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Abstract. Chloroplast (cp) DNA from 32 genotypes 
representing eight genera and 19 species from the 
Andropogoneae tribe was analyzed using 15 restriction 
enzymes and Southern hybridization with 12 cpDNA 
probes that span the complete rice chloroplast genome. 
Six of the genera, Saccharum, Miscanthus, Erianthus, 
Narenga, Eccoilopus, and Sclerostachya, are part of the 
Saccharinae subtribe, whereas the other two, Zea and 
Sorghum, were used as outgroups. Narenga, Miscan- 
thus, Erianthus, and Sclerostachya are presumed to 
have been involved in the evolution of Saccharum 
officinarum ("noble" or high sucrose sugarcane) via S. 
spontaneum and S. robustum. Southern hybridization 
with the rice cpDNA probes surveyed approximately 
3% of the S. officinarum 'Black Cheribon' genome and 
yielded 62 restriction site mutations (18 informative) 
that were analyzed using cladistic parsimony and 
maximum likelihood. These site mutations placed the 
32 genotypes into nine different chloroplast groups; 
seven from within the Saccharinae subtribe and the two 
outgroups (maize and Sorghum). Phylogenetic infer- 
fence under various assumptions showed that the ma- 
ternal lineages of Narenga, Miscanthus, Sclerostachya, 
and Saccharum formed a monophyletic group. This 
group displayed little variation. On the other hand, 5 of 
6 Erianthus species and Eccoilopus longisetosus formed 
a separate group. The 'Old World' Erianthus/Ec- 
coilopus chloroplast was very different from that of the 
rest of the 'Saccharum complex' members and was 
slightly more related to that of Sorghum bicolor. Place- 

Communicated by A. R. Hallauer 
* Permanent address: Centro de Technologia Copersucar, Caixa 
Postal 162, 13.400 Piracicaba, S.P., Brazil. 
Correspondence to: B. W. S. Sobral 

ment of these Erianthus/Eccoilopus genotypes was, 
therefore, in conflict with analyses based on morpho- 
logy. Surprisingly, Erianthus trinii, a New World spe- 
cies, had the same restriction sites as did one Miscan- 
thus sinensis. One Miscanthus sp. from New Guinea 
that has a very high chromosome number (2n = 192) 
had the same restriction sites as the majority of the 
Saccharum genus, suggesting that introgression be- 
tween these genera occurs in the wild. The Saccharum 
genus was separated into two clades by single site 
mutation: one containing S. spontaneum, and the other 
containing all of the remaining Saccharum species and 
all 8 commerical hybrids (from various regions of the 
world). A physical map of the chloroplast of Saccharum 
officinarum 'Black Cheribon' was constructed using 5 
restriction enzymes. 
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Introduction 

The grass family is one of the most important plant 
families providing both grasslands that occupy a third 
of the world's surface and cereal crops upon which 
humans depend for food (Clayton and Renvoize 1986). 
The Andropogoneae tribe of the grass family is one of 
the largest, most specialized (Celarier 1956), and most 
taxonomically defined of the grass tribes (Hartley 1958; 
Clayton and Renvoize 1986). Within the grasses 
(Clayton and Renvoize 1986) this tribe is considered to 
be advanced, and widespread polyploidy has been 
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observed (Stebbins 1956; Clayton and Renvoize 1986). 
The tribe is divided into three subtribes: the Sacchar- 
inea/Germainiinae, the Sorghinae, and the Ischae- 
minae/Dimeriinae/Coicinae (Clayton and Renvoize 
1986). The Saccharinae are thought to be the most 
primitive subtribe because both spikeletes of the pair 
are fertile and rachis internodes are unspecialized (Har- 
tley 1958; Celarier 1956; Clayton and Renvoize 1986). 
The Saccharinae are also typically tall and hy- 
grophilous, which is considered to be the ecologically 
primitive condition (Hartley 1958). Within the Sac- 
charinae, there are two groups of genera. The first 
group has a panicate inflorescence, thought to repre- 
sent the primitive condition (Clayton and Renvoize 
1986), and seems to radiate from the genus Saccharum. 
The second group of genera has a digitate inflorescence 
and consists of a number of divergent lines radiating 
from the genus Eulalia (Clayton and Renvoize 1986). It 
would appear, then, that much might be learned about 
the evolution of the Andropogoneae and speciation in 
polyploid complexes by studying the Saccharinae, in 
particular Saccharum and its relatives. 

The Saecharum genus includes the agronomically 
important S. officinarum ("noble" sugarcane) geno- 
types, which have been cultivated because of their high 
sucrose content for thousands of years. A comprehen- 
sion of the taxonomy and evolution of Saccharum and 
its relatives has been difficult because of the widespread 
occurrence of polyploidy and the added compli- 
cation of facultative vegetative reproduction. In addi- 
tion, as with the systematics of many cultivated plants, 
over-classification for practical reasons is common, 
resulting in additional confusion. Mukherjee (1957) 
introduced the term 'Saccharum complex' to represent 
the grouping of Erianthus (Old World species, some- 
times collectively known under the invalid generic 
designation Ripidum), Sclerostachya, Narenga, and 
Saeeharum together because of (1) an overlapping geo- 
graphic range in the Indo-Burma-China border region, 
(2) their capacity to produce fertile F1 offspring, and (3) 
the observation of synchronous flowering in some of 
the overlapping range. This complex is thought by 
many (reviewed in Roach and Daniels 1987) to repre- 
sent the shared gene pool from which S. officinarum 
evolved, although there are other views (for example, 
see Grassl 1977). On the basis of pedicel modifications 
and presence or absence of awn, Mukherjee (1957) 
considered Sclerostachya and Narenga to be more 
primitive than Saccharum or Erianthus, and Erianthus 
more primitive than Saccharum. Celarier (1956) mainly 
on the basis of cytological observations, concluded 
that Eccoilopus and Miscanthus represented the most 
primitive genera within the Andropogoneae and that 
Saccharum, Erianthus, Narenga, and probably Sclero- 
stachya were de-rived forms. Daniels et al. (1975) revised 
the complex to include part of the genus Miscanthus 

(section Diandra; Keng 1957) because the other genera 
did not possess long callus hairs and hairs below the 
panicle, which they considered required botanical 
chacteristics for Saccharum to have emerged from this 
extended breeding pool. It is noteworthy that a modern 
view of grass systematics considers the genus Sacchar- 
um to include Erianthus and Narenga, Miscanthus 
includes Sclerostachya, and Eccoilopus is included in 
Spodiopogon (Clayton and Renvoize 1986). This trend 
to consolidate genera appears to have begun with the 
work of Bor (1960). 

Morphological characters, on which much of the 
modern systematics of the tribe depends, have been 
suggested by some to be frequently homoplastic or 
convergent (Systma et al. 1991; Gottlieb 1988; for an 
opposing view, see Donoghue and Sanderson 1992). 
Although this assumption remains unproven, it can be 
envisioned to be possible in groups of plants in which 
extensive reticulate evolution and polyploidy occurs. 
In our view it would be most enlightening to study all 
existing data sets. For example, rDNA and isozyme 
analysis of various members of the Saccharum complex 
has shown that: (1) S. spontaneum genotypes are the 
most variable of Saceharum species, (2) the single Erian- 
thus and Miscanthus genotypes studied are unique, and 
(3) S. robustum genotypes are more variable than S. 
offleinarum, although not all of the variation observed 
in S. officinarum is explained by the S. robustum geno- 
types studied (Glaszmann et al. 1989, 1990). Molecular 
genetic data has also been used to demonstrate that S. 
spontaneum 'SES 208' behaves like an autopolyploid 
because of random chromosome pairing and assort- 
ment (da Silva et al. 1993; A1-Janabi et al. 1993). Burn- 
quist (1991), using random nuclear restriction frag- 
ment length polymorphisms (RFLPs), showed that (1) 
Erianthus species are closely related to one another and 
very distant from Saccharum species, (2) S. spontaneum 
is the most variable of the Saccharum species, and (3) S. 
rubustum and S. officinarum genotypes are closely re- 
lated. Molecular data may be particularly useful to 
help test hypotheses that have been formulated from 
the analysis of traditional characters such as morpho- 
logy and cytology. A better understanding of evolution 
and speciation in polyploid complexes would be useful, 
given that a very large number of plant species are 
polyploid (Soltis et al. 1992). As an initial step toward 
understanding phylogenetic relationships within the 
postulated base of the Andropogoneae and the origin 
of domesticated sugarcane cultivars, we studied the 
maternal lineage of genera in the postulated base of the 
Saccharinae, the Saccharum complex. Genetic vari- 
ation within the non-recombining, uniparentally in- 
herited, haploid chloroplast genome of members of the 
Saecharum, Narenga, Sclerostachya, Miseanthus, 
Erianthus, and Eceoilopus was investigated. Using Sor- 
ghum bicolor and Zea mays as outgroup species, we 
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Table 1. Plant genotypes and their origins 

Species Group a Genotype Origin b Cytol c Source d Type ~ 

Eccoilopus longisetosus 
Erianthus arundinaceus 

E. bengalense 
E. procerus 
E. ravennae 
E. trinii 
Miscanthus sinensis 
Miscanthus sp. 
Narenga porphyrocoma 
Saccharum barberi 

S. edule 
S. officinarum 

S. robustum 
S. sinense 

S. spontaneum 
Selerostachya fusea 
S. bicolor 
Zea mays 
Commerical hybrids 

Ripidium 
Ripidium 
Ripidium 
Ripidium 
Ripidium 
New World 

Saretha 
Saretha 
Nargori 
New Guinea 

Sanguineum 
Pansahi 
Pansahi 

US 57-11-2 India 30 Houma E/E 
SES 288 Khemipur, India 30 Houma E/E 
'Mardon' Pakistan U Houma E/E 
Imp 2886 U U Houma E/E 
Kalimpong U 40 Houma E/E 
SES 372 Dharam, India 40 Houma E/E 
US 65-14 Argentina U Houma M 
Zebrinus U 38 TAES M 
NG 77-193 New Guinea 192 Houma S 
US 58-4-1 India 30 TAES N 
Chunnee Uttar Pradesh, India U TAES S 
Katha Punjab, India 90, 91, 92 Houma S 
Nargori Bihar, India 124 TAES S 
NH 70-23 New Hebrides U TAES S 
Black Cheribon Java 80 TAES S 
NG 57-72 New Guinea 80 TAES S 
NG 51-131 New Guinea 80 TAES S 
NG 28-218 Sepik River, NG 70 TAES S 
Uba nanquim U U TAES S 
Chuk Chee U U TAES S 
Coimbatore Madra, India 64 TAES Ss 
US 58-5-2 India 30 Houma Sf 
Sweetchew Breeding 20 TAES Sb 
AP 271 (Sweet) Breeding 20 APG Zm 
EK28 (POJ 100 x EK 2) 80 TAES S 
POJ 100 (B. hiram x Loethers) 89 TAES S 
POJ 2878 (POJ 2364 x EK 28) 119,120 TAES S 
SP 70-1143 (IAC 4865 x unknown) U TAES S 
CP 70-324 (CP61-39 x CP57-614) U TAES S 
Co 206 (Ashy Mauritius x 

S. spontaneum India) U TAES S 
CP 65-357 U U TAES S 
CP 70-321 (CP61-39 x CP57-614) U TAES S 

a Group, Non-taxonomic grouping used by sugarcane biologists. Generally related to cytological or geographic observations 
b Origin, Original place of collection (Artschwager 1954; Brandes et al. 1939; Moriya 1940; Price 1968; Panje and Babu 1960). U, 
Unknown 

Cytol, 2n chromosome number (Moriya 1940; Panje and Babu 1960; Price 1957; Burner 1991; Mohan and Sreenivasan 1983) 
d Source refers to the place from which we obtained a sample. TAES, Texas Agricultural Experiment Station, Weslaco Tex.; Houma, 
USDA Sugarcane Laboratory at Houma, La.; APG, American Plant Growers 
e Type, Cytoplasmic type as determined by RFLP analysis (this work): S, Saecharum; S. spontaneum; Sb, Sorghum bicolor, N, Narenga 
porphyrocoma; M, Miscanthus sinensis, Sf, Sclerostachya fusca; Zm, Zea mays; E/E, Erianthus/Eccoilopus, as shown in trees 

applied cladistic pars imomy (Hennig 1965; Farris  
1977) and  m a x i m u m  likelihood (Edwards and  Cavali- 
Sforza 1963; Felsenstein 1973) methods  to generate 
maternal  phylogenetic hypotheses. 

Materials and methods 

Plant materials and DNA manipulations 

Plant genotypes and their origins are listed in Table 1. Identifica- 
tion of restriction site variation in chloroplast DNA (cpDNA) 
was accomplished by the hybridization of cpDNA clones to total 
DNA from each genotype. Twelve recombinant cpDNA clones 
from rice kindly provided by Dr. M. Sugiura and are described in 

Shimada et al. (1989) and Shimada and Suiguira (1991). These 
clones represent the entire chloroplast genome of rice (see Fig. 1). 
One microgram total DNA, extracted using the protocol of 
Honeycutt et al. (1992), was digested with 21 different restriction 
enzymes (AluI, BamHI, Bsp106, Xmnl, MboI, XbaI, HindIII, 
BstNI, StyI, AluI, BclI, HinFI, EcoRV, HindlI, RsaI, EcoRI, 
DraI, DdeI, SspI, NsiI, and PstI) according to the supplier's 
directions (Stratagene Cloning Systems, La Jolla, Calif.). Restric- 
tion enzymes were selected to (1) preferentially cut AT-rich target 
sites because introns are generally more AT-rich and frequently 
evolve more rapidly than exons (Wolfe et al. 1989; Barbier et al. 
1991) and (2) maximize the number of fragments revealed per 
experiment within the resolving capabilities of agarose gel elec- 
trophoresis. Restriction fragments were size fractionated in 
agarose gels, followed by capillary transfer to a nylon membrane 
(Maniatis et al. 1982). Recombinant DNA probes were radio- 
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Fig. t. Restriction map of the 
'Black Cheribon' chloroplast gen- 
ome. Restriction enzyme sites were 
ordered within the S. officinarum 
'Black Cheribon' chloroplast gen- 
ome by hybridization between rice 
chloroplast probes and double 
digests of total DNA. The positions 
of selected genes and the inverted 
repeat (arrows) are inferred from 
the sequence of the homologous 
rice probes (Shimada et al. 1989; 
Shimada and Suguira 1991) 

actively labelled by random priming (Feinberg and Vogelstein 
1983) and hybridized to the DNA on nylon membranes in an 
aqueous cocktail at 65 ~ as described by Keim et al. (1992). 
Overnight autoradiography revealed fragments homologous to 
the probes. 

Character definiton 
We considered the character to be the presence (scored as 1) or 
absence (scored as 0) of a clearly defined restriction site. The low 
level of variation among genotypes in this study allowed restric- 
tion fragment patterns to be interpreted to derive individual 
restriction site characters and character states. Independence of 
characters was confirmed by examining restriction fragment 
patterns from adjacent rice probes with the same restriction 
enzyme. Occasionally a character was detected with more than 
one probe. In these cases, the most informative probe was used 
and the other eliminated from the character set. Length muta- 
tions (i.e., insertions or deletions) could also lead to non-indepen- 
dent characters being observed from a common probe, but with 
different restriction enzymes. Therefore, every polymorphic re- 
striction pattern was compared to other restriction enzyme 
patterns observed with the same probe. Such polymorphic frag- 
ments were compared for identical distribution among the geno- 
types. In no cases were identical distributions found, thereby ruling 
out the existance of length mutations in our character set. Our 
scoring method is called "site occurrence analysis" (SOA) (Bremer 
1991). The character set we analyzed is shown in Table 2. 

Physical mappin9 of the chloroplast 

Restriction enzyme mapping of the S. officinarum 'Black 
Cheribon' chloroplast genome was accomplished by digesting 

total DNA with 5 different enzymes (BamHI, PstI, EcoRV, 
HindlII, and EcoRI) in all possible double-digest combinations. 
Digested DNAs were separated by agarose gel electrophoresis, 
blotted, and analyzed by Southern hybridization using the rice 
cpDNA clones (see Fig. 1). 

Phylogenetic analyses 

Phylogenetic hypotheses were inferred using either PHYLIP v 
3.42 (Felsentein 1989) or PAUP v 3.0s (Swofford 1991). 

Results 

Analysis of restriction site mutations 

The c p D N A  diversity within the 32 genotypes was 
estimated using 15 restriction enzymes. Southern  hy- 
br idizat ion with 12 rice c pD N A  probes was carried 
out. For  all probe-enzyme combinat ions ,  604 restric- 
t ion fragments were reliably detected in Saccharum 
officinarum 'Black Cher ibon '  (reference genotype). This 
represents approximately 2.5% (approximately 3.0 
kilobase pairs) of this genome. Sixty-two restriction 
sites were polymorphic  in this study (Table 3), repre- 
senting a po lymorphism frequency of 9.7% across all of 
the taxa studied. If no assumpt ions  were made  abou t  
the ancestral  states (i.e. "ancestor  = unknown") ,  then 
18 of 62 polymorphisms were synapomorphous  and  

Table 2. Character matrix a 

Erianthus/Eccoilopus 10001 00011 11110 00010 00000 00011 01101 01000 00011 10001 10001 10101 10 
Miscanthussinensis 00001 ?1111 00100 11100 00000 00010 11011 01000 10111 11011 11000 10100 10 
Narengaporphyrocoma 00011  10111 00100 11010 00000 00010 11010 0?000 10111 10011 10000 10110 10 
Saccharumspontaneum 00001 10101 00100 11010 00000 00010 11010 00001 10111 10011 10000 10100 10 
Sclerostachyafusca 00001 i0111 00100 11010 00000 00010 11010 01000 10111 10011 10000 10110 10 
Sorghum bicolor 10001 00010 10101 11011 01100 01010 11011 0?000 10111 10001 00000 10100 11 
Saccharum 00011 10101 00100 11010 00000 00010 11010 00001 10111 10011 10000 10100 10 
Zeamays 11100 00011 11010 11000 10010 10101 1010? 1111? ?1000 00100 10110 01010 00 

" Characters are in the order presented in Table 3 



Table 3. Character description 

Character Probe a Enzyme Fragments observed u 

Site absent Site present 

1 pRB-1 BamHI 12.2 6.5 + 5.7 
2 pRB-I BamHI 13.0 6.4 + 4.4 + 2.2 
3 pRB-1 BamHI 13.0 6.4 + 4.4 + 2.2 
4 pRB-1 DraI 3.6 1.6 + 2.0 
5 pRB-1 DraI 3.6 3.5 + 0._1_1 
6 pRB-1 SspI 3.2 3 + 0._._22 
7 pRB-1 SspI 3.0 2.5 + 0.___55 
8 pRB-1 XmnI 4.0 3.3 + 0.7 
9 pRB-1 Bspl06I 11.5 9.5 + 1.8 
10 pRP-7 BamHI 3.8 3.4 + 0.4 
11 pRP-2 HaeIII 1.9 1.0 + 0._99 
12 pRP-2 BstNI 1.8 1.0 + 0.__88 
13 pRP-2 BamHI 9.6 7 + 2.__.fi6 
14 pRP-2 NsiI 4.3 4.2 + 0._!1 
15 pRP-2 StyI 2.4 2.1 + 0.__33 
16 pRP-2 SspI 9.4 8 + 1.__~4 
17 pRP-2 SspI 5.4 5.2 + 0._2 
18 pRP-2 SspI 8.0 7.9 + 0.! 
19 pRP-2 DraI 6.5 5.5 + 1.___0 
20 pRP-2 EcoRI 2.5 2.35 + 0.15 
21 pRP-2 EcoRI 3.4 2.8 + 0.__6_6 
22 pRP-9 BstI 3.8 3.6 + 0.__22 
23 pRP-5 DraI 5.6 2.9 + 2.7 
24 pRP-5 DraI 4.3 4 + 0.__33 
25 pRP-5 DraI 6.0 2.5 + 3._55 
26 pRP-5 NsiI 2.6 ? 
27 pRP-5 BamHI 12.9 9.4 + 3.5 
28 pRP-5 BstNI 2.7 1.8 + 0.__99 
29 pRP-5 Bspl06I 1.5 1.45 + 0.05 
30 pRP-5 XmnI 1.6 1.3 + 0.3 
31 pRB-7 BclI 3.1 2.9 + 0.__22 
32 pRB-7 NsiI 8.5 6.9 + 1.___66 
33 pRB-7 NsiI 6.9 6.2 + 0._27 
34 pRB-7 SspI 9.4 ? 
35 pRB-7 SspI 8.0 4.3 + 3._27 
36 pRB-3 DraI 3.9 2 + 1.___99 
37 pRB-3 XbaI 2.6 2.4 + 0._.22 
38 pRB-3 NsiI 3.8 3.5 + 0.__33 
39 pRB-3 SspI 2.4 1.9 + 0.5 
40 pRB-3 HaeIII 2.4 1.8 + 0.__66 
41 pRB-3 Bspl06I 15.0 12.0 + 3.0 
42 pRP-1 EcoRV 2.5 1.6 + 0.___99 
43 pRP-1 Bsp106I 2.7 2.4 + 0.__33 
44 pRP-1 HinDIII 3.5 2.5 + 1.__0 
45 pRP-1 BstNI 2.8 ? 
46 pRP-1 BstNI 5.1 2.3 + 2.8 
47 pRP-1 NsiI 17.0 12.5 + 4.5 
48 pRP-1 NsiI 17.0 14.2 + 2.8 
49 pRP-1 XmnI 4.2 2.2 + 2.0 
50 pRP-1 DraI 1.9 1.6 + 0.3 
51 pRP-11 BamHI 10.0 8.9 + 1.__~1 
52 pRP-11 SspI 2.4 1.2 + 1.2 
53 pRP-11 HaelII 1.5 1.3 + 0.2 
54 pRP: l l  EcoRI 1.6 0.85 + 0.75 
55 pRP-10 XmnI 3.5 ? 
56 pRP-10 BstNI 3.8 1.8 + 2.0 
57 pRP-10 BstNI 1.0 0.8 + 0.2 
58 pRP-10 HaeIII 4.3 1.8 + 2.__~5 
59 pRP-10 NsiI 4.8 4.3 + 0.__55 
60 pRP-10 EcoRI 2.3 1.8 + 0.___55 
61 pRP-10 EcoRI 2.4 2.3 + 0._!1 

Table 3. (Continued) 

847 

Character Probe a Enzyme Fragments observed b 

Site absent Site present 

62 pRP-6 NsiI 9.4 9.2 + 0.2 

a The probe designations are from Shimada et al. (1989) 
b Underlined fragments were not observed and are postulated to 
be present.'?' Represents the lack of observed polymorphic 
fragments. Sizes are in kilobase pairs 

the remain ing  44 were a u t a p o m o r p h o u s .  The  p o l y m o r -  
ph ism frequency is much  smal ler  a m o n g  o the r  taxa,  
and  informat ive  charac ters  become rare in the der ived 
clades of this study. F o r  example,  only  one po lymor -  
phism separates  Saccharum genotypes  f rom S. sponta- 
neum ' C o i m b a t o r e '  or  Narenga porphyrocoma from 
Sclerostachyafusca (Fig. 2). 

Construction o f  a restriction map o f  the chloroplast 
o f 'B lack  Cheribon' 

A chlorop las t  genome res t r ic t ion m a p  was cons t ruc ted  
using S. officinarum 'Black Cher ibon '  D N A ,  12 rice 
c p D N A  clones, and  5 res t r ic t ion enzymes (Fig. 1). The 
to ta l  size of the Saccharum c p D N A  genome was es- 
t imated  to be 129 k i lobase  pairs  (kb) + 3 kb  by  sum- 
ming the sizes of all of the D N A  fragments  p r o d u c e d  by  
the 5 res t r ic t ion enzymes used to generate  the map.  
This es t imate  is s imilar  to the size of rice c p D N A ,  
which has been de te rmined  by comple te  sequencing of 
the rice ch lo rop las t  genome (134,525bp;  Sh imada  
et al. 1989). This m a p  should  be useful for future studies 
tha t  involve the i so la t ion  of specific Saccharum restric- 
t ion f ragments  for c loning or  fine detai l  m a p p i n g  with 
o ther  res t r ic t ion enzymes. The  enzymes used to con- 
struct  the m a p  were also used to screen for p o l y m o r -  
phic res t r ic t ion sites (see below). 

Phylogenetic analyses 

The 32 gentoypes  were reduced  to nine dis t inct  g roups  
based  on scoring of the 62 p o l y m o r p h i c  res t r ic t ion 
sites. Each  group  was given a representa t ive  name,  as 
shown in Table  1. In  addi t ion ,  one Miscanthus sinensis 
genotype  was d r o p p e d  f rom further anlaysis  because  
m a n y  of the charac ters  were dub ious  (not shown). 
F r o m  the eight  remain ing  groups,  a m e m b e r  was se- 
lected to represent  each g roup  of ch loroplas t s  tha t  
shared  the same res t r ic t ion site profiles. This m e m b e r  
was the one with the fewest n u m b e r  of uncer ta in  scores, 
when more  than  one was avai lable  to choose  from. 
These are the te rminal  taxa  used in the da t a  file in 
Table  2 and the trees. Mean  pairwise distances, correct-  
ed for missing data ,  are shown in Table  4. 
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Fig. 2A, B. Wagner trees generated by analysis of 62 polymor- 
phic sites using maize as outgroup taxon and "ancestral states all 
unknown". A Shortest tree (64 steps) decorated with number of 
steps (informative characters only, above lines), 5,000 replicate 
bootstrap 50% majority rule consensus information (below lines, 
in percentage), and informative characters supporting each 
branch (below lines). Excluding uninformative characters, the 
tree had a consistency index of 0.857 and a homoplasy index of 
0.143. Character designations are the same as in Table 3. B Fifty 
percent majority rule consensus of four trees (shortest and one 
more step) showing how many of the four trees supported each 
clade 

The Dollo assumption (i.e., that convergent or 
parallel gains of derived conditions are not allowed) 
may be considered too rigorous for restriction site data 
(Sankoff et al. t983; Alberts et al. 1992). One way 
around this problem is to assign costs for the trans- 
formation of each character state (Sankoff 1975; A1- 
berts et al. 1992). We first used Wagner parsimony 
(Kluge and Farris t969; Farris 1970), which permits 
free reversibility such that changes in character states 

in either direction are equally probable. The Wagner 
tree contained 64 steps and is shown in Fig. 2A. Its 
topology is not significantly different from a Dollo tree 
(not shown). The only difference between Wagner and 
Dollo trees is the positioning of very closely related 
ingroup taxa, namely Narenga and Sclerostachya: in 
Dollo trees (not shown) these taxa are usually placed 
ancestral to  the two Saccharurn taxa, whereas in Wag- 
ner trees (Fig. 2A, B) these two taxa form a sister clade 
in relation to Saccharum and S. spontaneurn. By assign- 
ing costs of transformation to the restriction sites, 
using stepmatrices, we investigated the effect of trans- 
formational weightings of 1.1:1 through 2.3:1 (with 
0.1:1 increments), and 5:1, on tree topology. Such 
weightings have been advocated because the costs of 
transformation are a function of effective nucleotide 
substitutions in the molecule under study (DeBry and 
Slade 1985; Alberts et al. 1992). Assignment of a 1.3:1 
cost did not alter the Wagner topology, and bootstrap 
confidence intervals were very similar to Wagner boot- 
strap confidence intervals (5,000 replicates, not shown). 
Weighting transformation costs at 2.3:1, as proposed 
by Alberts et al. (1992) for chloroplast rbcL DNA 
sequence data, yielded the same topology as the Dollo 
tree (not shown). This topology also was robust under 
5,000 bootstrap resamplings (not shown). Interestingly, 
weighting transformation costs at 5:1 affected tree 
topology, putting Erianthus, maize, and Sorghum into a 
sister clade with respect to the Saccharum complex taxa 
without changing the relationships of the remaining 
Saccharum complex taxa (not shown). 

Assumptions about the ancestral state can influ- 
ence tree topology because it is from the ancestor that 
PAUP assesses the costs of transformation (Alberts 
et al. 1992). The Wagner trees shown in Fig. 2 were 
generated using the "ancestral states unknown" as- 
sumption, but changing this to "ancestral states all 
zero" did not affect tree topology (not shown). The only 
case in which changing the ancestral state assumption 
changed the tree topology slightly is the 5:1 weighted 
tree (not shown). In this case, assigning "ancestral 
states to all zero" gave rise to a tree in which Miscan- 
thus sinensis was connected directly to the root, as was 
the "Saccharum complex clade" (Narenga, Schlero- 
stachya, Saccharurn, S. spontaneum) and the "outgroup 
clade" (Erianthus, Sorghum, maize). 

Maximum likelihood analysis of the data was car- 
ried out using the RESTML program from P H YLIP  
(Felsenstein 1989) with run parameter settings for 6-bp, 
5-bp, and 4-bp target sites, ancestral states unknown, 
and 10,000 bootstrap replicates. The resulting tree was 
identical to the Wagner tree shown in Fig. 2, and the 
confidence limits placed by bootstrapping were very 
similar (not shown). Neither variation in target site size 
nor use of maximum likelihood per se altered tree 
topology. 



Table 4. Mean pairwise intertaxon distances 

Taxon 1 2 3 4 5 6 7 8 
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1. Erianthus/Eccoilopus 0.344 0.328 0.339 0.306 0.328 0.355 0.542 
2. Miscanthus sinensis - 0.133 0.148 0.115 0.283 0.164 0.690 
3. Narenga porphyrocoma - - - 0.066 0.016 0.262 0.049 0.655 
4. Saccharum spontaneum - - - 0.065 0.262 0.016 0.678 
5. Sclerostachyafusca - - - 0.246 0.081 0.627 
6. Sorghum b i c o l o r  . . . .  0.279 0.707 
7. S a e c h a r u m  . . . . .  0.695 
8. Zea m a y s  . . . . . . .  

Because many characters in our data are differences 
observed between Z. mays and the ingroup taxa, we 
also ran analyses in which this taxon was omitted and 
Sorghum bicolor was used as the outgroup taxon. This 
did not change the topology of the ingroup, but forced 
Erianthus to assume a derived condition with respect to 
Sorghum and shortened the tree (not shown). We also 
tried using both Sorghum and maize as outgroup taxa, 
but under these conditions no tree could be found in 
which the ingroup taxa formed a monophyletic group 
under the Dollo assumption. This situation could be 
resolved either by making Erianthus an outgroup tax- 
on or by eliminating Erianthus form the analysis. When 
Erianthus was included as an outgroup taxon, a clade 
was formed with Erianthus, maize and S. bicolor (not 
shown). 

Discussion 

We have shown that the genera Narenga, Scleros- 
tachya, and Saccharum form a closely related mono- 
phyletic group with respect to their chloroplast 
genomes. These genera are members of the proposed 
'Saccharum complex' (Mukherjee 1957; Daniels et al. 
1975). In contrast, Erianthus species, also a proposed 
part  of the Saccharum complex, were found to have 
significantly different chloroplast genomes (Table 4). 
This result is of interest because modern taxonomy of 
the Andropogoneae considers Erianthus and Narenga 
to be part  of the Saccharum genus. Erianthus is con- 
sidered to be a part  of Saccharum because the divison of 
the two genera is based on the existence of an awn 
(Erianthus), a division that is considered to be artificial 
by Clayton and Renvoize (1986). Narenga has co- 
riaceous glumes, which are considered simply to be an 
extreme expression of a trend found elsewhere in the 
Saccharum genus (Clayton and Renvoize 1986). Fur- 
thermore, Eccoilopus, found to have the same cpDNA 
as Old World Erianthus, is considered to be a part  of 
Spodiopogon because separation of the genera was 

based solely on the toughness of the rachis (Clayton 
and Renvoize 1986). Finally, our results show 
the Saccharum species (as defined by sugarcane 
breeders: see Roach and Daniels 1987) that have 
been used by humans for sugar production have the 
same chloroplast restriction sites, and the only vari- 
ation found within the Saccharum genus was in S. 
spontaneum. 

Monophyly of the Narenga-Saccharum-S. spoma- 
neum-Sclerostachya group was well supported, al- 
though higher order structure within this group of 
genera is tentative because of the small number  of 
differences observed (Fig. 2, Table 3). Bremer (1991) 
has shown that basal branchings that are supported by 
few characters are the most likely ones to be influenced 
by different weighting and scoring schemes. The num- 
ber of polymorphic sites observed between 'Black 
Cheribon' and maize is only about 10%, which con- 
stitues a very small level of variation when compared to 
other studies. For  example, approximately 2% poly- 
morphisms have been found between 14 species of 
Triticum and Aegilops (Bowman et al. 1983), and about  
10% of sites were polymorphic between seven Brassica 
species (Palmer et al. 1983). The small number of dif- 
ferences observed in this group of chloroplast genomes 
may be due in part  to facultative vegetative reproduc- 
tion, which these genera are capable of exploiting. The 
result of long life cycles could be a slow accumulation 
of mutations because of long "generation times", or 
reduced nucleotide substitution rates, as has been dem- 
onstrated in palms (Wilson et al. 1990). Sclerostachya 
and Narenga both have 2n = 30, and their chromo- 
somes can pair in interspecific hybrids (Nair and 
Ratnambal  1965). In addition, homology between 
Saccharum chromsomes and five Sclerostachya 
chromosomes has been shown in interspecific hybrids 
and backcross progeny (Parthasarathy 1953). Further 
sampling of Narenga, Sclerostachya, and especially 
of the cytologically and morphologically variable S. 
spontaneum is required before the maternal phylogeny 
of these ingroup species can be understood. In 
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addition, the targeting of hypervariable regions for 
DNA sequencing might reveal additional polymor- 
phisms that could be useful in separating the closely 
related taxa. 

One of the most unexpected results of our investi- 
gation is the large difference observed between the 
Erianthus/Eccoilopus chloroplasts and those of the 
other taxa proposed to be in the Saccharurn complex. 
Separation of the maternal lineage of Erianthus/Ec- 
coilopus genotypes from the ingroup species was clear- 
ly supported by a large number of characters (Fig. 2, 
Table 3). We believe that there is adequate sampling (5 
species of Erianthus representing different cytological 
types, plus 1 Eccoilopus representative; Tables 1, 5) to 
suggest that the chloroplast genome of Erianthus has a 
significantly different evolutionary history than the 
rest of the complex. A divergent chloroplast genome 
would not preclude Erianthus species from introgres- 
sing with other genera and thereby participating in the 
evolution of New Guinea forms of Saccharum (Roach 
and Daniels 1987) and being included in the Saccharum 
genus by modern taxonomic classifications (Clayton 
and Renvoize 1986). However, given the weight of 
nuclear data, such as isozymes (Glaszmann et al. 1989), 
rDNA RFLPs (Glaszmann et al. 1990), nuclear RFLPs 
(Burnquist 1991), preliminary arbitrarily primed 
PCR data (R. J. Honeycutt and B. W. S. Sobral, un- 
published), and data from the present investigation, we 
feel that gentoypes of Erianthus have gone through a 
significantly different evolutionary history than geno- 
types of Saccharum and that the split in their lineages 
must have occurred early in the evolution of the sub- 
tribe. Pairwise distances (Table 4) showed that the 
Erianthus/Eccoilopus chloroplast was more related to 
the Sorghum chloroplast than to those Saccharum com- 
plex members, as did one tree (5:1 weighting, not 
shown). We note that Sorghum chloroplasts display 
intraspecific variation (Duvall and Doebley 1990), and 
we only investigated 1 genotype of 1 species. We also 
note that Erianthus is the only genus proposed to be in 
the complex that has New World distribution, al- 
though the 1 New World species we studied had the 
same cpDNA type as did 1 Miscanthus species. In 
addition, because modern taxonomy of the An- 
dropogoneae places Eccoilopus as a part of the 
Spodiopogen genus (Saccharinae), it should be interest- 
ing to include more representatives of both genera to 
see what the relationship is and whether this particular 
Eccoilopus genotype is a good representative of the 
genus. 

Miscanthus sp. 'NG 77-193' has an unusually high 
chromosome complement (2n--192), suggesting in- 
trogression with other genera in New Guinea. Chloro- 
plast analysis revealed that it has the same restriction 
fragment site distribution as sugar-producing Sacchar- 
um species (Table 4), suggesting that introgression may 

have occurred with a Saccharum genotype. Surprising- 
ly, Erianthus trinii, a New World species of this genus, 
has the same cytoplasm as M. sinensis 'Zebrinus' 
(Table 4), again suggesting some type of introgression 
or chloroplast capture. Grassl (1974) suggested that the 
'Eumiscanthus' section of Miscanthus was a product of 
introgression between some species of Eulalia (E. fas- 
tigiata?) with 2n = 18 and some primitive member of 
the Saccharinae with 2n = 20, to yield 2n = 38 Miscan- 
thus Eumiscanthus species such as M. sinsensis. Given 
this hypothesis, it would be interesting to check the 
chloroplast of Eulalia species as well as to sample 
additional M. sinensis genotypes. Because the species 
of Miscanthus that are implicated in the origin of S. 
officinarum are from the Diandra section (2n =40; 
Roach and Daniels 1987; Grassl 1974), such as M. 
rufipilus, it may not be surprising that M. sinensis 
Zebrinus has a different chloroplast, even if little intra- 
specific variation is found upon further sampling. 
Grassl (1974) also suggested that 2n = 40 species of 
Miscanthus might have 20 chromosomes from the 
'Eumiscanthus' section and 20 chromosomes from an- 
other closely related genus, Imperata. We are extending 
these studies to include representatives of Imperata and 
section Diandra of Miscanthus. 

Our observations suggest that introgression within 
the Saccharum complex may occur in the wild, as has 
been postulated to explain the origin of many of the 
species in the complex (Grassl 1974; Roach and 
Daniels 1987). Alternatively, there is the possibility of 
mis-identification of some genotypes in the World 
Collection. We had positive morphological identifica- 
tion for the materials used in our investigation, but it 
was based on vegetative characteristics only. If we rule 
out mis-classification, our results suggest that caution 
must be exercised in interpreting results from an analy- 
sis of few representatives of each species because vari- 
ation within the species may occur. It also suggests that 
for these plants the maternal phylogeny may not be a 
good indicator of organismal phylogeny. 

Our analysis of 16 genotypes of Saccharum from 
diverse geographic locations representing 5 species (as 
defined by sugarcane breeders; Roach and Daniels 
1987) and 8 interspecific hybrids (S. officinarum x S. 
spontaneum crosses, in most cases, with subsequent 
backcrossing to the maternal parent) revealed a single 
chloroplast variant within the genus, that of the only S. 
spontaneum genotype analyzed (Table 4). S. sponta- 
neum is a highly variable species: its geographic dis- 
tribution is by far the widest of all members of the 
genus (as defined by sugarcane breeders; Roach and 
Daniels 1987); its chromosome numbers vary from 
2n = 40 to 2n = 128 (Panje and Babu 1960); isozymes 
and nuclear rDNA are the most variable of the genus 
(Glaszmann et al. 1989, 1990); and it has a wide range 
of morphological variation. S. spontaneum has been 



851 

long thought to be the primary species within the 
genus, and the one from which S. robustum and, ulti- 
mately, S. officinarum were derived, potentially 
through introgression with other members of the com- 
plex, during migration southward from the Indo- 
Burma-China border region which has been postu- 
lated to be the center of radiation and diversity for 
Saccharum and many members of the complex 
(Brandes et al. 1939; Roach and Daniels 1987). Because 
of the high variability of S. spontaneum, it is premature 
to suggest that there is only one cytoplasmic type. We 
plan to extend our studies to include a variety of other 
cytological, geographical, and morphological types. In 
particular, 2n = 80 forms of S. spontaneum from New 
Guinea will be included to assess whether they are the 
cytoplasmic donors of the remaining Saccharum spe- 
cies. These will also be compared to 2n = 40 forms of S. 
spontaneum from India, which are suggested to be their 
progenitors (Grassl 1974). 

Contrary to S. spontaneum, in S. officinarum we 
believe adequate sampling exists to suggest that all 
high-sucrose-producing Saccharum species very likely 
have only one cytoplasmic type, as defined herein. 
We surveyed a fairly large number of genotypes from 
diverse species and diverse geographic locations 
(Table 1). In addition, DNA sequence data from 
mitochondrial and chloroplast loci did not reveal 
any polymorphisms within the sugar-producing Sac- 
charum species or between S. officinarum and S. robust- 
um (A1-Janabi and Sobral, in preparation). These 
genotypes represent various domesticated forms of 
the Saccharum genus and the proposed progenitor 
species, S. robustum (Roach and Daniels 1987; Grassl 
1974, 1977), suggesting the some type of cytoplasmic 
bottleneck occurred during migration southward to 
New Guinea. 

There are important breeding and economic impli- 
cations to the lack of cytoplasmic diversity in the 
cultivated forms of sugarcane (Manglesdorf 1983), not 
the least of which is a lack of genetic diversity in the 
field. However, because of the promiscuity of the gen- 
era in the complex, alternative cytoplasms could be 
introduced readily by crossing with other species and 
genera as females. Even the well-established agro- 
nomic practice of "nobilization" (repeated backcross- 
ing to the S. officinarum or "noble" parent) need not be 
changed, except that the recurrent female parent needs 
to be S. spontaneum so that the new cytoplasm is 
present in the progeny. Nobilization is based on 2n + n 
transmission of genomes in S. officinarum x S. sponra- 
neum crosses; however, Price (1957) has shown that 
2n + n transmission also occurs in S. spontaneum x S. 
officinarum crosses, suggesting that nobilization should 
be possible with recurrent backcrossing to S. sponta- 
neum as a female parent. More detailed studies of the 
chloroplast of various genotypes of S. spontaneum are 

underway; these should allow breeders to select differ- 
ent chloroplasts to be studied with respect to ag- 
ronomic performance (A1-Janabi and Sobral, unpub- 
lished data). The main problem that breeders might 
have to face is to find good pollen parents within the 
commercial genotypes. From a phylogenetic perspec- 
tive, it is interesting that S. officinarum genotypes do 
not display 2n + n transmission (or n + 2n trans- 
mission) when crossed with S. robustum genotypes, in 
which normal n + n transmission is observed (Price 
1957). 

In summary, we have shown that monophyly of the 
Saccharum-S. spontaneum-Narenga-ScIerostachya is 
well-supported by chloroplast analysis and that these 
chloroplast genomes are very closely related. In addi- 
tion, Erianthus/Eccoilopus had a distanct chloroplast 
genome and seems to be more closely related to Sor- 
ghum and maize. Introgression seems to have occurred 
in Miscanthus genotype. All New Guinea forms of 
Saccharum as well as all of the commercial hybrids 
studied had the same chloroplast restriction sites, sug- 
gesting a bottleneck in the evolution or selection of 
high-sucrose producing forms of Saccharum and its 
closest relatives. 
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