can be done by the 
maximum likelihood approach, but here we will discuss 
the almost equivalent results that can be achieved by 
regression mapping, as presented in (10). When the 
assumption that two QTL are segregating, one in each 
of the neighbour regions M1-M2 and M2-M3 is 
true, then the regression mapping procedure is consis- 
tent, and so E[RSS(t)] has a simple minimum value at 
the position of the two QTLs (Fig. 3). Even when there 
is only one QTL in one of the regions, the method gives 
a surface that is very flat as the position of the other 
hypothesized but non-existent QTL varies. From Fig. 4, 
the surface reaches the minimum value for E[RSS(t)] 
in a line corresponding to t 2 =0.1, and 0 < t 1 < 0.19. 
Along this line the value for E[RSS(t)] is equal to 
Vw = 0.055, and the expectation of the estimator of the 
size of the effect E[flx(t)] = 1; i.e. the procedure is still 
consistent. Thus, the optimum procedure will always 
be to look for QTLs in the two neighbouring regions, 
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because even if there is none or one there the procedure 
still gives good results. Unfortunately using three 
flanking markers instead of two demands a larger 
sample size, because any variation in the expected 
proportions of the marker classes (in this case eight 
instead of four when using only two flanking markers) 
can seriously affect the accuracy of the estimation. It is 
important to remark that the expectations calculated 
in this paper to give the values of E[RSS(t)] are based 
on the assumption that there is no segregation distor- 
tion; if this assumption is not made, a technical 
problem arises because then the expectations of the 
estimators do not exist. This is simply because all the 
marker classes have a probability larger than zero of 
being empty. Nevertheless, if the sample size is large 
enough and all the eight marker classes are well repre- 
sented for a given triplet of markers, procedures using 
three markers are recommended in any region of the 
chromosome that appears to have a high LOD score 
or a minimum RSS(t), that is, in any region in which 
the presence of one or more QTLs is suspected. In some 
cases this procedure can help to decide if an effect is a 
real QTL or a ghost one. For  example, assume that the 
situation is as presented in Fig. 2; i.e. two QTLs are 
present, with an empty flanked region ( M z - M 3 )  
between them. In that case we saw that an univariate 
search will give a global minimum in the empty region, 
and if we use the bivariate regression method we obtain 
again estimates for two QTLs: the real A QTL, for 
which we obtain biased estimations of size and position 
and the B ghost, for which we will obtain a size of effect 
different from zero and a position between M2 and M 3. 
One way to decide that the effect B is a ghost using 
information from three markers at the same time will 
be to perform regression mapping now using the 
information of markers M2, M3 and M4 and searching 
in the bivariate surface generated. Doing this we obtain 
estimates for the putative QTL in M2 - M3, B, and for 
the putative QTL in M3 - M~, C. We will still obtain 
the ghost effect B; in this case with the same size of 
effect, but the position of the ghost will now be 
different. The fact that the B position is moved when 
estimated from different marker triplets and the fact 
that the other QTL, say C, is present will be good clues 
to conclude then that the apparent B QTL is not real. 
Another way to try to distinguish between two and 
three QTLs in the situation presented in Fig. 2 is to 
perform three-marker regression mapping, first with 
markers M1, M2 and M4 and then with markers M1, 
M 3 and M4. In that case the estimation of both 
analyses will coincide, giving a consistent estimation of 
position and size of effect of both QTLs, A and C, and 
eliminating the incorrect estimation of the 'ghost' B. 
However, the decisive test to conclude if B is a ghost 
effect or a real QTL is to use the information provided 
by the four markers M ~ - M,~ at the same time. Using 
this information by means of (four-marker) regression 

mapping will show that the B effect is not real; the ghost 
will disappear. Unfortunately, this search can be per- 
formed only if the sample size of the segregating 
population is large enough to have an appropriate 
representation of each of the 16 different marker 
classes. 

Haley and Knott  (1992) have recently developed a 
similar method for F 2 populations. In their publication 
they compare, by simulation, regression and maximum 
likelihood methods and show the close correspondence 
of the results from the two methods. They emphasize 
the speed of application and generality of regression 
methods. 

In summary, we recommend that in any region 
where the presence of a QTL is suspected when using 
any of the estimation methods available, a bivariate, or 
if possible multivariate, search should be performed. 
This will reduee the effects of QTLs that may be 
segregating in neighbouring regions. 
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