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Abstract. A dynamic theory of learning and recall of 
coordination patterns is developed in the context of 
relative timing skills. Characterizing the coordination 
patterns in such skills by the collective variable, 
relative phase, we choose a model system in which the 
intrinsic pattern dynamics as well as the influence of 
environmental and memorized information are well 
understood from previous experimental and theoret- 
ical work. To describe learning we endow memorized 
information with dynamics which is determined by a 
phenomenological strategy. Similarly, additional de- 
grees of freedom must be introduced to understand 
recall. As such recall variables we choose the relative 
strengths with which each memorized pattern acts on 
the pattern dynamics and model their dynamics 
phenomenologically. The resulting dynamical system 
that resembles models used in pattern recognition 
theory is shown to adequately describe the learning 
and recall processes. Moreover, due to the operational 
character of the theory, several predictions emerge that 
are open to experimental test. In particular, we show 
under which conditions phase transitions occur in the 
dynamics of the coordination patterns during learning 
and during recall. Considering different time scales and 
their relations we demonstrate how these phase tran- 
sitions can be identified and observed. Other predic- 
tions include the influence of the intrinsic pattern 
dynamics on the recall process and the existence of 
history and hysteresis effects in recall. We discuss 
different forms of "forgetting" and differentiation of 
memorized information. The results show how a new 
theoretical view of learning and recall as change of 
behavioral dynamics can lead to a different under- 
standing of these processes by providing testable 
predictions. 

1 Introduction 

Learning and recall are concepts used in a variety of 
senses within a wide field of study. In the present 

theoretical investigation learning is defined as a change 
of behavior in the direction of a to-be-learned behavior 
that is specified by the environment. Recall designates 
the process of activating a memorized behavior. (More 
precise definitions will be given below.) Here the word 
"behavior" is used in the specific sense of behavioral or 
coordination pattern, defined by stable and reprodu- 
cible relationships among the components of a behav- 
ing system. More specifically, we will deal with co- 
ordination of rhythmic movement, where such rela- 
tionships are expressed as relative timing. 

We are building on a theoretical framework (Kelso 
et al. 1987; Kelso and Schrner 1987, 1988; Schrner and 
Kelso 1988a) that is based upon theories of self- 
organization and pattern formation in non- 
equilibrium systems, in particular synergetics (Haken 
1983a, b). Central ideas of the theoretical, but oper- 
ational language that has been developed to under- 
stand coordination patterns are the characterization of 
coordination patterns by collective variables, the deter- 
ruination of the dynamics of coordination patterns and 
the study of their stability. A second building block of 
the present theory is the concept of behavioral infor- 
mation (Schrner and Kelso 1988b--e) that allows to 
express the influence of environmental demands, of 
learned behavioral patterns or even of an intention to 
change behavioral pattern in the form of required 
behavioral patterns. Behavioral information in this 
sense can be made part of the pattern dynamics 
attracting the behavioral pattern toward the required 
pattern and is measured by the same collective vari- 
ables that characterize the coordination patterns. In 
this framework, learning can be viewed as the process 
by which environmentally defined behavioral informa- 
tion gives rise to memorized behavioral information. 
To account for this change of the pattern dynamics 
memorized information itself is endowed with dy- 
namics that can be modelled phenomenologically. 
Similarly, recall can be viewed as the process by which 
a particular behavioral information is activated to 



40 

influence the coordination pattern dynamics. The 
relative strengths with which different memorized 
patterns act on the pattern dynamics are introduced 
as new degrees of freedom and their dynamics are 
likewise modelled phenomenologically. 

We treat a concrete experimentally accessible 
model system (Kelso 1984; Tuller and Kelso 1989a; 
Yamanishi et al. 1980) that involves the coordination 
of rhythmic movements of two limbs in the presence of 
relative timing requirements. The system is chosen 
because we know both its intrinsic dynamics (in the 
absence of relative timing requirements) as well as the 
role of behavioral information from detailed experi- 
mental (Kelso et al. 1986, 1988; Scholz et al. 1987; 
Tuller and Kelso 1989a; Yamanishi et al. 1980) and 
theoretical (Haken et al. 1985; Schrner et al. 1986; 
Schfner and Kelso 1988b, c,e) work. Furthermore, 
rhythmic movement characterizes a broad class of 
motor behaviors including many basic behaviors such 
as locomotion and feeding, but also relating to such 
non-trivial, "higher" behaviors like human speech (e.g. 
Stetson 1951). For such rhythmic activities environ- 
mental constraints and skills can often be expressed as 
demands on the relative timing order (see, e.g. Shaffer 
1982 for review). In this investigation we address the 
learning of such relative timing skills. Possible gen- 
eralizations of the theoretical approach are discussed 
in Sect. 7. 

The article is structured as follows: We first review 
briefly the theoretical models capturing the intrinsic 
dynamics and its adaptation to behavioral information 
(Sect. 2). By endowing behavioral information with 
dynamics we describe learning, first in the limit case of 
a capacity to learn only a single relative timing pattern 
(Sect. 3). We show by analytical and numerical means 
under which conditions phase transitions occur during 
learning and how they can be observed in two time 
scale r6gimes (Sect. 4). Generalizing to learning of 
multiple patterns we address the question of recall. The 
new degrees of freedom and their dynamics are deter- 
mined in Sect. 5. The predictions of the theory are 
established by numerical study and their experimental 
relevance is discussed (Sect. 6). In Sect. 7 we discuss 
possible generalizations of the present approach and 
place the present theoretical attempt into a broader 
perspective. 

2 The Coordination System: Relative Phase Dynamics 

By using relative phase, t#, as the collective variable or 
order parameter to characterize the coordination 
patterns of two rhythmically moving limbs we 
choose a level of description for the systems 

under study. According to the dynamic pattern 
strategy (Kelso and Schrner 1978, 1988; Schrner 
and Kelso 1988a) stable and reproducible patterns of 
coordination are then mapped onto attractors of a 
relative phase dynamics. Based on which patterns of 
relative timing a given system can perform without 
additional behavioral information and on the obser- 
vation of multi-stability and transitions among such 
patterns a concrete model of the intrinsic dynamics can 
be determined. Here we employ a particular form of the 
intrinsic relative phase dynamics that was identified for 
Kelso's (1984) movement system following his discov- 
ery of a phase transition in that system. The basic 
experimental observation is as follows: Human sub- 
jects are asked to move two limbs rhythmically at a 
common frequency. Two patterns of coordination, in- 
phase (homologous muscles groups contracting to- 
gether) and anti-phase (homologous muscles contract- 
ing alternately) are found to be stably performed at 
various frequencies. However, when frequency of 
movement is increased, a spontaneous switch from the 
anti-phase to the in-phase pattern of coordination is 
observed, while the in-phase pattern remains stable at 
all reachable frequencies. 

A simple form of the intrinsic pattern dynamics 
that fulfills basic symmetry requirements was found by 
Haken et al. (1985): 

6 = -- a sin(q~)- 2b sin(2~b), (1) 

where a, b are parameters. This model captures the 
observed phase diagram: for 0 < a < 4b two stable 
states (fixed point attractors) ~b = 0 and ff = __+ n exist, 
while for a > 4 b > 0  only ~b=0 remains stable. By 
analyzing the nature of the transitions from anti- to in- 
phase and taking fluctuations into account (Schrner et 
al. 1986): 

= f i n t r ( ~ )  = - -  a sin (~b)- 2b sin (2q~) + ] / ~ ,  (2) 

(where ~t is gaussian white noise of unit variance and Q 
is the noise strength parameter) it can be shown, that 
these dynamics capture the behavior of the system in 
detail. In particular, loss of stability is predicted to be 
observable as the transition is approached in the form 
of enhancement of the relative phase fluctuations and 
enhancement of the (local) relaxation time, Zrel (time to 
return to the coordination pattern from a small 
perturbation). Both quantities were measured experi- 
mentally and loss of stability was indeed found (Kelso 
et al. 1986; Scholz et al. 1987). Furthermore, relations 
among measurable time scales are established in the 
theory. The equilibration (or global relaxation) time, 
%qu, defined as the time it takes the system to achieve a 
stationary probability distribution from a typical 



initial distribution is determined in the bistable r6gime 
of (2) mostly by the typical time it takes to traverse 
from one basin of attraction into another. Only when 
observed on a time scale, Zobs, intermediate between 
local and global relaxation times 

Tre I <~ "Cob s <~ Teq u (3) 

is the system in a stationary state described by one of 
the attractors (local stationarity). In experiments 
(Scholz et al. 1987) it was indeed found that switching 
occurred as this relationship was violated. In the other 
limit: 

Tob s >~> Teq u (4) 

the system is governed by the stationary probability 
distribution of the order parameter (global stationar- 
ity). In the bistable case this is a bimodal, non-gaussian 
distribution. Characteristic features of the actual tran- 
sient switching process (like the mean duration of this 
process, the so-called mean switching time, and the 
distribution of the switching times) were predicted and 
found experimentally to be in good agreement with 
theory. Thus theory and experiment convergently 
show that the coordination patterns of this system 
obey the intrinsic dynamics (2). 

Adaptation of these coordination patterns to envi- 
ronmental (Tuller and Kelso 1989a) and memorized 
(Yamanishi et al. 1980) requirements have been studied 
in two experiments both involving bimanual rhythmic 
finger tapping at a common frequency [below a 
transition frequency in the sense of Kelso's (1984) 
experiment]. In Tuller and Kelso's experiment a 
temporally structured environment was present in the 
form of two metronomes which paced the two index 
fingers at the same frequency. By changing the relative 
phase of the two metronomes, the environmentally- 
required relative phase, was varied. In Yamanishi et 
al.'s (1980) experiment subjects practiced several such 
relative phasing conditions until a certain criterion 
level of performance was reached. Feedback methods 
were used to enhance learning. Then a given relative 
phasing pattern was elicited, using two metronomes, 
which were turned off for the actual measurement. 
Thus, in this case, the requirement was a memorized 
relative phase. In both experimental studies two robust 
findings emerged. First, the mean performed relative 
phasing deviated systematically from the required task 
such that it was closer to the nearest intrinsic pattern, 
either in-phase or anti-phase. Second, the variability of 
the performed phasing was minimal in the two intrinsic 
patterns and larger at intermediate conditions. 

A theoretical description of these system is pos- 
sible by employing the concept of behavioral infor- 
mation, defined as a required behavioral pattern 
(Sch6ner and Kelso 1988b-e). This requirement may 
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result from a perceptual process (environmental in- 
formation) or from the activation of a learned behavior 
(memorized information) or even from an intention to 
change behavior. That behavioral information in this 
sense is specific to the biological system and function is 
evident from the fact that this information is measured 
by the same type of collective variables that character- 
ize the behavioral patterns, in the present case, by the 
relative phase required by the environment, 1pen v, or by 
memory, ~Pmem. Behavioral information acts on the 
pattern dynamics as a perturbation of the intrinsic 
dynamics, attracting the order parameter toward the 
required pattern. Taking certain symmetry require- 
ments into account a simple functional form of the 
resulting dynamics is (Sch6ner and Kelso 1988b)1: 

$ = fin,r(r + C~ovfi~fo(~, ~o~) (5) 

for the case of environmental information and 

"~'flntr(r "b Cra�9 IPmem ) (6) 

for the case of memorized information where fi,fo(~b, ~p) 
=-sin(~b-~p). Here ce,~>0 and Cmem>0 are con- 
stants that measure the strength of the perturbation 
of the intrinsic dynamics by the respective type of 
information. 

Several predictions arising from these pattern 
dynamics with behavioral information can be com- 
pared to experiment (SchSner and Kelso 1988b, d). In 
particular, the influence of the intrinsic dynamics on 
the behavioral patterns in the presence of behavioral 
information accounts for the two main experimental 
results mentioned above:When intrinsic dynamics and 
behavioral information cooperate the resulting state is 
dose to the requirement and very stable, while in the 
case where they compete the resulting state is shifted 
from the requirement toward the instrinsic patterns 
(here in-phase and anti-phase) and is less stable (larger 
fluctuations). Qualitative change of the dynamics can 
occur as behavioral information or the strength of the 
corresponding perturbations change. An aspect of this 
instability has been seen in the two experiments: 
Although for most required relative phases a mono- 
modal distribution of the performed relative phase was 
observed, at some intermediate relative phase values 
close to 90 deg this distribution was bimodal, reflect- 
ing the underlying bistability under these conditions. 
In summary, we find that the system is governed by the 
dynamics of (5) and (6) when performing under the 
influence of environmental or memorized require- 
ments. 

i F o r  convenience  we use slightly different conven t ions  t h a n  in 
the  reference 



42 

3 Learning a Single Relative Phase: 
Theoretical Model 

In the present theoretical framework, the problem of 
learning a relative timing skill can be expressed very 
simply: How do the relative phase dynamics with 
environmental information, (5), evolve in time to 
assume the form with memorized information, (6), that 
describes the skilled performance? We define learning 
as the temporal evolution of the pattern dynamics in 
the presence of environmental information. For 
example, feedback (Yamanishi et al. 1980) or a struc- 
tured environment (cf. discussion in Schrner and Kelso 
1988c) may effectively define the to-be-learned pattern. 
As a first step we consider the case where only one 
coordination pattern is learned, corresponding to a 
memory with capacity one. 

We assume that both environmental and mem- 
orized information act on the pattern dynamics: 

~--'fintr(r "~- s ), l~env) 

-I- Cmem(lPmcm)finfo(~), 1proem ) . (7) 

However, the strength of memorized information must 
now fulfill the limit cases dmem ~ 0 before learning and 
Cmem = Cmem > 0  after learning [where Cmem is the con- 
stant of (6)]. The strength, Ce,,(t), of environmental 
information can be explicitly time dependent reflecting 
the presence or absence of feedback. A potential form 
of this dynamics will be useful later: 

dVt~ q" 1//Q~t (8) 
6 = -  dq,  

with 

Vtot~l = -- a cos(~b)- b cos (2~b) - ce,v(t ) cos(~b - ~Pe,v) 

- emem( mom) COS(4' - -   Pmem) �9 

It is clear that additional degrees of freedom have 
to be introduced to account for the change of the 
pattern dynamics during learning. The obvious idea is 
to endow memorized information with dynamics. 
Thus the parameter, ~p . . . .  now becomes a memory 
variable, IPm~m(t ). To constrain models of the learning 
dynamics we use the basic phenomenological strategy 
of mapping the stable, reproducible result of learning, 
the to-be-learned pattern, ~p,,~, onto an attractor of 
these dynamics. In principle, information on con- 
straints that are intrinsic to the learning process (e.g., 
are certain patterns learned more quickly than others?) 
should be used in the modelling. At present, we lack 
such information for our model system. We therefore 
choose a simple 2re-periodic form of the learning 
dynamics that has a single attractor at the to-be- 
learned relative phase, ~Pe,~: 

lpmem = - -  "Cle2rn sinOPmem -- lPen~) �9 (9) 

The parameter, ~ . . . .  > 0, defines the relaxation time of 
the attractor at the to-be-learned pattern and can be 
viewed as the typical time scale of the learning process 
which is clearly much larger than the relaxation times, 
rre m, of the behavioral patterns: 

Zr~l ~ rm ... .  (10) 

so that the above definition of learning is consistent. 
The assumption that a single time scale is sufficient to 
characterize the learning process is actually rather 
non-trivial and possibly not generally correct. Some 
experimental evidence indicates that in a late phase of 
skill learning performance continues to improve on all 
time scales (see Fitts 1964, for review). That means, that 
if the behavior is characterized by some performance 
criterion (typically an error or precision variable or the 
speed at which certain stereotype movements can be 
performed), its time dependence is of the form of a 
power law for large times. This interesting aspect 
which hints at an essentially nonlinear nature of the 
learning dynamics, has not yet been addressed in the 
present framework. Experimentally, an early phase of 
skill learning often exhibits exponential improvement 
with respect to typical performance measures. For the 
sake of simplicity we have assumed here that the 
learning dynamics are independent of the actual 
performance, ~b. 

The limit cases for the strength of memorized 
information, d . . . .  can be accomodated by choosing 
this strength as a match function that measures the 
distance between environmentally required and mem- 
orized relative phase. We adopt the simple normalized 
and periodic function: 

Cmem(1/)mem) = Cmem COS2 (IPenv 21/0mem ) (11) 

avoiding the introduction of additional parameters. 
Here Cmem > 0 is the constant of (6) and denotes the 
maximal value of the strength function, dmem, when 
memory variable and required pattern coincide. When 
memorized and required relative phase have the 
largest possible distance, re, the strength is zero. Note, 
that distance between different types of behavioral 
information can be operationally defined because this 
information is measured in terms of the collective 
variables. For example, the typical variability of per- 
formance may provide a metric for such a distance. 

4 Learning a Single Relative Phase: 
Theoretical Results 

Because the limit cases before learning (5) and after 
learning (6) are well known theoretically and experi- 
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mentally, we can determine all parameters of the 
intrinsic dynamics and of the contributions by 
behavioral information based on earlier work (cf. 
Sch6ner et al. 1986; SchSner and Kelso 1988b), which 
leads to parameter values of the following orders: 
a ~ 1.0 Hz, b -~ 1.0 Hz, Q ~ 0.25 Hz, Cenv ~ 5 Hz, Cme m 

~ 5  HZ. Note, that the time axis in our system is 
endowed with physical units (seconds) that can be 
compared to real experimental times. The relaxation 
times of the intrinsic patterns are then in the order of 
Zre~"~0.5 S, but increase strongly as a state loses sta- 
bility (see Scholz et al. 1987). In mono-stable cases the 
equilibration time, Zequ, is of the same order of 
magnitude, while it is much larger in bi-stable cases. 
Estimates can be based on the mean first passage time 
from one state to another (Sch6ner et al. 1986). 

The only new parameter to be estimated is the time 
scale of learning, zl . . . .  . In this context a conceptual 
subtlety needs to be addressed. Most experiments on 
skill learning are not actually performed with a 
continuously behaving system as conceptualized in 
our time scales argument, but over a series of"trials" or 
"sessions". How can the time scale of learning be 
estimated in such paradigms? If the different "sessions" 
are not temporally separated very much, we can view 
them as discrete segments of a continuous learning 
process. The present model accomodates such a view, 
because the initial condition of the memory variable 
allows to express previous experience (see below). The 
situation is, however, complicated by such questions as 
interference and decay, which can be addressed theore- 
tically only when learning of multiple patterns is 
considered (Sect. 5). Obviously, from the present 
theoretical viewpoint, it' seems desirable to observe 
learning in a more continuous or temporally con- 
trolled fashion. 

If we observe the system on the time scale of 
learning, then an important  question is, whether local 
or global stationarity is fulfilled. This is non-trivial 
only in the case of multistability, that is, if several 
different patterns can be performed within the same 
task and in the presence of the same environmental 
information as is the case, for example, for patterns 
close to 90 deg relative phase in the present system. 
Two different methodologies can be related to these 
time scales relations in paradigms involving multiple 
learning "sessions". If the system can be prepared to 
behave in a well-defined pattern during each of the 
trails, then the data can be analyzed as locally station- 
ary ones. If, on the other hand, the system is distributed 
over the different patterns from trial to trial (or within 
trial), then we may view the ensemble of-such trials as 
an estimate of a stationary probability distribution of 
the different states and the time scale relation of global 
stationarity effectively applies. 

For  the purpose of concrete simulations we choose 
the parameter time scale of learning of the order 
zj . . . .  --~ 20 s, which is much larger than all local relax- 
ation times, but probably still too fast to be realistic. 
However, the qualitative results do not depend on the 
exact value of this time scale as long as its relation to 
other time scales is correct. In direct numerical so- 
lutions of(8) and (9) (employing a fourth-order Runge- 
Kut ta  algorithm), that we present first, the limit of local 
stationarity is realized. Subsequently we address the 
limit of global stationarity by calculating the evolution 
of the stationary probability distribution of relative 
phase. 

To illustrate how the model discribes the learning 
of a relative timing skill we show in Fig. I the change of 
the behavioral dynamics as the memory variable learns 
by plotting the potential, Vtotal, that represents the 
dynamics of relative phase (8), as a function o f  time. 
While the initial conditions of the performed relative 
phase do not usually matter  (except in bistable cases, 
see below), the initial condition of the memory variable 
affects the transient learning process (for example, its 
duration) and thus the performance during learning. 
Experimental paradigms involving learning in "ses- 
sions" may be described consistently by viewing the 
final state of a previous learning "session" as such an 
initial condition for the next learning "session". The 
final result of the learning process, the to-be-learned 
relative phase, ~p .. . .  is an attractor of the memory 
dynamics and does not depend on initial conditions. 
Thus, perturbing the memory variable (for example, 
through a temporary change of the required relative 
phase) leads to relaxation of the memory variable and 
thus performance within the time scale, "is I . . . .  . This 

~ V  (r 
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time Is]  

- - T r  
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Fig. 1. The potential, Vtotat(~b), of(8) is plotted as a function of time 
while the memory variable, ip . . . .  evolves from an initial value of 
Ipm.,~=0 to the required relative phase, tp~,, = n/2, according to 
(9). Note how the strength of the potential increases due to the 
growing match factor, d,c, (11), and the minimum shifts closer to 
the required relative phase as learning proceeds 
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suggests an experimental method to determine the ~.. 
time scale of learning, ~ ..... as well as to experimentally 3,/4 
test the validity of the basic theoretical strategy of 
mapping the to-be-learned behavior onto an attractor. ,~/2 

The most interesting result arising from the theory ~/4 
is that phase transitions can occur in the pattern 
dynamics during learning. There are two scenarios for 
such phase transitions, both of which can be illustrated r 
in a single simulation of the dynamics shown in Fig. 2. 
The first abrupt pattern change in this simulation is 
due to the initial bistability of the pattern dynamics. As 
mentioned before, the pattern dynamics may remain 
bistable (both in theory and in the pertinent experi- 
ment) if a relative phase, here ~pe.v~ll4 deg, is im- r 
posed that is in conflict with the intrinsic tendencies. 3,r/4 
After sufficient learning, however, only one stable state 
remains. In the theory, this change is due to the ,~/z 

increasing strength of memorized information and 
takes the form of a phase transition. Because the time rr/4 
scales of r and ~P.,om are well separated (10) we can 
analyze this instability by treating the memory vari- 
able as an adiabatic constant on the time scale zr~. We 
calculate the stationary states of (7) as a function of the 
value of the memory variable in this learning sequence 
by solving: 

0 =fintr(r Jr- C�9 lPenv ) 

JI- e . . . .  ( Ipmem)f in fo( (~sta t ,  lPmem ) ( l  2 )  

for r where ~Pm,m is treated as a parameter. The 
relaxation time is then given as: 

q~ 
d 

Trr = - -  [ d - ' ~ L  =~' . . . .  {fntr(~P)-FCenvfnf~ 3 r r / 4  

]-' 
+ Omem(lPmem)finfo(q~, lPmem) } . (13) 7r/z 

In Fig. 3 these stationary states and their relaxation 7r/4 
time are plotted as a function of the memory variable, 
~Pm~m, which varies as in the aforementioned simulation 
(Fig. 2). Note the increase in the relaxation time of the ~ 
pattern near anti-phase at the first instability. 

The second instability in the simulation of Fig. 2 is 1.0 
typical of a different scenario for phase transitions 
during learning. Here, no argument can be made about 
qualitative difference of the pattern dynamics before 
and after learning. The mechanism can be understood 
intuitively as follows: Initially memorized information 
is still acting only weakly on the pattern dynamics due 
to poor match, so that the intrinsic dynamics lead to an 
"unskilled" performed pattern quite far from the 
required pattern (and close to an intrinsic pattern, here 

= 0). As memorized information increases in strength 
during learning, a new attractor emerges close to the 
required pattern. The bifurcation analysis of Fig. 3 

- j 

20 40 60 80 time Is 

Fig. 2. Simulations of the single-memory learning and behavioral 
dynamics (7) and (9) show two phase transitions in the relative 
phase dynamics during learning. In the top panel the evolution of 
the memory variable from zero to the required relative phase, 
~Pe,v = 2.0 rad is shown. The middle panel shows the evolution of 
the relative phase if the initial condition is r = 0, while the lower 
panel shows this evolution if the initial condition is r Note 
the bistability in the first ~ 15 s, followed by an instability of the 
state close to anti-phase. A second instability occurs around 
t ~ 40 s leading to the final "skilled" state close to the requirement 

J 

i i 

0.5 ,'/ 

~  . . . .  ~ - J  ...... 

. . . . . . . . . . . .  x I  t 
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Fig. 3. A bifurcation analysis of the phase transitions of Fig. 2: the 
top panel shows the stable stationary solutions of the relative 
phase dynamics when the memorized relative phase is treated as a 
parameter (12) as a function of that parameter, which varies from 
zero to 2.0 rad, as in Fig. 2. In the lower panel the corresponding 
relaxation times (13) are displayed. Note, the divergence of 
relaxation time at each instability 



shows, that this "skilled" pattern coexists bistably with 
the "unskilled" pattern, before the "unskilled" pattern 
loses stability. No smooth blending of the two patterns 
occurs, because the distance between them is large 
compared to their the local stabilities (e.g. as measured 
by the standard deviation of the relative phase fluctu- 
ations). This competition between "unskilled" and 
"skilled" behavior is at the origin of the phase 
transition. 

Under the condition of local stationarity (3) such 
phase transitions can be observed experimentally as 
abrupt jumps in performance during learning. At such 
jumps, loss of stability is experimentally observable 
through the usual stability measures, fluctuations and 
relaxation time, because the learning dynamics can be 
viewed as quasi-stationary on the time scale of the 
behavioral dynamics. Under conditions of global 
stationarity (4) experimental results must be compared 
to the stationary probability distribution of relative 
phase. In this case phase transitions can be observed as 
qualitative changes of this distribution (for example, 
from bi-modal to mono-modal) or as abrupt shifts of 
the peaks of the distribution as will be shown now. 

Solving the learning dynamics, (9), as 

lPmem(t ) = lpenv -- arctan {tan [lpr v -  l/)mem(t = 0)] 

x e x p [ -  t/l:learn] } (14) 

we obtain the non-autonomous Fokker-Planck equa- 
tion for the time-dependent probability distribution, 
P(~b, t), of relative phase (cf., e.g. Gardiner 1983): 

a 
~P(dp, t)& = -- d-~ { Vt~'t'~(~b' ~mem(t))P(q~' t)} 

d2 
+ ~ f f ~  P(~b, t), (15) 

where the prime indicates the derivative by ~b. Because 
we are interested in what happens on the time scale of 
learning: Zob~~ %~r*, we can treat t p ~  adiabatically 
due to the condition of global stafionarity, (4). The 
stationary distribution, Pstat(~b), is then obtained from: 

O , 0 2 
0 =  --  ~--~{Vtota,(~b,//)mem)Pstat(~b)} + 2 ~ ~-~P~t,t(~b) (16) 

in which ~P=~m is treated as a parameter. The general 
solution with periodic boundary conditions is given as 
(Gardiner 1983, Chap. 5.2.2): 

P,t.t(q~) = A:-exp [ -  2 Vtota,(~b , *Pmem)/Q], (17) 

where Jff is a normalization constant. Obviously, this 
stationary probability distribution reflects the under- 
lying dynamics through its potential. 

In Fig. 4 this distribution is plotted as a function of 
the memory variable, ~p . . . .  which varies from 0 to 2. 
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Fig. 4. The phase transitions during learning analyzed in the 
r~gime of global stationarity. The stationary probability distri- 
bution of relative phase, Pstat(~b) (17) is plotted as a function of 
relative phase, ~b, as the memorized relative phase, VA.cm, varies 
from zero to 1.4 rad (third axis). Note that the distribution is 
initially bimodal - reflecting the underlying bistability of the 
dynamics - and changes to monomodai at the first phase 
transition 0Pro.,, ~ 0.4 rad). It changes shape again at the second 
phase transition (~0=,. ~ 1.3 rad) 

rad as in the bifurcation diagram of Fig. 3. Initially, the 
bistable relative phase dynamics induce a bimodal 
distribution that changes to monomodal at the first 
phase transition. The qualitative change at the second 
phase transition is not resolved as bimodality, because 
the two peaks merge at the chosen noise level 
(Q=0.5 Hz), but is clear in the abrupt change of the 
peak position. This picture illustrates how phase 
transitions can be observed in experimental paradigms 
that realize global stationarity (4). On a more specula- 
tive note we may think of behavioral changes during 
development, which clearly have a very slow time scale, 
Zlea,~, as being observable in this way. 

Because phase transitions as qualitative changes of 
the order parameter dynamics can be identified inde- 
pendently of detailed modelling assumptions, the 
experimental observation of a phase transition during 
learning would provide strong evidence for the validity 
of the conceptual framework of this theory. Moreover, 
such phase transitions could be viewed as evidence for 
constraints or lawful aspects in a learning system and 
thus provide insight into the nature of the learning 
process (e.g., relating to such concepts as stages of 
learning or classification of phases of learning). 

5 Learning and Recall 
of Multiple Relative Phases: Theoretical Model 

The subjects of Yamanishi et al, (1980) experiment 
were dearly able to learn several relative timing 
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patterns. To capture the learning of multiple patterns 
we may consider multiple memory variables represent- 
ing these multiple required patterns. However, not all 
memorized patterns can influence the pattern dy- 
namics at the same time (in which case the system 
would, de facto, be reduced again to a single mem- 
orized pattern). Therefore, learning multiple patterns 
can be given meaning only if the notion of recall  is 
introduced, defined as the selective activation of a 
learned coordination pattern under the influence of the 
same or similar environmental information as was 
present during learning. Insofar as the environmental 
information need not be exactly identical to one of the 
memorized patterns, recall in this sense resembles 
pattern recognition in models of perception. In a 
straightforward generalization we define learning as 
the process, occurring in the presence of environmental 
information, by which the system changes such that a 
required pattern can be recalled that could not be 
recalled before. This definition is consistent with the 
one given previously (Sect. 3). The capacity, N, of 
memory is defined as the number of patterns that can 
be learned. 

To derive a model for the learning and recall of 
multiple relative timing patterns we introduce a set of 
N memory variables, ~p~ (i = 1,2 . . . . .  N), that represent 
memorized relative phases. Each memory variable acts 
as a perturbation of the form, f~.fo (6) onto the pattern 
dynamics which expresses the functional equivalence 
of the different memory variables. However, not all 
memory variables act with the same strength. To 
express the selective activation of a memorized pattern 
we introduce relative strength factors, w~, that are 
normalized and positive. Combined into a vector, w, 
these relative strength factors live in a space 

S N : {  (WI'w2'''''WN)' wi>O' i=l~Wi~-l} ' 

called the N-simplex, which can be visualized as a finite 
hypersurface in an N-dimensional cube that connects 
all points that have only one non-vanishing compo- 
nent, which is equal to one. Activation of one parti- 
cular memorized pattern means that the vector, w, is in 
one of these corners. The relative phase dynamics thus 
generalize to: 

=fimr(r  + Cenv(t)flnfo(~b, lpenv) 
N 

Jr ~ Wiemem(~l)i)finfo(~), l~i), (18) 
i=1 

wherein all functions and constants are defined as in 
(5), (6), and (11) above. Anywhere on the N-simplex, the 
total strength of memorized information is bounded by 
emem- Note that each memory variable acts onto the 
pattern dynamics only as far as its match function, 
t,nem, prescribes. 

It is clear that additional degrees of freedom have 
to be introduced because neither memory variables 
nor  the order parameter account for the change of the 
pattern dynamics during recall. The obvious idea is to 
endow the relative strengths, w, with dynamics. Such 
recall dynamics can be constrained by mapping the 
corner of the N-simplex, that corresponds to recall of 
the "best-fitting" (see below) pattern, onto an attractor. 
A concrete functional form can be found by assuming 
first order dynamics of w and exanding its vectorfield 
into a power series. The functional equivalence of the 
different memory variables can be used as a symmetry 
to reduce the coefficients. Here we use, for convenience, 
unnormalized variables, ni ~ R, from which we project 
according to 

Inil 
wi= N (i= 1,2, . . . ,N).  (19) 

Y. Injl 
j= l  

A simple model fulfilling the symmetry requirements 
is: 

h i =  m(q~, tPi)n ~ -  r Y, n n i+  q ~ ,  (20) 
\ j =  i / 

where ~ are independent gaussian white noise pro- 
cesses and q is a noise strength parameter. The 
function, m(~,  ~oi), plays the role of a match function 
similar to dmem: When this function is positive, the 
corresponding recall variable, n~, is repelled from zero, 
while when this function is negative, n~ relaxes to zero. 
The nonlinear part of the dynamics, parametrized by r, 
introduces a competition among recall variables, 
favoring inhomogenous distributions along one of the 
axes of the N-dimensional coordinate system. One can 
show that asymptotically the recall variable with the 
largest match, m, is attracted to a non-zero value, while 
all others relax to zero. A simple functional form that 
takes the angular character of the phase variables into 
account is: 

m(~b, tp~) = zL~ x [cos ((k - tpi) + cos (~pe,, - ~p,)]/2. (21) 

Here we have assumed that the performed pattern 
would influence the recall dynamics in the same way as 
the required pattern, and thus have assigned a role to 
performance in recall. The new parameter, T .... can be 
shown to determine the time scale of recall asymptoti- 
cally (close to recall) in the case of optimal match. For  
consistency the time scale of recall must be faster than 
that of learning, so that at least: 

"Cree ~ "~l . . . .  (22) 

is valid. In principle the recall dynamics should be 
modelled based on insights into specific intrinsic 
tendencies of the recall process, although we do not at 
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present see a practical way of doing that. The dynamics 
in (21) are similar to the multi-mode laser equations 
(Haken 1970), which capture mode competition, and 
resemble typical models used to describe selective 
dynamics in pattern recognition (e.g. Shimizu and 
Yamaguchi 1987), micro-evolution (Eigen and Schus- 
ter 1979) and elsewhere. 

Generalizing the learning dynamics to several 
memory variables the question arises of how such 
memorized patterns interact. We make an additional 
assumption by imposing an interference type of 
"forgetting": The recalled (and thus best matching) 
memory variable has a finite learning rate, while all 
other memory variables are marginally stable: 

~ = ~rnW~ sin (tp -- tp/). (23) 

In principle, this assumption can be directly tested in 
experiment. 

6 Learning and Recall 
of Multiple Relative Phases: 
Theoretical Results 

Three new parameters were introduced for recall: The 
time scale of recall, z .... must be chosen much smaller 
than the learning time scale. In the absence of detailed 
experimental information we choose ~r~ = 1 s, which 
makes recall slower than the relaxation of the per- 
formed patterns. The results do not depend strongly 
on the parameter, r, that measures the nonlinearity in 
the recall dynamics, and is fixed somewhat arbitrarily 
at r = 5 Hz. Thenoise level for the recall dynamics is 
kept at q = 0.01 Hz, which relative to the deterministic 
part, garantees a good compromise of stability and 
flexibility (see below). In numerical simulations of the 
dynamics we choose the capacity of memory as N = 3 
for simplicity, but larger values are possible. Which 
aspects of the learning, recall and pattern dynamics 
are observable depends, of course, on the relations of 
the various time scales. Here we present numerical 
simulations that represent the limit of local stationar- 
ity. As discussed before the stationary probability 
distribution representing the stability structure of 
relative phase through its modality is the relevant 
measure in the case of global stationarity. 

6.1 Recall Without Learning 

We first study the system on the time scale of recall by 
setting zt .... --} oo, which is a relevant limit case because 
of time scale relation (22). Thus the memory variables 
are held fixed, in most numerical examples at tp 1 = 0, 
Vpx =n/2, and lp3=n. Subsequently the interplay of 
both learning and recall is studied on the time scale of 
learning (Subsect. 6.2). 

In the simplest case, when a pattern is environ- 
mentally required that is identical to one of the 
memorized patterns, say ~i=op .... this pattern is 
recalled, that is, the recall variables relax to the 
corresponding corner of the N-simplex: wi=l  and 
w i = 0 for j =4= i. The initial conditions of the performed 
relative phase, ~b, do not normally play a role (except if 
the pattern dynamics is initially multistable, see below). 
The initial conditions of the recall variables are 
accessible to experiment, if different patterns are 
required sequentially. The last successfully recalled 
pattern then defines these initial conditions of the recall 
variables. We may thus ask, how the previous con- 
dition affects recall. If one memorized pattern clearly 
matches best a new requirement, the attractor of the 
recall dynamics is globally stable and the initial 
conditions affect only the transient recall process. 
(More dramatic effects of previously recalled pattern 
are predicted if an ambiguous pattern is required, that 
matches several memorized patterns equally well, see 
below.) Because the performed pattern may depend on 
the nature of this transient, such dependence may be 
experimentally observable as illustrated by the simu- 
lation shown in Fig. 5. Note, that due to the fact that the 
recall process is slower than the relaxation of the pat- 
tern dynamics the performed pattern is actually in a 
stable state during the transient of recall. This stability 
could be experimentally established in systems in which 
the times scales of recall and pattern relaxation are 
sufficiently different (for example, by perturbing the 
performed pattern during recall). Because of this 
pattern stability during recall, the analysis predicting 
phase transitions during learning carries over to the 
present case. For example, the system may be bi-stable 
before recall and mono-stable after recall as shown in 
Fig. 6. Dependent on the preparation of the system, an 
abrupt pattern switch may be observed during recall, 
possibly accompanied by indicators of loss of stability. 
(A corresponding change of the probability distri- 
bution of relative phase would be observed in the limit 
of global stationarity.) 

What happens when a pattern is required that does 
not match exactly one memorized pattern? Generally, 
the memorized pattern that best matches the require- 
ment [as defined by the function, m, of(21)] is recalled. 
The corresponding memory variable then learns the 
new required pattern (see Subsect. 6.2). What, how- 
ever, if the required pattern is ambiguous, that is, 
several memorized patterns match the required pat- 
tern equally well? This symmetry can be broken in two 
ways: In a first scenario the initial condition of the 
recall variable, that is, the previously recalled pattern, 
can break this symmetry in favor of one memorized 
pattern which is closer to this previously recalled 
pattern. Such a history effect is illustrated in the 
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Fig. 5a and b. The r61e of the initial conditions of the recall 
variables is illustrated in two simulations of (18)-(23). In each 
panel the three recall variables, wl, %, %, corresponding to three 
memory variables, ~p1=0, ~p2=n/2, and ~p3=n are shown 
together with the performed relative phase, ~b. In panel a, ~Pl is 
initially active, in panel b ~0 a. While in both cases the memorized 
pattern Ip2 is quickly recalled, the performance during the 
transient does depend on these initial conditions 

s imulat ion shown in Fig. 7. I f  a series of  pat terns is 
required sequentially, then the recalled pat tern  de- 
pends  on the order  in which the series is presented 
(hysteresis effect). Such his tory and  hysteresis effects 
reflect the essentially nonl inear  character  of  the recall 
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Fig. 6a and b. A phase transition in the behavioral dynamics 
during recall: Panels a and b differ only in the initial condition of 
relative phase, which is ~b=0 for a and ~b =n  for b. In the initial 
phase the behavioral dynamics is bistable until an instability 
occurs at t ~ 8 s leading to performance according to the recalled 
memorized pattern, lp 2. Note that the recall dynamics are 
influenced by the performance: When prepared in a state far from 
the requirement (panel a), recall is slower because the overall 
match of the recalled memorized pattern is poorer 

dynamics  and their experimental  detection would 
provide an impor tan t  insight into the nature  of  the 
recall dynamics.  Similar phenomena  are k n o w n  f rom 
percept ion and pat tern  recognit ion (cf., e.g., Vernon 
1970; Julesz 1971, for review). 
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Fig. 7a and b. History effect in recall: When an ambiguous pattern 
is required (here: ~c,v = 3n/4 but ~2 = n/2 and ~P3 = n) the initial 
conditions of the recall variables (last pattern recalled) can decide 
the selective activation process. In panel a, the memorized 
pattern ~Pl =0 is initially active leading to recall of ~P2, which is 
closer to lp i (the same result is found if W2 itself is initially active). 
In panel b the memorized pattern ~v 3 is initially active and stays 
activated. The effect can, in principle, be experimentally observed 
because the deviation of the performance from the requirement 
depends on which pattern is recalled (lowest trace in both panels) 

In a second scenario, the symmetry among the 
different memorized patterns matching the require- 
ment similarly well may be broken by the actual 
performance. During the transient the performed 
pattern deviates from the environmentally required 
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Fig. 8. Influence of the intrinsic dynamics on the recall process 
when an ambigous pattern (~Pe,v = n/4, where ap, = 0 and W2 = n/2) 
is required. Although the memorized pattern ~P2 is initially active 
the attraction of the performance toward the intrinsically stable 
in-phase pattern leads to recall of ~p 1. In this case the performance 
actually deteriorates after recall because memorized information 
and intrinsic tendencies no longer almost cancel as initially 

state in the direction of an intrinsically stable state (cf. 
Schbner and Kelso 1988b). Thus, the match of a 
memorized pattern that is closer to this intrinsically 
stable pattern, is enhanced over the other matches due 
to the influence of performance on the match (21). As a 
result, this memorized pattern may be recalled even if 
not favored by the initial conditions. The simulation 
shown in Fig. 8 exhibits such an effect. (The difference 
between this case and that shown in Fig. 7 is that here 
the intrinsic dynamics lead to a stronger deviation 
from the required pattern.) Although it remains to be 
seen, whether such somewhat subtle effects can be 
detected experimentally, the question of whether the 
intrinsic pattern dynamics can constrain the process of 
recall seems conceptually relevant. 

6.2 Learning and Recall 

To study both learning and recall we consider the 
situation where a pattern is environmentally required 
that does not match exactly one of the memorized 
patterns. As shown above, the memorized pattern with 
best match is recalled. Due to the learning dynamics, 
the corresponding memory variable learns the new 
pattern, and thus "forgets" its previous information. 
Because the "forgotten" and the new pattern are close 
to each other, this type of "forgetting" might be viewed 
as an effect of interference. Another type of"forgetting" 
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simultaneously takes place: The memory  variables 
that have not been activated (that is, those ~pj with 
wj~0)  are not asymptotically, but only marginally 
stable: v)j ~ 0. Due to the noise in the recall variables, a 
slow drift of these memory  variables occurs, which can 
be viewed as an unspecific slow decay of memorized 
information. Whenever one of these memorized pat- 
terns is recalled again, it reestablishes its value within 
the time scale, z: . . . .  . In this sense the memorized 
patterns are stable. The two types of "forgetting" are 
illustrated in the simulation shown in Fig. 9. It  seems 
difficult, however, to actually define a notion of 
"forgetting" operationally. If  one thinks of "forgetting" 
as a change in the system dynamics such that a pattern 
that had been learned cannot  be recalled anymore,  it 
remains open, how to determine experimentally that a 
pattern has n o t  been recalled. 

A more technical modelling question concerns, 
h o w  new memory  variables are "created" when the 

number  of learned patterns increases. In the present 
formulation the potential for differentiating degene- 
rate memory  variables exists: When several memory  
variables have the same value and a pattern sufficiently 
close to this value is required, then one of these 
memory  variables is activated. The stochastic forces in 
the recall dynamics lead to such a decision even when 
initially neither of the degenerate memory variables is 
favoured over the others. The recalled memory  vari- 
able proceeds to learn the new pattern and thus 
differentiates itself from the other degenerate memory  
variables. In this way "new" memory variables (with 
respect to their contents) can be created through 
fluctuations which shows how noise is conceptually 
important  in the recall dynamics. Several questions 
remain open, however, for example, how degenerate 
memory  variables arise to begin with and how this 
effect relates to "forgetting" by interference. An 
example for differentiation of memory  variables is 
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Fig. 9. A general example of learning and recall: A pattern, i t=,,, = 2.0 rad, close to memorized pattern ~2 is required leading to recall of 
this memorized pattern within a few seconds. The corresponding memory variable learns the new pattern and thus unlearns its previous 
contents, ~P2 = ~/2. The other memory variables drift under the influence of noise. Note the stronger drift of ~p 1 during the initial phase, 
when it is active, as well as the two transients in the performed relative phase, ~b, during recall and during learning 
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Fig. 10. Differentiation of memory variables and a phase transition during learning in the case of multiple memory variables: Initially 
both memory variables ~Pz = ~P3 = n contain the same pattern, while tp t = 0 is active. The requirement, v2,,v = 2.0 rad, leads to activation 
of one (here: 022) of the memory variables by chance, and this memory variable subsequently learns the new pattern. In this case, the 
behavioral dynamics is initially bistable (only one state closer to in-phase is shown). As the memorized pattern lp2 increases in strength, 
dm=~0pz), an instability occurs analogous to the first phase transition in Fig. 2. To prepare this case in a numerically stable way the 
contribution of the behavior to the match function (21) was reduced to 20% (of. discussion Sect. 7) 

shown in Fig. 10. In this example we also find a phase 
transition during learning, which illustrates that  such 
phase transitions persist in the case of multiple mem- 
ory variables. The analysis of such phase transitions of 
Sect. 4 remains valid, because the system is essentially a 
system with a single memorized pat tern on the time 
scale of learning due to the time scales relation (22). 

7 D i s c u s s i o n  

In this article we have developed a dynamic theory of 
learning and recall of coordination patterns for a class 
of model systems involving rhythmic movement  co- 
ordination. Characterizing the coordination patterns 
by the collective variable relative phase we could build 
on previous work in which both the intrinsic pat tern 
dynamics as well as the adaptat ion of the coordination 

patterns to environmental  and memorized require- 
ments were understood. Memorized information, 
which is part  of  the pat tern dynamics attracting to the 
pat tern required by memory,  was endowed with dy- 
namics to account  for the change of behavior  during 
learning. These learning dynamics were modelled by 
mapping  the stable, reproducible result of learning, the 
to-be-learned pattern, onto an attractor.  Similarly, the 
relative s t reng ths  with which different memorized 
patterns influence the pat tern dynamics were endowed 
with dynamics to account for the behavioral  change 
during selective activation or recall of  a memorized 
pattern. The recall dynamics were modelled by impos- 
ing functional equivalence of all memory  variables as a 
symmetry and mapping  the reproducible endresult of 
recall onto an attractor.  Note,  that  the functional 
nature of the collective variables that  are used to 
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characterize both the coordination patterns and 
behavioral information, makes it possible to express 
generalization in learning. 

For the present model case involving the learning 
of relative timing skills we established explicitly several 
predictions of the theory. In particular, we showed 
under which conditions phase transitions in the dy- 
namics of the coordination patterns occur during the 
processes of learning and of recall. These are observ- 
able as abrupt changes of behavior accompanied by 
loss of stability in the time scale rrgime of local 
stationarity, and as qualitative changes in the shape of 
the probability distribution of the collective variable in 
the time scale rrgime of global stationarity. Two 
methodologies of observing learning over a series of 
"sessions" are related to these two time scale relations. 
The experimental observation of such phase tran- 
sitions would not only represent an important test of 
the present theoretical framework, but also provide 
insight about lawful constraints on learning and recall. 
The essentially nonlinear nature of the recall dynamics 
could be experimentally tested by looking for history 
or hysteresis effects predicted by this theory in cases of 
ambiguous behavioral information. Furthermore, in 
these experimental situations the intrinsic dynamics 
can influence the recall process favouring recall of 
intrinsically stable patterns. Experimental observation 
of this effect would also provide insight into how recall 
is constrained by the behavioral dynamics of the 
system. Other, more specific properties of the theoret- 
ical model are "forgetting" by interference, unspecific 
decay of memorized information, and differentiation of 
memory variables, which may be subjected to experi- 
mental test separately. 

We would like to stress that the specific functional 
form of our dynamic model was determined on the 
basis of simplicity. For example, the mathematical 
performance of the model (e.g., number of patterns that 
can be stably recalled, range of parameter values over 
which the different effects are observed, etc.) can be 
vastly improved by introducing more sharply peaked 
match functions and more pronounced attractor land- 
scapes. We convinced ourselves, that sharpening the 
match criteria with: 

match = {tanh(h(m- mo) + 1 }/2, 

(where mo is a threshold and h a sharpness factor, cf. 
Shimizu and Yamaguchi 1987), leads to a more robust 
performance in above sense. However, our purpose 
here was to point out the general, experimentally 
revelant consequences of the theoretical framework 
that do not depend very strongly on these mathemat- 
ical details. 

More generally, one may view the present approach 
as aiming at a phenomenological theory of learn- 

ing and recall, in which a theoretical language is 
developed whose basic concepts and varaibles are 
operationally defined and thus, at least in principle, 
measurable. In this language, laws or constraints can 
be formulated that reveal organizational principles of a 
behavioral system capable of learning and recall. More 
microscopic or neurophysiological models of learning 
might aim to derive such laws. Through the concept of 
behavioral information we avoid introducing arbi- 
trary representation of information and instead provide 
a language with which to identify relevant information 
by its effect on behavior itself. In this language learning 
and recall affect the dynamics of coordination patterns, 
including their stability. 

To use such a theoretical approach in other 
experimental systems the language has to be "filled 
with life" in each case. That means, collective variables, 
environmental parameters and intrinsic dynamics 
have to be identified, time scales have to be determined, 
and stability measures to be implemented. Clearly, not 
every experimental situation lends itself to such a 
description and allows for prediction. Beyond the 
examples treated here, a number of systems have been 
studied within such a theoretical framework, including 
coordination of movement with a metronome (Kelso 
et al. 1989), locomotory gaits of quadrupeds and gait 
changes (Sch6ner et al. 1989) and coordination of 
rhythmic movement among two human subjects 
(Schmidt 1988). Several other behavioral systems ap- 
pear open to this theoretical approach, for example, 
interlimb coordination of discrete movement (Kelso et 
al. 1979), coordination of discrete movement with the 
visual field (see Lee and Young 1986, for recent review), 
tracking (Poulon 1974), posture (Feldman 1966), 
spontaneous leg movement in infants (Thelen et al. 
1987), repetitive speech (Tuller and Kelso 1989b), and 
centrally generated patterns in neural networks (see 
Sch6ner and Kelso 1988a, for a qualitative discussion). 
A generalization of the present theory of learning and 
recall to such systems seems possible. 

In most formal learning and pattern recognition 
theories a whole layer of dynamics, namely, that of the 
intrinsic pattern dynamics, is missing. Because the 
presence of non-trivial intrinsic dynamics on the 
behavioral level are ultimately responsible for the 
predicted phase transitions as well as the various 
qualitative effects in recall, ignoring this layer may be 
missing an essential aspect. Several recent models of 
the learning and control of sensory-motor behavior 
(e.g., Kawato et al. 1987 i Kupferstein 1988; Bullock 
and Grossberg 1988) have taken the step of including a 
behavioral component in the system dynamics, but fail 
to identify such intrinsic constraints on the behavioral 
level and thus do not arive at the predictions discussed 
in this article. As an aside we note that here we have 
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shown tha t  phase  t r ans i t ions  m a y  occur  in the  
behav io ra l  dynamics  du r ing  learning,  for example ,  
f rom mul t ip le  a t t r ac to r s  to a single a t t r ac to r .  I t  is 
somet imes  a rgued  tha t  l ea rn ing  c o r r e s p o n d s  to  devel-  
op ing  more  a t t rac tors .  This refers, however ,  to  at-  
t r ac to r s  in a r ep resen ta t ion  space (as for recall), no t  of  
the behav io ra l  dynamics .  

Beyond  the concre te  p red ic t ions  and  desc r ip t ions  
we hope  to have  i l lus t ra ted  how the theore t i ca l  lan-  
guage  used here m a y  p rov ide  a fresh view of  l ea rn ing  
and  recall ,  l ead ing  to a different perspec t ive  a n d  new 
quest ions .  As a next  s tep it m a y  be in teres t ing  to  
express  d y n a m i c  p rope r t i e s  of  the  l ea rn ing  and  recal l  
processes  themselves  in this  language.  
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