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0. INTR ODUC TION:  THE SITUATION AROUND THE 

LATE F I F T I E S  

A general discontent, but no coherent plan of improvement: this is what can be 

said, in short, of  those years. News of the sputnik shock and the subsequent 

boom of the new math with its fresh wind and dust storms did not reach us 
before some years later. At that time we were still involved, since 1946, in a 
fundamental change of our school system: the creation of an eight-year general 

school (six to fourteen). The goal was to provide equal opportunities for every 
pupil of whatever descent and habitation. It goes without saying that the 
last four years of  this general school could offer less to every pupil, than what 

the first four years of  the earlier eight grade secondary school could give to a 

highly selected population of the same age. What finally remained was seven 

years of arithmetic and one year of so called algebra: linear equations with one 
unkown, negative numbers as top level notion, not even powers. In addition, 

some geometry in grades five to eight. This was and still is the content on 
which to build the curriculum of the four secondary years. 

Thin content does not necessarily entail poor teaching. Another variable 

may matter more: the teachers. Their number has been increased from 30 

thousand in 1937/38 to 66 thousand in 1960/1 (primary plus secondary) to 

keep pace with the growing number of pupils, especially between twelve and 
eighteen, and to decrease the class effectives. But this could not be achieved 

without concessions in the requirements about teacher qualification and com- 
petence. 

These changes did not impair the education of a mathematical ~lite. We bad 

a long tradition: competitions and periodicals for mathematically gifted pupils 
since 1894; clubs in an outside the school; literature for the clubs, for indivi- 
dual enrichment; organized and occasional assistance to the brightest by 
research mathematicians. 

Paradoxically, while mathematical excellence was sufficiently supported 
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during these years of extending continued education to many more pupils 

than ever, we were much less successful in reaching our main goal, an efficient 

mass education in mathematics. Since the end of the nineteen fifties we have 
been working toward this goal. 

In what follows we give an account of 

o 

2. 
3. 

4. 

5. 

6. 

these efforts: the ripening of the reform, 
how they were and are received: reaction to change, 

change in the objectives, 

change in the curriculum: its structure, 

change in the curriculum: its content, 

how all that is being realized: classroom examples, with an attempt 

at highlighting some aspects of the methodology. 

1. THE RIPENING OF THE REFORM 

Our good traditions in mathematics education were not restricted to the 

mathematically gifted. Many of our research mathematicians have been keenly 

interested in educational problems. They voiced their views in front of 

students, teachers, authorities, and the wide public, in books and papers, talks 

and courses, and had a considerable effect on producing a climate favourable 

to a radical reform later on. Among those who though living abroad influenced 

mathematical education in Hungary, we mention G. P61ya and Z.P. Dienes. Of 
those at home, unfortunately, five brilliant mathematicians-Alfr6d R6nyi, 

Gy6rgy Hajds, I~szl6 Kalm~r, Rdzsa P&er and P~I Tur~In- died recently, 

each of whom had a considerable impact on school mathematics. 
In 1962 an international symposium was organized in collaboration with 

UNESCO on school mathematics. This was a major attempt to confronting 

different ideas and formulate recommendations acceptable for all participants. 
In the same year a project was initiated in the general school (OPI Mathematics 

Project). A few years later the Ministry of Education created a commission for 

studying the ways and means of updating mathematics teaching (as seen in 

Hungary) and prepared a new programme for the general schools based on the 

OPI Mathematics Project which it found alone suitable to this end. On the 
base of this proposition a new programme has been prepared which is being 
implemented during the seventies and eighties. 

Interest for the problems of education grew during the last few years. On 
the base of a national study and decisions taken in 1972, new programmes are 
being introduced on all levels in each subject. During the four years of the 

non-vocational secondary schools 2, 4, 9, 11 weekly hours are, respectively, 
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kept for facultative courses (2 weekly hours in each year are optional, the rest 

are for everybody). Mathematics will be one of  the available courses in each 
year. 

No massive experimentation has taken place so far on secondary leve l -  

similar to the OPI Mathematics P ro jec t -  but in more than a dozen schools 

pilot work goes in much the same spirit. In this Secondary Project the content 

is not much affected, the final and entrance examinations being too close and 

menacing. Changes have to be modest  before the new general school curricu- 

lum becomes effective everywhere, during the late eighties at the best. 

A new feature of the Secondary Project is that during all the four years 

pupils are working on what we call miscellaneous problems. These are different 

kinds of  not too difficult, yet  non-routine problems. The topics they learn do 

not offer clues to their solution. They usually do not require much more than 

logical thinking or some unusual combination of simple knowledge. These 

problems often throw light to some topics of  elementary mathematics not 

treated systematically, they may also be simple special cases of advanced 
problems usually ranged into higher mathematics. Other miscellaneous 

problems are destined for preparing topics to be treated in details later on. 

Our tasks loom larger now, than ten or twenty years ago. Yet our suc- 
cesses - in the education of  the gifted, or of  the average with teachers above 

the average, or even with average pupils and teachers, on a small scale, or on 
a somewhat larger scale, in the lower grades - offer us many clues to solving 

the bulk of  the problems, still before us. 

In the Introduction we mentioned efficient mass education in mathematics 

as our main goal. Speaking of  a mathematical illiteracy and a programme of  

terminating it is not out of  place, either. In our days a citizen cannot be in the 

full possession of  his rights unless he acquires some literacy, and one which 

extends beyond mere technical skills. This statement increasingly applies to 

mathematical literacy as well. Reading formulae, graphs, statistical tables, 

understanding what is behind them is as important  as reading between the 

lines, not just the fines; and this is just one small section of  mathematical 
literacy. (Cf. the examples in Sections 6.1 to 6.5.) 

2. R E A C T I O N  TO C H A N G E  

Pilot work started in a few classes during the early sixties. Some years later 

it began to catch the attention of other teachers, near or distant. Visitors 
discussed what they saw, asked for more information, and many of  them 
started similar work in their classes that often became centres again, visited 

by others. With very little organization something like an organic growth 
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took place: the increment was proportional to the number of existing pilot 
classes, and this, of  course, resulted in an exponential function, or rather a 

geometrical progression. (The quotient was around 1.7 per year.) During this 
time - more than a decade - a good reputation took shape and spread among 
teachers, parents, a wider public, authorities. The golden age was over after 

the decision of implementing the curriculum based on this pilot work in 
every school of  the country, simultaneously with new curricula for other 
subjects. The implementation was gradual, reaching every first grader four 

years after it began in 7 % of the classes in 1974, - a simulated extension of 

the previous organic growth - this pace happened to be quicker of the optimal. 
Teachers who had joined in voluntarily became outnumbered by those who 

were less willing or prepared, and who, on their turn, became centres spreading 

a less favourable reputation. 
This was reinforced by news about "the failure of the new math" abroad. 

If Johnny cannot add, H/mschen is made ill by Mengenlehre and Jeannet, too, 

goes back to the good old arithmetic, then Jancsi would do better to keep 

learning it before he becomes the next victim! The suspicion is there, and we 

are exposed to be mitgefangen, mitgehaggen. 
The situation is not so bad. The reputation won previously did not eva- 

porate. The number of  those who see more than the surface, even grew. They 

include many or most mathematicians, educationlists, psychologists, linguists, 

physicists, experts of various other fields. We co-operate in many ways. The 

international understanding and co-operation is also substantial. 

The general public is divided. They are mostly influenced by the positive 

or negative instances they meet. Among the teachers, who produce these 

instances, there is a precious nucleus, and various strata from the benevolent 

to the indifferent to those who jump on the band wagon and those who know, 
"common sense will eventually win over lunacy." To make things more com- 
plicated, the dividing lines are within persons, not between them, and common 
sense certainly weigh more in our case, than expert opinions. Change only can 
go on through the teachers who do their jobs daily and who care much less 

about arguments or evaluations than about their own experiences. 

3. CHANGE IN THE OBJECTIVES 

When a mother says: "Kitty is nine and she still cannot do the sums I could 

and my sons could do when we were eight", and concludes that the school 

does not do a good job, then one of her hidden premises is this: "The 
objectives of teaching should not change. Schools should continue teaching 

the same sums at the same age as they used to 2' 
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Whatever are our reasons for doing less sums or doing them later or doing 

them embedded into other types of  activities, we have to state these reasons 

explicitly as a part o f  a coherent set of  objectives. Whether or not the reali- 

zation of  the objectives can be objectively measured, they serve as checking 

points for us, for the parents, for anybody. 

In the beginning we had a policy of  popularizing those objectives which we 

felt were undervalued by the school or by the society. (Think of forming an 

opinion of  his own as opposed to answering forthwith.) Then we came to the 
understanding, that a well balanced set o f  objectives is preferable to a tendency 

of  counterbalancing, which is likely to provoke a contrary tendency. In fact, 

slogans such as "Developing cognitive abilities is more important than teaching 

addition facts" has made the "new math"  a target of  jokes in America and 
Western Europe. 

We set a high value on the objectives o f  mathematical education in the 

affective domain, but we have not elaborated them, and the sensory-motor 

objectives either. We confine ourselves to stressing the outstanding importance 

o f  the intrinsic motivation in mathematics education. Mathematics has the 

qualities of  appealing to pupils - especially if it appeals to their teachers - and 

this is, we feel, an immense reserve not sufficiently exploited. 

For the cognitive objectives we found a two by two grouping and labelled 
them this way: 

synthesis analysis 

Receptive- K N O W I N G ,  DISTINGUISHING, 
reproductive DOING, UNDERSTANDING 

USING 

CONSTRUCTING, FORMING AN OPINION, 
Productive FINDING, JUDGING 

INVENTING 

� 9  what is given, 
shown or told 

� 9  adding their 
own contribution 

The list below is exemplifying these terms. Topics are not specified in the 

list, items can be related to any content. They are also almost independent 

o f  age level: the four quadrants, if not each item in them, are expected to 

interact and support each other from the outset, both in the activity of  

the individuals, and in the form of  a social interaction with divided and 

changing roles. We regard this scheme as an extension of  the more usual 
sets of  objectives which in actual practice rarely exceed the first quadran t -  

knowledge and ski l ls- this  being more accessible to testing than the 
other three. 
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Receptive-reproductive synthesis 

KNOWING, DOING, USING 
terminology, symbols, devices, 
mathematical statements, 
routine problems, algorithms 

manual skills 

Receptive-reproductive analysis 
DISTINGUISHING, UNDERSTANDING 

Identifying objects, properties, concepts 
Seeing relationships 
Appreciating patterns 
Understanding a statement, rewording, re-coding, 
Following a line of thought e.g. a reasoning 

translating it 

Productive synthesis 
CONSTRUCTING, FINDING, INVENTING 

Formulating a problem 
Stating hypotheses, educated guesses 
Planning a solution 
Finding tools for the solution 
Finding objects (concrete or not) which satisfy given conditions 
Finding all such objects 
Finding a definition for a concept 
Developing a proof 
Generalizing, extending b y ana logy. . .  

Productive analysis 
FORMING AN OPINION, JUDGING if 

a statement makes sense, 
a statement is true 
a problem is clearly defined: 

if it contains enough data, 
if there are in it superfluous or contradictory data or conditions, 

a symbol, a definition, a suggested way of solving a problem is 
suitable or appropriate or promising, 

a reasoning is correct, 
a given object satisfies the conditions (some or all), 
a solution is reasonable, if it satisfies practical requirements, 

standards etc. 
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4. THE CURRICULUM: ITS STRUCTURE 

It is safe to say that the structure of the curriculum changes more than its 

content. For example, combinatorics and probability were repeatedly included 

into former curricula, but never at an age below 17. In our recent curriculum 

they appear eleven years earlier, in grade one, and they are spread over the 

whole of it - an essential difference in the structure. Instead of the question, 

when to teach probability, we ask a different one: what o f  it to t each-and  

h o w - i n  grade one, grade two etc. Similarly with geometry and other 
disciplines. 

The philosophy behind this structure is well known. It is related to the 

new priorities: developing ideas more highly appreciated than imparting 

knowledge. It is possible - though difficult - to expound a body of knowledge 

sequentially, but development is global and harmonic or it is not development. 

Developmental psychology has shown how childrens' ideas about many aspects 

of mathematics grow even before they enter school-ideas about number, 

space, chance e t c . -  and it is difficult to see why should we renounce to 

creating favourable conditions to their continued growth thereafter. It is sad 

to see children regressing in their mental development after they enter school. 

The first lesson schools are to learn is how to avoid this decline, how to 

harness children's natural learn~g abilities. Then comes their second lesson: 

how to induce children to more mature learning. By the altered structure of 

the curriculum we intend to face both tasks. 

A number of other features of this structure will be expounded. Not only 

do topics appear soon and run through the whole curriculum, they are also 

interwoven in it, with the intention of being integrated into mathematics as 

a whole. Like threads in a cloth, they disappear and appear again in various 
combinations. 

Though integration is intended through the whole curriculum (6 to 18 

years of age), its meaning slightly changes from the lower to the higher grades. 

Whole lessons assigned to one part or aspect of mathematics are rare in the 

lower, more frequent in the higher grades, where even weeks of work may be 
concentrated on organizing the knowledge from one aspect. 

Suggested activities linking mathematics with other fields of knowledge- 

language, sciences, a r ts -  are more frequent in lower than in higher grades, 

but an alimentation and motivation of mathematics by its applications to 
many fields is invariably intended later on. 

The main ideas of most mathematical disciplines appear rather early, most 

of them in the first few grades, so far as, and in the way as, they can be 

motivated to and assimilated by average children of the given age. Thus the 
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approach to numbers through counting and measuring and the early use of 
the number line suggests some vague idea of the real numbers as early as in 
grade two, though the existence of irrational ratios only becomes clear six to 
eight years later. 

The education being centrally organized, with syllabi for each grade valid 

over the country, they are to be flexible enough to fit the needs of every child 

in every classroom. For this reason: 
the syllabus for each grade consists of compulsory topics to be covered by 

the whole class, and suggested topics for enrichment to be assigned to, or 

tackled by, only some of them; 
a part of the compulsory topics is summed up at the end of each year in the 

form of requirements, some of which are distinguished from the rest as mini- 
mal requirements; many concepts and skills not appearing as requirements in 

the schoolyear where they are first mentioned in the syllabus, get enrolled to 

them in subsequent years when they are supposed to become ripened. 

There is some flexibility even in the interpretation of the topics to be 

covered and the requirements to be fulfilled so that the teacher can adapt them 

to the actual situation. 
From the general to the particular is a feature which distinguishes, we feel, 

our curriculum from earlier ones. The direction is not from triangles to quad- 

rilaterals to polygons to curvilinear figures of the plane to solid geometry, but 

from sets of various objects to sets of points - subsets of the space-  to its 

particular subsets, planar or not. Not from the linear function to the quadratic 
to other polynomials, to exponential, trigonometric functions etc., all of one 

variable before realizing that something else than one real number can also 
serve as input or output, but functions as mappings in a very general sense, even 

before children can read or write numbers, without using scholarly words like 

set or function. Not from linear equations (with the idea that x means "the 
unknown number") to polynomial and other equations to inequalities, but 
from the general idea of an open sentence with one or more variable and its 
truth set to particular open sentences. No strict order from natural numbers 
to positive rationals to all rationals to real numbers, but from a vague idea of 

positive real numbers as quantitites measured by some unit (using but im- 
mediately exceeding natural numbers) quickly to directed numbers (e.g. turns 
in two possible directions), using and gradually filling the number line, gen- 

eralizing to vectors before its completion. Not from classical problems of 

probability based on equally likely events to more general assignments, but 
from a general setting where probabilities may be taken from experience 

alone, and "more likely" comes before "equally likely". 

From the particular to the general is another characteristic feature of our 
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curriculum. This is complementary rather than contradictory to the statement 

expounded above. For example, we begin fractions with the halves in the follow- 

ing way: counting numbers have their names already: one, t w o , . . .  ; measuring 

leads children to "more than one, less than two", "more than two, less than 
three" etc.; then we introduce numbers "half", "one and a half", "two and a 

half" before any systematic or semi-systematic introduction of other fractions. 

Children may even count convenient objects that way: half, one, one and half, 
t w o , . . ,  and visualize on the number line what they say. Though geometry is 

about sets of points in general, exploring particular sets of points on square 

grids (geoboards, squared papers) etc. lend themselves better to integrating 
geometry with arithmetic, algebra and functions than does an exclusive use of  
blank sheets. Babylon sets - balls with 26 holes in points with both of their 

spherical co-ordinates multiples of 45 ~ and joining sticks - do the same service 
in developing spherical and solid geometry. Simple finite sample spaces too are 
excellent fields for exploring ideas about probability. 

5. THE CURRICULUM: ITS CONTENT 

Our general attitude toward the content has been rather cautious, both in 
reducing traditional topics and in introducing new ones. Rather than excluding 

topics and replacing them with other ones, we prefer thinking in terms of 

shift in the stress. We look at the reform of mathematical education as a long 

process. The next ten to twenty years are a period of transition and it will be 

followed by another one. These relatively long transitions seem to be necessary 

for the teachers to become familiar with new topics and ideas, introduced 

smoothly. As for the pupils, the pace could be quicker, if only we can be sure 

that more will be gained than lost by the change. Teachers in pilot classes test 

such doubts, they furnish evidence for further decisions and help to make them 
popular. 

The woven structure of the curriculum creates favourable conditions to 
introducing new topics within the frames of the old. Let us give three 
examples. 

1. The idea of mult ip ly ing natural numbers becomes more deeply rooted in 
children's minds, and fields for developing skills also become wider, with an 
approach through combinatorial problems leading to the Cartesian product of 

t w o -  or m o r e -  sets. (To the idea, through problem situations, not yet to 
names and symbols!) This approach complements rather than replaces the 
traditional one through "repeated addition" o r -  in set language- the union 
of equipotent disjunct sets. 

2. For powers  with natural numbers again some combinatorial problem 
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situations lend themselves as a good starting point: permutations with repeti- 

tions in the old wording. In the new: "mapping into" between two finite sets. 

Problem situations arise around the age of  nine, systematization is left to a 

few years later. Teachers at that level hardly notice what they teach is about 

cominatorics and functions, not  just arithmetic. We gradually enlighten them 

on this fact - it is better if they, too, see the broader context - ,  but we are not 

particularly keen on shocking or dazzling them either with advanced termin- 
ology. 

A third example, within the same range of  ideas, is about weaving pro- 

bability with fractions. Ten to twelve is the age we find suitable to developing 

skills with fractions, after some preliminaries on an intuitive level. This is also 

the age when probability reaches the level of  calculations: if from five beads, 

three red and two white, one is drawn at random, then another one without 
replacement, and this experiment is repeated many times, then about two 

fifth of  the trials results in a white bead first and about one fourth of  such 

cases in another white bead. The expected relative frequencies - the respective 

theoretical values, called probabilit ies- are exactly 2/5 6s 1/4. Such situations 

serve as more natural starting points toward the multiplication of  f ract ions-  

and transforming them to decimals or percentages - than most of  those used 

traditionally. Also to addition (find the probability of  drawing two beads of  

equal colour!) etc. Fractions and probability motivate and elucidate each 

other. 

These examples enable us to state a general aspect of  our curriculu'm as re- 

lated to the former one: 

Most o f  the traditional topics occur in it in some form, usually in con- 
nection with other topics. 

In many instances traditional topics appear earlier than they used to, on a 

less formal level. This happens with the number systems, geometric trans- 

formations, much of  co-ordinate geometry, functions and their graphs, 

equations and inequations. 

Another aspect of  our cautiousness in introducing new topics is that much 

of  what is new belongs - for the time being - to the non-compulsory part of  

curriculum, to the enrichment topics. This is the case, for example, with most 
of  the combinatorial topology. 

Another general remark: we find that our curriculum is less structural on 
the one hand, and more numerical on the other, than most o f  the recent 

curricula. It is very nice to show to pupils, possibly to all of  them, the beautiful 

architecture of mathematics. Yet our ambition, in the present phase of  the 

reform, is more down-to-earth: to show mathematics in its interaction with the 
environment, through its applications. Without denying the usefulness of the 
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great structures, we find that at present most applications are strictly 
numerical. 

The stress on the numerical side can be exemplified by the role probability 
and statistics play in it. 

As to the structures, our policy is that of making pupils ready to their 

appreciation during several years. No doubt, they can learn to manipulate their 

rules - e.g. that of a group - very early, like the rules of a game, but we prefer 

waiting until they can also see their mathematical importance. After a long 

preparatory period the majority of the pupils may reach this maturity. This 

way we do not force on them a ware they do not want to buy or answer 

questions they would never ask. 

This latter remark throws some light on still another decision of ours regard- 

ing the content: we do not teach any kind of axiomatic geometry in school, 

not even in secondary. The level we adopt is that of local organization, in 

geometry just as in any other branch of mathematics. This means a smooth 

introduction of the idea of deduction: defining and proving as activities. (Not 

limited to mathematical subject matter.) Within this smooth introduction the 

idea of what primitive concepts or axioms mean are also exemplified, without 
the claim of a complete system. 

In order to tell more of the content we present below the way we have 

grouped the top ics -o r  threads- into five bunches with two or three sub- 

bunches in each. We were led to this subdivision by practical considerations. 

Both the groupingl and the order is rather arbitrary. The percentages after the 

titles suggest the estimated weights of the bunches. The estimations cannot be 

but vague, due to the woven structure of the curriculum. The remarks after 

the titles give a rough interpretation of  the titles. Further highlighting is left 
to the examples in sections 6.1 to 6.5. 

Sets, logic (5 to 10 %) 

Sets of concrete objects, of mathematical and other abstract entities including 

numbers, points, sets. Operations with sets. Their relationships with logical 

operations. Quantification. Topics related to computer science such as flow 

diagrams are included into this bunch. 

Relations, functions, sequences (20 to 30%) 

Relations: mostly binary at the beginning, both within a set and with sets for 

each variable. Open sentences. Their truth sets within given sets. Functions: 

in the general sense of mapping into, but with numerical functions in the 
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centre. Sequences: at first independently, later revealed as functions of natural 
numbers. 

Arithmetic, algebra (25 to 40%) 

Numbers: natural to real, in various normal and other forms (terms without 
variables). Operations with numbers as functions. Rudiments of number theory 
(divisibility, modular arithmetic). Manipulations of terms (without or with 
variables). Numerical open sentences (equations, inequations and other)with 
one or more variables. An outlook to algebraic structures, to linear algebra. 

Geometry, measurements (20 to 30 %) 

Geometrical objects as sets of points (subsets of R3). Transformations as map- 
pings within R 3. Measurements, both in the physical space and within a 
mathematical model. Some combinatorial topology (mainly graphs, also as 

models of relations). 

Combinatories, probability, statistics (10 to 15 %) 

At first probability is based on frequencies and estimations, not on combina- 
torics, which appears independently, and statistics is on the descriptive level, 

not based on probability. Later their interdependences come to light. 

6. CLASSROOM EXAMPLES 

6.1. Arithmetic, probability, strategy planning (Age: 7 to 20 or more) 

Chitdren who can subtract two digit numbers can play the game below. They 
will become involved in thinking of probability without knowing what 
probability means. They will develop strategies without knowing what a 
strategy is. Students who know a lot of probability may find it difficult to 
assess the merits and de-merits of these strategies. 

The game is about filling the four places below with random digits, 

appearing one by one. The goal is to make the difference of the two two-digit 
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numbers as large as possible. Some of  the children produce and announce 

the random digits appearing on ordinary dice (or dice with faces marked by 

0, 2, 4, 5, 7, 9 or some device generating decimal random digits etc.), others 

working individually or in teams, write the digits to one of  the empty places 

before the next digit is announced. After the fourth they perform the sub- 

traction to decide who won (possibly more of  them). An easier variant: ad- 

dition rather than subtraction; a harder one: numbers with more than two 

digits. 

From the point of  view of  arithmetic the game serves, apart from developing 

skills in arithmetic, to calling attention to the place value and to the respective 

roles o f  minuend and subtrahend (etc.) - ideas belonging also to the realm of  
functions. 

This game - together with many other games -  are expected to contribute 
to some more sophisticated ideas, such as the following: 

1. Strategy as a set of  instructions telling you what to do (how to move) in 

any given situation. Here:where to write any digit, possibly depending on how 
some places are filled. 

2. Distinguishing between moves you cannot regret (using a 6 as a tens 

digit in the minuend if that place is still empty) and one you can possibly 
regret (you write a 5 to the tens digit of  the minuend and then a 6 appears). 

3. Distinguishing between a move you will probably regret and one you will 

probably not regret. (More precisely: one you are more likely to regret than 

not and one you are less likely to regret, than not to regret. There are actually 

three such cases, not two.) Which is the case with using a 5 as the tens digit of  

the minuend? Does it depend on how many throws are over? 

4. Better and worse strategies. What does it mean? How can you distinguish 

them? Does the user of  a better strategy a) always win, b) more often win than 

not? (Not even that. But he is more likely to win at any t i m e -  that is the 

definition. And he is afortiori more likely to win more often than not.) 

Games like the above are powerful means o f  giving pupils a first intuitive 

grasp o f  deep ideas. Much evidence is still needed, however, about the way and 

efficiency of  building upon such basing a solid conceptual structure in mass 
education. 

6.2. Arithmetic and algebra through functions (Age: 8 to 10) 

Children worked so far with natural numbers mostly below one thousand. 

They also can handle some other rational numbers. They have some practice in 
the use of  variables (boxes or letters). They performed earlier such activities as 

putting together and dividing between them collections of  objects each of  
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which can be cut into two (example: horse-chestnuts) and locating numbers on 

the number line. The teacher exhibits some couples of  numbers as inputs, each 

of  them with its output:  

x y 

8 4 

20 10 

6 3 

z (output) 

6 

15 

4 and a half 

Depending on the number of  children who are working with him ~ not 

necessarily the whole class - he may suggest several things to do: 

a. Add further triples - either on their own papers or for the whole group - 

which they think follow the same rule. 

b. Ask for input numbers to find their outputs. 

c. Mark each triple on a separate number line, distinguishing them (e.g. first 

input blue, second input orange, output red). 

d. Suggest some activity where such inputs give such outputs. 

e. Devise open sentences valid for each of  these triples. 

f. Choose among given open sentences those which are valid for each triple. 

Suggested open sentences: 

A.  x + x - - y  = z + z  E. x - - y + 2  = z 

B. x - y -  = z F. - X + y  = z 
2 4 

+ y  x v x 
C. " + ~  = z G. ~ = z 

2 2 2 

x - - y  x - - y  
D . y +  - z  H . x  - z  

2 2 

All but one of  the open sentences is satisfied by the above triples. As soon 

as somebody suggests input numbers with different ratio, this will not be the 

case any more. (The teacher can do this in task b.) 
These and similar activities lend themselves to developing quite a number 

o f  ideas and skills: 
1. The meaning of  inpu t  (we can choose them) and o u t p u t  (determined). 

2 . D e t e r m i n e d  means unique (unique number, unique object, possibly a 

unique set etc.). 
3.We might have chosen 12 and 6 first, or 6 and 3 first, the order in this 

sense does n o t  matter.  
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4. Choosing 4 and 8 is, generally speaking, different from choosing 8 and 4. 

(The idea of an ordered pa i r -  or couple - ,  ordered triple etc.; numerical and 

non-numerical examples taken from the environment.) The order in this sense 
does matter. 

5. The role of  the first set (the domain). Choosing means choosing among. 

Should we include negative numbers? (With a different source set the function 

is different.) In our example choosing x always as the double o fy  was only an 
artifice. 

6. The role of the second set. Does the machine produce numbers such as 

four and a half or it begins blinking or buzzing at the input of the couple 

(6, 3)? It may behave this way or that way depending on our programme. 
(Both sets are essential parts of the function.) 

7. Rules as prescriptions enabling us to find outputs for further inputs. 
Rules expressed by addition, multiplication and their inverses are used fre- 

quently in view of the importance we attribute to basic skills, but we come 

back again and again to non-numerical functions or numerical functions with 
rules such as the larger o f  (two numbers), the integer part o f  (implicitly appear- 

ing with the Euclidean division), later the least common multiple, arctan 
(appearing informally as steepness o f  a slope "one forward, two up" in degrees 
etc.) 

8. Functions in the broad sense, possibly without apparent rules. (Sets of 

observations, arbitrary graphs, arbitrary n-tuples with the last element as the 
output.) 

9. The idea that a rule should work with all listed items (here: with each 
triple of numbers). Among the above rules " x - - y  + 2 = z"  works with the 

first item only, "x + y -  15 = z "  with the second, "z equals 2 in x + y "  

(in the sense of the integer part of (x +y ) /2  with both, but not the third, 

"x - - y /2  = z" with all three; further items may only satisfy one but not the 
other. 

10. Apparently contradicting 8: for any number of items there is always 

some rule. If  inputs are single numbers, then any two inputs with their 

outputs can be characterized by a linear rule - more generally any n by exactly 

one polynomial rule of at most (n -- 1)th degree and infinitely many of nth 
degree - and the choice is broader, if there is more than one variable. These 

advanced ideas, are beyond the reach of  the 7 to 10 year olds, but something 

important can be conveyed by always suggesting them to find a rule rather 

than find the rule. Starting with a few items they experience the manifold 
of possible rules. (See also Section 6.3 : Steps toward calculus.) 

11. Two rules are tom to be different if they give different outputs for 
at least one input within the domain. Otherwise it is the same rule in another 
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form. This becomes interesting when the domains are sufficiently broad 

(children may use any number they know). Open sentences expressing the 

same rule serve then as stepping stones toward algebraic manipulations." rules 

o f  transforming a term or an equation to an equivalent one (one which takes 

the same values, respectively truth values, at the same inputs). 

Examples to this point: A and B are equivalent, though neither their left 

hand, nor their right hand terms (members) are. The left hand terms of  C, D, 

G, H are all equivalent. These are true far beyond the set of  the listed input 

values. On that set all but E are equivalent, but the set is too restricted to make 

this fact interesting. 

D and E are awkward, but the idea behind them is more natural for children 

working with number lines, than the idea behind C and G. This latter is more 

natural for those working with objects which they put together and divide. 

What is the number precisely between 288 and 284? You add half of  their 

difference to the second number or you subtract it from the first. The fact 

that adding their halves or halving their sum give the same result is something 

to discover and analyse. If the first number is smaller than the second, then 

the rules 

y - - x  y - - x  
I. x 4  - z  J . y  - z  

2 2 

are the more natural expressions. But are those or these really restricted to 

some couples? Or do all the six give the same output for any couple? (The use 

of  calculators is advisable here, to furnish heuristic arguments, "empirical 

evidence".) 

6.3. Steps toward calculus (Age: 8 to 12) 

The idea hehind the suggestion "look for a rule, not for the rule" (see in 

Section 6.2.) becomes clearer when pupils understand that for any number o f  

input and corresponding output  values there are an infinity of  rules satisfying 

all of  them. One of our approaches to convey this idea is via sequences. Suggest 
arbitrary numbers to begin a sequence/We try to find a rule by looking at the 

differences: 

3 

- - 2  

1 5 12 

4 7 Is there a rule here? Look at their differences: 

6 3 0 - - 3  - - 6  

6 and 3 fit well into a decreasing sequence with a constant difference - -3 .  
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Taken this as granted we can go back to the first differences and then the 

original sequence as well: 

1 5 12 19 23 2 1 . . .  

- -  2 4 7 7 4 - -  2 . . .  

6 3 0 --  3 - - 6  . . .  

I f  more elements are given, then we may have to go on to further dif- 

ferences. And any time we go one step further,  we find an infinity o f  rules o f  

the given type.  

This easy and natural technique foreshadows what later will be known as 

polinomial approximation.  The main idea can be grasped without any formula: 

two arbitrary numbers determine an arithmetic sequence (linear function), three 

of  them a second order arithmetic sequence (quadratic function), n of  them an 

arithmetic sequence o f  order n - -  1 (a polynomial  o f  degree n - 1). I f  the num- 

bers are not consecutive elements of  a series, then the technique becomes clumsy: 

1 4 . .  15 

3 3 + x  3 + 2 x  

and even more so, if  instead o f  elements o f  a sequence - i.e. values of  a func- 

tion at integer inputs - the inputs are arbitrary numbers. These difficulties can 

serve as incentives to looking for bet ter  techniques. Yet the main idea once 

grasped serves as a thread to be followed. Taylor series are a natural follow-up 

o f  polinomial approximations.  The analogy between integers written in some 

base b as the polynomials o f  b and real numbers in the form of  infinite b-cimals 

as their extensions to infinite series is revealing. 

The early s tudy of sequences foreruns many more ideas pertaining to 

calculus. The n-th differences o f  the sequences o f  order n are constant just as 

the n-th derivatives of  the n-th degree polynomials.  But children also meet 

sequences following a given rule (with a constant quotient)  where the dif- 

ferences are constant times the numbers in the original sequences: 

1 3 9 27 . . . .  1 O.5 0.25 0 . 1 2 5 . . .  

2 6 1 8 . . . ( c  = 2) - -0 .5  - -0 .25  - - 0 . 1 2 5 . . . ( c  = - - 0 . 5 )  

and a certain value o f  the quotient ,  incidentally 2, makes c = 1. Again a thread, 

leading to exponential  functions and their derivatives. 
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6.4. Statistics: an estimated distn'bution (Age: 15 to 18) 

How much time before starting classes have you to leave your home in order 

to arrive at school in time? 

The wording is deliberately vague. Pupils are expected to contribute to 
formulating the problem. 

1. "In time" should mean: "not to be late". They may arrive earlier. 

2. They use the vehicles they usually do. (If they make it depend on the 

time of leaving, then the problem becomes more complex.) 

3. "To be certain to arrive" is a too strong assumption. Even if you leave 
one hour earlier something very special may happen that prevents you from 
arriving. 

100 % certainty is unrealistic but a probability like 99 % is not. What do 
you mean by this probability? Write your estimation of the time you need 
for that. Also for 90%, 67%, 50%, 33%, 10%, 1%. Plot a graph based on 

your estimations. Connect the points smoothly. The curve will represent an 
extension of your estimations to further probabilities. 

Do you think that the curve should have some sort of symmetry? Behave 

somehow the same way at 99 % as at 1% etc.? 
Could we simulate these estimated distributions by some chance experi- 

ment - throwing dice, generating random digits on a calculator? 

Suggestion 1: If  the estimated difference between the minimum and the 

maximum travelling time is n minutes, then choose a random digit from O 

to n and add it to the minimum. 

Suggestion 2: To avoid certainty (at minimum + n) let n be the surplus- 
time at some high probability, and if the digit is n, then you produce a third, a 

fourth etc., until you get a digit less than n. 

Suggestion 3: Digits from O to n or n -- 1 with equal probability do not 

fit to reality. Numbers in the middle should be more frequent. Adding two 

random digits? Or three? 

Threads lead to discovering, generating and using normally (or otherwise) 

distributed random numbers. 

6.5. Calculators used in solving a statistical problem (Age: 16 to 18) 

One of the many uses of  statistics - and a particularly important one - is to 
help us distinguishing between causahty and chance. We want to equip pupils 
with some statistical tools they can reliably use to this purpose. 

We illustrate this point by the following example. 
Headline in a newspaper: KOM~ROM, TOWN OF TWINS. The news: 
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"In 1977 five pairs of  twins were born among 270 babies in that town. 

Statistics show that in Hungary the probability of  giving birth to twins is i %. 

Experts could not yet explain what may have caused the higher rate in 

Kom~rom. Some suggest that it may be a side effect of  oral contraceptives." 

We would like school leavers-  whether they become journalists or just 

readers, a n y b o d y -  to be able and willing to verify if this sort of news is a 

news. Did something particular happen in Kom~rom in 19777 We expect them 

to develop some intuition and ability o f  estimating probabilities. Beyond that, 

they should be able to choose one of  the suitable tools and to use it properly. 

In our example the Poisson distribution is a good choice. You need a table, 

a few pages in a book. Or you may prefer to use a calculator. Some calculators 

have a key for the Poisson distribution, others can be programmed to it by a 

card. Less is enough: a simple scientific calculator with an e x key, and a 

recollection of  e x = I; xk/k! and hence of  1 = Y. xk/e x k! as the formula giving 

the Poisson probabilities, term by term, if x is the expectation, Np. In our 

case N = 265 and p = .01 give x = 2.65. From the formula for k = 5, 6, 7 . . . .  

the approximate probabilities of  five, six, s e v e n . . ,  pairs of  twins are .08, .03, 

.01 . . . . .  respectively. This gives .12 as the probability o f f / re  or more pairs o f  

twins, a more interesting value, than that of  exactly five. Interpretations: 

1. From the point of  view of  just one town, Kom~rom, this means: i f N a n d  

p are supposed to be and remain 265 and .01, respectively, then five or more 

pairs o f  twins can be expected in every eight years or so. Not very rarely. 

2. From the point of  view of  the whole country the event is much less 

unusual. The population of  the country is 800 times that of Kom~rom. The 

country can be subdivided to 800 Kom~roms; five or more pairs of  twins 

are born yearly in one hundred o f  these, roughly. Under the assumption, to be 

sure, of  the same rate of natality and the same probability (.01) of twins. 

Conclusion: there is nothing special about twins in Kom~rom. Even oral 

contraceptives can be absolved on this occasion. 

We do not expect schools to develop skill in those particular keystrokes 

which are needed for solving such particular problems with their calculators. 

What we expect is less and more: to put together what they know - including 

the whereabouts o f  some books to help their memories - and enabling them- 

selves to many more problem solving procedures than they could ever meet in 

school. In other words, we expect them to produce, rather than stock, problem 

solving programmes. (Note an analogy: calculators produce data, while tables 

stock them.) 

We also expect them to adapt their problem solving programmes to the 

actual circumstances. What if they only  have a calculator with four rules, not 
with e x , at disposal? 
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If  mathematical education is sufficiently oriented to understanding, then 
the trainees have a fair chance of  seeing here a key idea: the only role of  e x 

is to make the sum of the series equal to one. 
I f  mathematical education is, besides, sufficiently oriented to solving real 

problems - not just in principle, but actually, until the end - then they have 

a fair chance of  exploiting this idea. The numbers xk/k! (k = 0, 1,2 . . . .  ) are 
themselves proportional to the probabilities of  0, 1, 2 . . . .  pairs of  twins. The 

coefficient of  proportionality can be determined by summing them, up to a 

certain k, depending on the desired precision. (They will get an approximation 
of  eX). Now they can translate the key idea into the language of  keystrokes 

on their simple machine. 
They can do it with paper and pencil a l o n e -  possibly five to ten times 

slower. Or even mentally. We want the various means and techniques to com- 

pete. The competit ion will reduce the role of  written arithmetic to what it 

still merits. It will underline, we predict, the continued - and in some respects, 

increased-  importance of  mental arithmetic. (Especially of  estimations.) It 

will demonstrate the due place of  calculators in education. And it will help to 

convince those who expect too much of  the technical means, that for the 

ideas they are no substitutes. 


