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Abstract. In this review, we discuss critically recent research on the acceleration of the solar wind, giving 
emphasis to high-speed solar wind streams emanating from solar coronal holes. We first explain why 
thermally driven wind models constrained by solar and interplanetary observations encounter substantial 
difficulties in explaining high speed streams. Then, through a general discussion of energy addition to the 
solar wind above the coronal base, we indicate a possible resolution of these difficulties. Finally, we consider 
the question of what role MHD waves might play in transporting energy through the solar atmosphere and 
depositing it in the solar wind, and we conclude by examining, in a simple way, the specific mechanism of 
solar wind acceleration by Alfv6n waves and the related problem of accelerating massive stellar winds with 
Alfv6n waves. 

I. Introduction 

On the basis of observations of continuous auroral activity (Birkeland, 1908, 1913), 
27-day recurrent geomagnetic activity (e.g., Chapman and Bartels, 1940), and the 
anti-solar alignment of ionized comet tails (Biermann, 1951), it has long been suspected 
that the Sun emits ionized particles continuously. In 1958, Parker suggested a physical 
mechanism whereby the predominantly hydrogen plasma of the Sun's outer atmosphere 
could be accelerated to supersonic speeds and thus flow continuously away from the 
Sun, through interplanetary space, as the solar wind. Parker (1958) argued that, given 
the high temperature (and the consequent high thermal conductivity (Chapman, 1957)) 
of the solar corona and the low pressure of the interstellar medium, the only possible 
steady state of the outer solar atmosphere is a supersonic expansion driven by the 
thermal pressure gradient force. The existence of the solar wind was subsequently 
confirmed by in situ spacecraft observations outside the terrestrial magnetosphere 
(Gringauz etal., 1960, 1961, 1967; Bonetti etal., 1963; Scherb, 1964; Snyder and 
Neugebauer, 1964). These and later observations (e.g., reviews by Axford, 1968; 
Hundhausen, 1972; Feldman et al., 1977) indicated a high degree of variability of most 
solar wind parameters in lower-speed wind and a relative uniformity of most parameters 
in high-speed wind (so-called high-speed streams). The high-speed solar wind streams 
(Neugebauer and Snyder, 1966) were found frequently to recur with approximately a 
27-day period (the solar rotation period as viewed from the Earth), and these recurrent 
streams were associated with the 27-day recurrent geomagnetic activity. By implication, 
the solar sources of high-speed streams were taken to be the, as yet unidentified, solar 
M-regions, which had been invoked as the solar sources of recurrent geomagnetic 
activity (e.g., Chapman and Bartels, 1940). Solar and interplanetary observations during 
and after the 1973-4 Skylab period led to the identification of these M-regions as solar 
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coronal holes (Krieger e ta l . ,  1973; Neupert and Pizzo, 1974; Bell and Noci, 1976; 

Hansen et  al., 1976; Hundhausen et al., 1978; Nolte et al., 1976; Sheeley et al., 1976; 

Wagner, 1976; Hundhausen, 1977). The relationship among coronal holes, high-speed 
streams, and geomagnetic activity is illustrated in Figure 1. 

It was realized by Parker (1965) that, while a purely thermally driven wind could 

readily produce the observed low to moderate solar wind speeds, the high-speed wind 
might require the addition of energy to the wind above the coronal base. In fact, it is 

Fig. 1. The three-dimensional relations among coronal hole observations at different heights in the solar 
atmosphere, the solar wind structure observed in the ecliptic plane, and the resulting geomagnetic activity 
for Carrington solar rotation 1610, in early 1974. The magnetic polarity is indicated by + signs for magnetic 
fields pointing out of the Sun and -signs for fields pointing into the Sun (from Hundhausen 

and Holzer, 1980). 
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readily shown that if the solar wind temperature monotonically decreases from the 
coronal base to the orbit of Earth, the observational constraints of modest solar wind 
mass-flux densities in high-speed streams and moderate plasma pressures at the base 
of coronal holes require such extended energy addition in the region of supersonic flow 
(Holzer and Leer, 1980; Leer and Holzer, 1980). Hence, observations of high-speed 
streams and coronal holes place the most stringent requirements on theoretical 
descriptions of solar wind acceleration; these requirements are the most complete, as 
well, because of the unambiguous identification of coronal holes as the solar source of 
high speed streams and the extensive observations of coronal holes currently available. 
It seems appropriate, therefore, that in the present review of solar wind acceleration 
we concentrate primarily on coronal holes and high-speed solar wind streams. 

We shall begin by considering models of thermally driven winds with no energy added 
above the coronal base (Section 2) and then discuss the general effects of energy 
addition (in the forms of heat and momentum addition) to the subsonic and supersonic 
regions of the wind (Section 3). Having indicated a possible need for outward energy 
transport from the coronal base by some means other than advection or thermal 
conduction, we shall consider the propagation of hydromagnetic waves in the solar 
atmosphere and solar wind and the role such waves might play in transporting the 
additional energy (Section 4). Finally, we shall discuss the specific acceleration 
mechanism involving Alfv6n waves interacting with the solar wind - this being both the 
most thoroughly studied and conceptually the simplest energy addition mechanism 
(Section 5). The extension of this mechanism to the description of massive winds from 
cool, low-gravity stars will be briefly outlined in Section 6, and a few closing remarks 
will be presented in Section 7. 

2. Thermally Driven Solar Wind 

Our present understanding of the solar wind is based on the work of Parker (1958, 1960, 
1963, 1964a, b, 1965). His first solar wind paper (Parker, 1958) dealt with the spherically 
symmetric expansion of an isothermal corona and provided a sound physical 
description of the dynamical effects important in the accelaration of the solar wind. 
Parker (1963, 1964a, b, 1965) later extended this work to include the effects of 
non-spherical flow and of energy balance in the coronal expansion. The latter work 
concentrated on classical thermal conduction in a spherical expansion, but the effects 
of non-classical conduction and energy addition above the coronal base were also 
considered. In light of observations that have become available over the past 15-y, 
several other workers have expanded on this theoretical basis and clarified the roles that 
the physical effects discussed by Parker play in the acceleration of the solar wind. In 
reviewing our present understanding of this subject, we shall begin with the case of a 
thermally driven solar wind: that is, a wind in which the driving force is the thermal 
pressure gradient force and the retarding force results from the solar gravitational field. 

There have been several approaches taken toward describing a thermally driven solar 
wind, ranging from the original isothermal model to conductive, viscous, one-fluid and 
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two-fluid models (for references to this work see reviews by Holzer and Axford (1970), 
Hundhausen (1972), Barnes (1975), Hollweg (1978a), Holzer (1979)). To illustrate the 
physical effects that are important in a thermally driven wind, we shall discuss results 
from inviscid, one-fluid models including various descriptions of thermal conduction 
and both spherical and more rapidly expanding flow geometries. We use inviscid, 
one-fluid models because viscosity is negligible, except in the vicinity of steep velocity 
gradients (Parker, 1963), and because two-fluid models do not provide additional 
information that would be of interest in the following discussion. Rapidly expanding 
flow geometries must be considered because they seem to be characteristic of coronal 
holes, in which the magnetic field diverges rapidly (e.g. Altschuler et al., 1972; Munro 
and Jackson, 1977), and the flow is expected to follow the field near the Sun. The 
equations for mass, momentum, and energy balance which we shall use to describe the 
steady, radial flow of this thermally driven electron-proton solar wind are thus 

nmuA = ~ =  const. (1) 

du 1 dp GM 
u , ( 2 )  

dr nm dr r 2 

3nuk --dT= 2ukT dn 1 dr(qA), (3) 
dr dr A 

where A is the cross-sectional area of an infinitesimal, radial flow tube, n is the electron 
(proton) number density, m is the proton mass, u is the radial flow speed, Tis half the 
sum of the electron and proton temperatures,p = 2nkT, q is the radial heat flux density, 
and k, G, and M are the Boltzmann constant, gravitational constant, and solar mass. 
An alternative form for the energy balance equation is 

~ ( l u a + 5  kT GM A ) + - -  q = F = const. (4) 
m r Y 

If the magnetic field is radial, and the solar wind plasma is assumed to be collision- 
dominated, the heat flux density can be described classically (Spitzer, 1962) by 

q = q~ = _ ~coTS/2 --,dT (5) 
dr 

where •o = 7.8 x 10 7 erg cm- ~ s- ~ K -7/2.  If account is taken of the spiral shape of 
the interplanetary magnetic field (Parker, 1958) and of the strong inhibition of thermal 
conduction across the magnetic field (e.g., Chapman and Cowling, 1939), then the heat 
flux density takes the form (Parker, 1964b). 

q = % = % cos 2 0, (6) 
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where 0 is the angle between the radial direction and the local magnetic field. Of course, 
the solar wind plasma is not collision-dominated, except, perhaps, relatively near the 
Sun, and the classical description of thermal conduction must be modified (e.g., Parker, 
1964b; Perkins, 1973). Hollweg (1976) has suggested that in a collisionless solar wind 
plasma the heat flux density can be represented by 

q = qc = 3o:nukT, (7) 

where 2 is an arbitrary parameter, which will be taken here to be 4. Hollweg (1976) 
represents q by (6) when the mean free path of a thermal electron is less than half the 
radial distance and by (7) otherwise. Recently, Scudder and Olbert (1979a, b) have 
derived a kinetic description (including Coulomb collisions) of solar wind electrons, and 
their results indicate that the solar wind heat flux may not be adequately described by 
any of the above models. Although detailed calculations relevant to acceleration of the 
solar wind are not yet available, we shall make use of existing information (Olbert, 1981) 
to discuss (later in this section) the possible implications of this kinetic description for 
a thermally driven wind. 

Durney (1972) obtained numerical solutions to (1)-(3) and (5) for spherical symmetry 
(A ~ r2), and some of these are displayed in Figure 2a to illustrate the dependence of 
particle flux density and flow speed at 1 AU (neuE and ue) on the coronal base density 
(no) and temperature (To). We see that the particle flux density (nEuE) increases rapidly 
with increasing To, ifn o is fixed. Similarly, for n o < 10 7 c m  -3 ,  the solar wind flow speed 
(uE) increases as T o increases, but for no > 108 cm -3, ue decreases with increasing To. 
It is worth spending a little time trying to understand this behavior of neu E and uE, for 
by doing this we can lay a basis for understanding all the important physical effects 
(associated with accelerating the solar wind) that we shall consider in the remainder of 
the paper. 

Let us first consider the dependence of the solar wind mass flux on coronal 
temperature (cf. Parker, 1958, 1964a). For an isothermal corona, (2) is readily integrated 
from the coronal base (r = ro) to the critical point (r = r  c = GMm/4~,.kT, where 

= (r/2A) (dA/dr)) to yield the flow speed at the coronal base (Leer and Holzer, 1979) 

Uo= fcexp - + ~ -  
\ r o /  [_2kTro 

(8) 

where f -- rgA/r2Ao, and we assume u~ ~ 2kT/m. Because neu~ oc Uo, it is clear that 
for a strongly gravitationally bound corona (GM/r o ,> 2kT/m) the solar wind mass flux 
(oc nEuE) is dominated by the exponential coronal temperature dependence shown in 
(8). Hence, a small increase in coronal temperature produces a large increase in solar 
wind mass flux. (The isothermal assumption is not especially restrictive in the above 
analysis, for T can be taken to represent an average coronal temperature in the region 
of subsonic solar wind flow (Leer and Holzer, 1979)). 

If our physical intuition were based entirely on polytropic (including isothermal) 
models of the solar wind, we would immediately conclude that this strong dependence 
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Fig. 2. Contours of  constant particle flux density at 1 AU (neue) and flow speed at l AU (uE) shown in 
the n o - T o plane (where n o and T o are the coronal base density and temperature) for the spherically 
symmetric flow of a conductive, thermally driven wind: (a)Durney 's  (1972) solutions for a classical 
(collision-dominated) conduction law; (b) solutions of Durney and Hundhausen  (1974) for magnetically 
inhibited thermal conduction; solutions for the collisionlessly inhibited thermal conduction description used 

by Hollweg (1976) (from Holzer and Leer, 1980). 

of mass flux on coronal temperature has no effect on the solar wind flow speed (uE), 
because the mass flux scales out of polytropic representations (e.g. Parker, 1964a; 
Hundhausen, 1972). In fact, the same sort of scaling occurs when T is specified as a 
function o f r  (T = ToO(r)): in either case, uE depends only on T o. If, however, a proper 
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energy equation (e.g., (3)) is considered, it is clear that the magnitude of the mass flux 
determines the relative importance of thermal conduction and, say, expansive cooling. 
In Durney's (1972) model, when the mass flux is small (viz., for no < 107 cm -3) 

conduction dominates everywhere, and the relevant solution of (3) is T = To(ro/r) 2/7 
(Parker, 1964a; Chapman, 1957). As noted above, this case, like the polytropic case, 
leads to a monotonic increase of u E with increasing T o, owing to the increasing strength 
of the pressure gradient force with increasing T 0. Yet, for larger mass fluxes, conduction 
ceases to dominate in certain domains, and expansive cooling leads to a more rapid 
temperature decline and a consequent decrease in efficiency of acceleration of the flow 
by the pressure gradient force. If the base density and temperature are large enough (e.g., 
T O >~ 1.5 • 106 at no ~ l0 s c m  - 3  o r  T O > 2 x 10 8 K at no ~ 2 x 10 7 c m  3), the expan- 

sive cooling is so effective that conduction is unimportant at r = r  E = 1 AU, and 
virtually all of the solar wind energy flux at 1 AU is carried by the flow. In this case, 
(4) can be evaluated at the coronal base and at 1 AU to yield 

F / ~  u~/2 ~ qoAo/~ + 5kTo/m - GM/r o . (9) 

Now we can understand why Durney's results (Figure 2a) indicate that ue decreases as 
To increases, when no and To are large enough: the heat flux density at the coronal base 
(qo) does not increase as rapidly with T o (qo oc T 7/2) as does the mass flux (goc  Uo; cf. 
(8)), so the conductive energy per unit mass (qoAo/N) decreases more rapidly than the 
enthalpy per unit mass (5kTo/m) increases, and the total energy per unit mass supplied 
to the solar wind ( F / ~  u2/2) decreases. 

This line of argument is especially important for what follows, because it is clear from 
solar wind observations (e.g. Hundhausen, 1972)that F / ~  u2/2 (i.e., at 1 AU the solar 
wind energy flux is transported almost entirely by the flow). Hence, if we can determine 
the outward energy flux in the corona (F) and the resulting mass flux (~ ) ,  we then know 
(for realistic models) what the flow speed at 1 AU must be (uE ~ ~ ) .  

Let us turn next to the model of Durney and Hundhausen (1974), in which inhibition 
of the radial heat flux by the spiral interplanetary magnetic field is considered (i.e., 
(1)-(3) and (6) are solved). Some results of this model are shown in Figure 2b, and 
comparison with Figure 2a indicates that the solar wind mass flux is only slightly 
affected by the conduction inhibition, but the flow speed at 1 AU is increased 
significantly over a broad range of values of n o and T o. The principal effect of inhibition 
of thermal conduction in a strongly conduction-dominated solar wind flow is the 
establishment of a temperature plateau, a region of elevated temperature extending from 
the coronal base out to the distance (in this case, several tens of solar radii) where the 
inhibition becomes effective (e.g. Parker, 1964b; Durney and Hundhausen, 1974). This 
temperature plateau has little effect on the average temperature in the region of subsonic 
flow and thus little effect on the mass flux, but it significantly enhances the pressure 
gradient in the supersonic region and thus leads to a higher-speed solar wind. In terms 
of energy balance, one can say that this inhibition reduces the conduction flux at the 
coronal base, but substantially increases the efficiency with which the conduction flux 
is transformed to flow energy (through the pressure gradient force), resulting in a net 
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increase in the energy flux supplied to the flow at 1 AU. Together with only a modest 

change in the mass flux, this leads to an increase in the flow energy per unit mass (u~/2). 

A notable feature of Figure 2b (see also Figure 2a) is the monotonic decrease of u e with 
increasing n o . This results from the fact that the mass flux depends more strongly on 
base density than do either the conduction flux density at the base or the efficiency of 

conversion from conductive to flow energy, so that the energy per unit mass supplied 

to the flow is decreased when n o is increased (Holzer and Leer, 1980). 

The only substantive difference between the magnetic inhibition of conduction 

discussed by Durney and Hundhausen (1974) and the collisionless inhibition discussed 
by Hollweg (1976) (see Figure 2c) is that the latter inhibition can take place much nearer 

the Sun and can more strongly inhibit the conduction. For very low base densities, 

electrons in the coronal plasma are collisionless everywhere above the coronal base, and 

in Hollweg's (1976) model q = qc everywhere, so that the flow is polytropic (cf. (7)). For 

low to moderate densities, however, the electrons are assumed collision-dominated near 

the Sun (i.e., q = %), and the point where the conduction is inhibited (i.e., where the 
plasma is assumed to become collisionless and q becomes qc) moves rapidly away from 

the Sun with increasing n o . The resulting increase in conduction flux with increasing n o 

is more rapid than the increase in mass flux, and given the uniformly high efficiency of 

conversion from conduction energy to flow energy associated with collisionless 

inhibition, the energy per unit mass supplied to the flow (u~/2) increases (Holzer and 

Leer, 1980). This effect is seen in the lower left portion of the n o - T  o plane shown in 
Figure 2c, where u e increases with increasing no. 

It is clear from Figure2 that high speed solar wind streams, in which 
u e >  600 km s -1 and nEu  E ~ 3 x 108 cm -2 s -~ (e.g., Feldman e t a l . ,  1977), cannot 

be produced in these three conductive models unless n o is taken to be unrealistically 
low. (Withbroe (1977) indicates that n o T O ~ 1014 c m -  3 K ,  which implies 
n o > 5 x 107 cm-3.)  We then must ask whether the rapidly diverging flow expected in 

solar coronal holes can lead to a substantial increase in u E for the same three types of 

conductive model. This question has been addressed by Holzer and Leer (1980), who 

have extended the models of Durney (1972), Durney and Hundhausen (1974), and 

Hollweg (1976) to include the effects of rapidly diverging flow geometries. Figure 3 

shows their results for a flow geometry described by (Kopp and Holzer, 1976): 

A = A o ( r / r o ) 2 f ,  (10) 

f = (fmax e(P r,)/,  + f i ) / ( e  ( . . . .  ) /~  + 1), (11) 

f ,  = 1 - (fma• 1)e (r~176 (12) 

with a = 0.1R o, r 1 = 2Ro, and fmax = 7. Here, • measures the radial scale over which 
a flow tube expands faster than it would in a spherical geometry, q indicates the radial 

location where the rapid expansion occurs, and fma• is the ratio as r--+ oo of the area 
of a rapidly expanding flow tube to that of a spherically expanding flow tube, when their 
areas are equal at r = r 0. In the chosen flow geometry, three critical points may exist, 
and in some cases the only acceptable solution exhibits a shock transition between the 
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Fig. 3. Same as Figure 2, except for a rapidly diverging flow instead of a spherically symmetric flow. The 
flow geometry is characterized by a = 0.1Ro, r~ = 2Ro, and fmax = 7, which means that the flow tube area 
increases by a factor of 7 more than in the spherical case, and most of the rapid area increase takes place 
in 1.9R o < r < 2.1R o. The dashed lines indicate regions where a shock transition exists somewhere between 

the inner and outer critical points (cf. Figure 5a and Holzer (1977)) (from Holzer and Leer, 1980). 

inner  and  ou te r  cr i t ical  po in t s  (Holze r ,  1977; H a b b a l  and  Ts inganos ,  1982). Such  

solut ions  were  n o t  ca lcu la ted  in this s tudy,  but  their  region o f  ex is tence  is ind ica ted  by 

the  d a s h e d  lines in F igure  3. It  is f ound  tha t  a rap id ly  e x p a n d i n g  f low geome t ry  leads  

to a slightly higher  m a s s  flux dens i ty  at the co rona l  base ,  but  a slightly lower  m a s s  flux 
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density at 1 AU. The solar wind flow speed is also modified somewhat, but the basic 
conclusion drawn from the spherically symmetric studies remains unchanged: conduc- 
tive solar wind models in which the heat flux is described by (5), (6), or (6) and (7) cannot 
explain the existence of the observed high-speed solar wind streams. 

There remains the possibility (Olbert, 1981) that a more realistic description of 
thermal conduction, like the one being worked out by Scudder and Olbert (1979a, b), 
will allow high-speed streams to be produced in a conductive model without energy 
addition above the coronal base. In order to satisfy observational constraints on the 
coronal pressure and the solar wind mass flux density and flow speed at 1 AU, it appears 
that such a description will have to lead to a coronal temperature that is higher in at 
least part of the region of supersonic flow than the average temperature in the subsonic 
region. Whether such a temperature profile is consistent with the kinetic description of 
Scudder and Olbert remains to be seen. For the time being, we shall assume that 
high-speed streams require energy addition to the solar wind above the coronal base (by 
some means other than degradation of the heat flux). 

3. Energy Addition 

A general discussion of energy addition above the coronal base requires that our 
descriptions of momentum and energy balance (cf. (2)-(4)) be modified as follows: 

du 1 dp GM 
u + D,  (13) 

dr nm dr r 2 

3nuk --dT= 2ukT dn 1 dr(qA) + Q , (14) 
dr dr A 

.J(�89 kT GM A ) i - -  + - -  q = F = F  o +  d r ' ( n ~ + A Q ) ,  (15) 
m r 

ro 

where nmD and Q are the rates (per volume, per time) at which momentum and heat 
are added to the plasma. The momentum addition can be thought of as the application 
of an outward-directed body fore per unit mass, D. An energy flux associated with both 
the heat and momentum addition can be defined by 

o o  

AF= ~ d r ( D ~ +  AQ), (16) 
,d 
0 

and this will prove a useful parameter in the following discussion of the effects of energy 
addition on the solar wind particle flux density, flow speed, and temperature at 1 AU 
(nFU E, U u, and TE). In this discussion, we shall find it instructive to consider heat 
addition and momentum addition separately. 
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Let us begin with heat addition, setting D = 0 and writting 

Q = Qi exp - -  100 r _ 1 . (17) 

(17) describes the heating of the solar wind in a narrow region centered at r = r i and 

allows us to study the effects of adding heat at various locations in the flow by solving 
(1), (13), (14), and (17) for several values of r i ranging from r i = r o to ri > 1 AU. The 
magnitude of the heating can be specified in such a study by requiring that the energy 

flux added to the wind be independent of the location where the energy is added: i.e., 
(O/Or~) (AF) = 0. Because of our desire to match as closely as possible the observation 
(e.g. Hundhau sen, 1972) th at F e / ~  ~ u2/2, we shall use Hollweg's (1976) repres entation 
of thermal conduction (cf. Section 2), in which the plasma is assumed collision- 
dominated (q = %: see (6)) wherever the mean free path of thermal electrons is less than 
half the radial distance, and it is assumed collisionless (q = qc: see (7)) otherwise. The 

difficulty with the classical description of thermal conduction (q = qa everywhere) is that 
frequently qEAE/N > u2/2, and a significant fraction of the energy flux added by heating 
above the coronal base is carried past 1 AU by an enhanced thermal conduction flux, 
causing the predicted flow speed (ue) to be unrealistically low (see the results of 
Pneuman (1980) for an example of this difficulty). 

The above model (with collisionless inhibition of conduction) has been studied by 
Leer and Holzer (1980) for spherically symmetric flow, and their results are shown in 
Figure4a. Coronal base parameters are taken to be no = 108cm -3 and 

To -- 1.4 x 106 K, and the magnitude of the heat addition is prescribed by AF/FR = O, 
0.3, and 1 in the three cases shown. The reference energy flux, FR, is the solar wind 
energy flux (F = Fo) in the absence of energy addition above the coronal base (AF -- 0), 
and it generally differs from the coronal base energy flux (Fo) in the presence of energy 
addition (AF ~ 0). The critical (sonic) point of the flow occurs near 10R o in the 
reference case (AF = 0), but moves inward (as far as 4R o for AF = 1) when heat is added 
to the subsonic flow. The addition of heat in the subsonic region increases the local 
temperature and thus increases the mass flux (goc  n~uE). This mass flux increase very 
nearly balances the increase in energy flux (AF), so the flow speed at 1 AU 

(uE ~ ~ )  is not significantly changed. When, however, heat is added in the 
supersonic region, the temperature in the subsonic region is generally unaffected, and 
the mass flux ( ~ )  is unchanged; the increase in energy flux (AF) thus leads to an increase 
in the flow speed at 1 AU (u e ~ , ~ F / o ~ ) .  As the location of the heat addition moves 
farther out in the solar wind, there is less time before the wind reaches 1 AU for the 
conductive energy and internal energy to be converted into flow energy through the 
action of the pressure gradient force. As a result, T E increases and u e decreases as ri 
increases (in the supersonic region); evidently, if heat is added too far out in the wind, 
the temperature at 1 AU can become unrealistically large. (The decrease in u E below 
its reference value when r; ~ 1 AU results from the localized inward pressure gradient 
force associated with the spatially narrow heating function used here.) Quite similar 
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Holzer ,  1980). 



ACCELERATION OF THE SOLAR WIND 173 

results are found for a rapidly expanding flow geometry (Figure 4b): heat addition in 
the subsonic region increases the solar wind mass flux, but has little effect on the flow 
speed at 1 AU; heat addition in the supersonic region does not affect the mass flux, but 
increases the flow speed at 1 AU. Of course, in the rapidly expanding flow geometry, 
the sonic point lies much nearer the Sun, so u E can be increased with heat addition much 
nearer the Sun than in the spherically symmetric models. 

Now let us consider the effects of momentum addition, setting Q = 0 and writing 
(cf. (17)) 

D = Di(A/Ai)exp -50 r _ 1 . (18) 

Solutions to (1), (13), (14), and (18) are shown in Figure 5a and b for spherical and 
rapidly expanding flow geometries and the same model parameters as used in the heat 
addition study (Figure 4) (Leer and Holzer, 1980). The dashed lines in Figure 5a 
indicate solutions (not calculated) in which shocks occur between the inner and outer 
critical points (cf. Figure 3). As in the case of heat addition, energy addition by direct 
acceleration (momentum addition) leads to an enhanced mass flux when the energy is 
added in the region of subsonic flow, but not when it is added in the supersonic region. 
The mass flux enhancement, however, is somewhat larger when a given amount of 
energy is added as momentum (Figure 5) than when the same amount of energy is added 
as heat (Figure 4). When all the energy is added between the coronal base and the 
(innermost) critical point (at r = rc), the increase in mass flux ( ~ -  ~ )  over the reference 
model mass flux ( ~ )  is represented approximately by 

. ~  ~ exp(mI/2k < T ) ) .  (19) 

where I = fr o drD, and ( r )  is the average subsonic-region temperature (Leer and 
Holzer, 1979). The increase in mass flux resulting from momentum addition in the 
subsonic region is due to the increased velocity scale height and the inward motion of 
the critical point, which are characteristic consequences of momentum addition, heat 
addition, or increased coronal base temperature. 

Because the addition of energy by direct acceleration (momentum addition) in the 
subsonic region leads to an enhancement of the mass flux that is significantly larger than 
that associated with the addition of the same amount of energy by heating, it is not 
surprising that momentum addition in the subsonic region leads to a substantial 
decrease in flow speed at 1 AU (see u E in Figures 5a and b). As with heat addition, the 
addition of momentum in the supersonic region increases u e (again, because ,3 is 
unchanged and Fe is increased), but the momentum addition is more uniformly efficient 
in increasing u e (cf. Figures 4 and 5), because adding momentum has little effect on the 
temperature profile, and virtually all of the energy flux at 1 AU is carried as flow energy, 
regardless of how near 1 AU the momentum is added. In fact T e is generally decreased 
by momentum addition, either because of an increased expansive cooling (for addition 
in the supersonic region) or because of an inward movement of the point at which 
inhibition of thermal conduction occurs (for addition nearer the Sun). 
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Two other aspects of the general energy addition problem that are of interest here are 
momentum loss in the subsonic region and energy exchange between the subsonic and 
supersonic regions (see Leer and Holzer (1980) for a detailed discussion), As can be 
inferred from Figure 5, momentum loss (i.e., an additional inward-directed force that 
decelerates the flow) should decrease the solar wind mass flux and increase the flow 
speed at 1 AU. This effect has been demonstrated for the frictional force associated with 
a substantial, but not unreasonable, abundance of He ++ in the corona (Leer and 
Holzer, 1979), and it is conceivable that some other type of inward force, perhaps 
electromagnetic in nature, might be effective in the subsonic region. One can also infer 
from Figures 4 and 5 that any process whereby energy is removed from the subsonic 
region and deposited in the supersonic region will lead to a decrease in the solar wind 
mass flux and an increase in the flow speed at 1 AU. Such a process might involve the 
generation of, say, hydromagnetic waves in the subsonic region and their propagation 
into and dissipation in the supersonic region. 

It is clear from the above discussion that an energy flux (other than advective or 
conductive) emanating from the coronal base will be most effective in producing 
high-speed solar wind streams if it is deposited in the solar wind in the region of 
supersonic flow. There may, however, be no need for such an energy flux if there exists 
a process which removes momentum from (decelerates the flow in) the subsonic region 
or which removes energy from the subsonic region and redeposits it in the supersonic 
region. 

4. Alfv6n Waves in the Solar Atmosphere 

We have indicated that it may be necessary to add energy to the solar wind above the 
coronal base to accelerate high-speed streams. Hydromagnetic waves represent one 
means whereby this energy might be transported from the lower solar atmosphere to the 
region in the solar wind where it is deposited, and Alfv6nic fluctuations observed at 
1 AU (Belcher and Davis, 1971) could well represent remmants of such a transport 
process. Fast-mode and slow-mode hydromagnetic waves have a compressional com- 
ponent and generally suffer stronger damping than Alfv6n waves (e.g. Barnes, 1979), 
so even if a substantial energy flux in all three modes were present in the corona, one 
would expect to see the remnant energy flux only in the Alfv6n mode at 1 AU. In this 
section and the following section, we shall concentrate on the transport of energy by 
Alfv~n waves in the solar atmosphere and the solar wind, not because Alfv~n waves are 
more likely to be important than fast-mode and slow-mode waves, nor because energy 
transport by means other than hydromagnetic waves is unlikely, but because Alfv6n 
waves are the most thoroughly studied energy transport mechanism, and we can gain 
a good bit of general understanding of energy transport through a careful consideration 
of Alfv6n waves. 

Hydromagnetic waves may be generated in the corona (e.g., Barnes, 1969), or they 
may be generated in the lower solar atmosphere and propagate into the corona. In the 
latter case, propagation through the transition region (between the chromosphere and 
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corona) involves certain difficulties (e.g. Osterbrock, 1961): fast-mode waves are 
refracted strongly and can carry no significant energy flux through the transition region, 
into the corona; slow-mode waves steepen rapidly in the transition region (if they are 
not already shocks in the upper chromosphere) and the resulting shock waves dissipate 
their energy below or very near the coronal base. In addition, observations of solar 
oscillations in the middle chromosphere (Athay and White, 1979a) place a lower limit 
on the upward energy flux density carried by slow-mode waves of about 
2 x 1 0  4 erg c m  - 2  s -  l and an upper limit of about 105 erg cm-2 s- ~ (Athay and White, 
1979b), which is much less than the energy flux density required to heat the corona and 
drive the solar-wind in coronal holes (~  5 x 105 erg cm -2 s 1), to say nothing of that 
required to heat the upper chromosphere. These observations (Athay and White, 1979a, 
b) can also be used to place limits on the energy flux carried by Alfv6n waves, but a 
careful analysis of the behavior of Alfv4nic disturbances in the lower solar atmosphere 
must first be carried out, and this is done below. 

Because of the very small density scale-height in the lower solar atmosphere, a 
moderate wave period (rain to h) of an Alfv6nic disturbance is comparable to or longer 
than an Alfv6nic travel-time across a characteristic scale-length of the medium (i.e., 
co < dvA/dS, where co is the disturbance frequency and vA the Alfvdn speed), so the WKB 
approximation, normally used to describe Alfv6n-wave propagation, breaks down. 
Analysis of Alfvhnic disturbances, therefore, requires a reconsideration of the conser- 
vation laws and Maxwell's equations. For slow oscillations of the plasma in the solar 
atmosphere, the mass and momentum conservation laws, Ampere law, and Faraday's 
law can be written 

rVp 
- -  + 7 . p u  = 0 ,  ( 20 )  
& 

p + u ' V  u = - V p - p ~ G + j x B / c  , (21) 

V x (E + u x B/c)  = O, (22) 

7 x B  4= . = -  j ,  (23) 
r 

1 ~B 
v x E , (24 )  

c ~t 

where p =nm. Let us consider toroidal Alfv6nic disturbances in an axisymmetric 
background plasma. First, (20)-(24) yield two equations for the ~b components (in 
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spherical coordinates" of u and B: 

p + u  
1 @ 

V uee + puee (ur + u o tan 0) + 
r r sin 0 c~q~ 

1 F 1 OB 2 

4rt k2r f f lnO Qq~ 

- (B" V)Bee - - -  (B r + B o cot 0) , (25) 
r 

+ u" 7 Bee + - -  (Br + Bo cot 0) = 
r 

= (B'V)uee + Bee(u r + U o c o t O ) -  
r 

B 3 u (26) 

Now, if we assume axial symmetry (a/3~b = 0), take the background flow velocity and 
magnetic field to be radial (Uo = Bo = 0), and assume that terms of  second order in the 

disturbance quantities (by = uee, 6B = Bee) can be neglected (allowing the neglect of 
Op/&),  we find, following Heinemann and Olbert (1980), that in the limit ~ ~ X~AA 

--VA = - - ~ g  d~-' 

(~t  ~r) dvA + VA g = �89 dr (28) 

where ~Sv = 6Vo(Po/p) 1/4 ( g - f ) / ( g o  - fo),  OB = 6Bo(P/po) 1/4 (g + f ) / ( g t ,  + f , ) ,  and 
= B /4 p. vX 

If f ,  g oc e x p ( -  icot), then (27) and (28) have simple solutions in the two limits co <~ v A 
and co >> VA (where v g = dvA/dr) .  In the low-frequency limit (co <{ VA) the first term on 
the left side in both (27) and (28) is negligible, and we have the two solutions 

f+ = +g•  = e -*~ , (29) 

by = 6VO(~o ) e - ' ~  (30) 



178 EGIL LEER ET AL. 

bB_ = ~B o \ / )AV~A/ /  

("s _ = 0  o , (31) 

~3V+ = O v o ( r ~ ) I n  (~ /V 'A)e_ i~ t=  
2ro/ In (~o/V'Ao) 

(32) 

(~) (VAVAO]e-- i~~ 5B + = bB o - -  . 
\VaVko./ 

(33) 

These solutions have a straightforward physical interpretation: if a toroidal oscillation 
is imposed on the atmosphere at r = rl, the first ( - )  solution describes the rigid-body 
oscillation of the lower-density (higher VA) region of the atmosphere (in r > r 1 ), and the 
second ( + )  solution describes the oscillation of the higher-density (lower vA) region 
(r < r t ). In the outer region, only a negligible twist of the magnetic field is required to 
maintain rigid-body behavior (i.e., 3B/B  r ~ bV/VA), but in the inner region, the oscil- 
lation can only be maintained by a relatively large twist (i.e., ~B/Br >> bV/VA), because 
of the substantial inertia of that region. If the Alfvrn speed continues to decrease with 
decreasing r in the inner region, eventually (o/v A > 1, and rigid-body oscillation will give 
way to the propagation of a torsional Alfvrn wave, as is described below. In the 
high-frequency limit (co ~> v~, the WKB limit), the coupling terms on the right sides of 
(27) and (28) are negligible, and these equations have solutions describing inward ( f )  
and outward (g) propagating waves: 

f = fo e-i(~'t + I~dr) (34) 

g = go e-i(~ I ~dr) (35) 

] ~V = L a l  e -i(c~ + S kdr) -- a 2 e - i ( c ~  S kdr)  (36) 

VAO \ P O /  h a l  e - i (~  + "~ kdr)  _ a2 e- i(~ot  - .~ kdr)  (37) 

where al and a 2 are constants. In general, of course, all the terms in (27) and (28) must 
be included. For the special case of an atmosphere in which the Alfvrn speed varies 
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exponentially with height (i.e., VA = VAO exp [(r - r o ) / h  A ] ,  where h A is a constant), (27) 
and (28) have the general solution (Ferraro and Plumpton, 1958) 

(;o)[ 3v = i a3J 0 + a 4 (38) 

fB=--(~O)~AIa3JI(-~A) +a4Yl(~A) le icot, (39) 

where J and  Yare Bessel functions of the first and second kinds, a3 and a 4 are constants, 
and co/v A -- g O h A / V  A .  

Using an exponentially varying Alfvtn speed, one can construct a very simple model 
of the solar atmosphere by taking h A = 200 km in r < ro, and h A = oO in r > ro, where 
ro represents the coronal base (i.e., the top of the transition region). In such a model, 
we have an analytic description of the behavior oftoroidal Alfvtnic disturbances: 6v and 
fib are described by (38) and (39) in the lower solar atmosphere (r < ro) and by (36) 
and (37) in the corona (r > ro). We can thus gain a clear understanding of all relevant 
physical effects, while closely reproducing the results of Hollweg (1978b), who solved 
numerically for fv and fiB, using essentially (38) and (39)7 in a solar atmosphere 
described by 16 exponential layers. If we require that there be no inward propagating 
wave in r > ro (i.e., al = 0 and a 2 = - fro) , and that the Poynting flux and the velocity 
amplitude be continuous across ro (i.e., by and fiB are continuous across ro), then 
(36)-(39) yield the real parts of 6v and 6B in r < ro: 

JoY1 - J l Y o \ r o /  \ V A /  dA COS(-- COt + k r o ) -  

(40) 

= X \VAiIJoY1-J1 YoJ1 ~ -JoYJ go 

• cos ( - co t  + k r o ) -  YIJ1 - J I Y I  x 

x s in(-  cot + kro) t (41) 

where Bessel functions without arguments explicitly stated are evaluated at 
co/V'Ao = COhA/VAO, and we have set ~ k dr = kr o at r o. As is clearly illustrated in 
Hollweg's (1978b) model (see his Table 1, which is based on Gingerich et al. (1971) and 
Vernazza et al. (1973)), the 8 order of magnitude density change from the photosphere 
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to the corona leads to a nearly 4 order of magnitude change in the Alfv6n speed; hence, 
there is a broad range of frequencies over which waves can propagate in the photo- 
sphere, but cannot propagate at higher levels and are thus reflected (i.e., CO/V'A > 1 at 
the photosphere, but CO/V'A < 1 higher up). For n = 5 x 1016 c m  - 3  and B = 10 G, 
co/v A >> 1 if co >> 5 x 10 - 4  s -  1, SO waves with periods of several minutes or less 
propagate in the photosphere according to the short-wave-length (WKB) approxi- 
mation. We can describe these waves by using the complex equivalents of (40) and (41) 
and taking the asymptotic form of the Bessel functions for large arguments (co/V'A > 1): 

JoY1 - J1Yo \ r o /  \2zccoJ  

X ([(Y1 + Jo)  - i(Yo - J 1 ) ]  ei(~ + 

a B =  

+ [(YI - J o ) -  i(Yo + J,)]  e i(~/4-~ } 

, ,  

• {[(111 + Jo) - i(Yo - J , ) ]  eiC~~ 

- [(Y~ - Jo )  - i(Yo + J,)] ei('~/4-~ . 

(42) 

(43) 

(42) and (43) clearly show that at these relatively high frequencies the Alfv6nic 
oscillations in the photosphere are composed of outward and inward propagating 
waves, the latter having arisen from reflection at higher levels (but below the coronal 
base). The reflection coefficient (i.e., the ratio of the energy flux density in the downward 
propagating waves to that in the upward propagating waves) characterizing the 
atmosphere overlying the photosphere is thus 

/~ = (YI + Jo)  2 + (]70 - J l  )2 (44) 

(Y~ --1o) 2 + (I1o + J ~ ) 2  

For waves that propagate in the short-wave-length limit from the photosphere to the top 
of the transition region, there is virtually no reflection: 

R ~ 0 (co >> VAO ) . (45) 

For a wave that must 'tunnel through' to the corona because its wavelength becomes 
greater than the local scale-hieght well before the corona is reached, most of the energy 

is reflected: 

R ~ 1 - 2rCcohA/VAO (CO ~ VAO ) (46) 

and a standing wave is produced in the lower solar atmosphere, as pointed out by 
Hollweg (1978b). Hollweg (1972, 1978b, 1982) claims that the standing wave pattern 
is caused by reflections at discontinuities in the density scale height. In fact, coupling 



ACCELERATION OF THE SOLAR WIND ] g l  

between inward and outward propagating waves is an integrated effect, and a finite jump 
in the refractive index is required to produce an inward propagating wave of finite 
amplitude (cf. Alfv6n and Fglthammar, 1963 ; Heinemann and albert, 1980). We must 
agree, therefore, with the interpretation of Ferraro and Plumpton (1958): viz., that the 
Alfv6n waves are reflected due to the continuous variation of the refractive index. The 
features of such a standing wave pattern are readily determined using (40) and (41), and 
one example, for CO/V'AO = 10 -3, is shown in Figure 6. 

,4 T T ] -  T T "[ 
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%'~ ~ [ ~ \ (Coronal  Base) 

v . . . . . . . . . .  [ .  ~ I 

,- i>,. .  I 
,% 

O' 

~-2 
S_3 

-4 
-5 -4  -5 -2 -I 0 

LOG ( r / r p - I )  

Fig. 6. Amplitudes (a L, and aB) and phases  (O~ and ~B) of 6V and ~SB, and the dimensionless ratio ~o/c A 
plotted as functions of height above the photosphere  (r/rp - 1). The amplitudes and phases are defined by 
~Sv = a~ c o s ( -  oat + OL, ) and bB = a 8 c o s ( -  oat + (o~), where aoo = by o and a~o = (SB o. Below the coronal 
base (r _< ro) the Alfv6n speed scale-height, hA, is 200 km, and above the coronal base (r > ro)h A = zc. For 
l o g ( r / r p - 1 ) >  1, the a~ and a 8 curves approach straight lines. Regions of standing waves 
(log(r/rp - 1) < - 2.8), rigid-body oscillation ( -  2.75 < log(r/rp - t)  < - 2.55), and outward propagating 

waves ( log(r/rp - 1) > - 2.55, corresponding to r > ro) can be seen. 

in Figure 6 we see that the toroidal Alfv6nic disturbances propagate outward as 
simple waves above the coronal base (r > to), give rise to rigid-body oscillation of the 
atmosphere just below the coronal base, and produce a standing wave pattern in the 
lower atmosphere. The minima in the standing wave pattern are imperfect nodes (i.e., 
~v, /SB # 0 at the nodes). The reflection caused by the Alfv6n-speed gradient is very 
efficient at this frequency co = 10 - 3  vAo:  �9 reference to (46) indicates that only 0.6% of 
the energy carried by upward propagating waves in the photosphere reaches the corona; 
the rest is reflected. It has been noted (Hollweg, 1978b) that if the generation of the 
Alfv6n waves takes place at some particular location near the top of the convection zone, 
then at certain 'resonant' frequencies a node will be located at the generation point, and 
a modest velocity perturbation (by) will correspond to a very large magnetic perturbation 
(~SB) and thus to a very large energy flux at that frequency. Of course, to produce such 
a large energy flux by driving the wave at a node there are three necessary requirements: 
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(1) the wave driver must be phase-coherent over many wave periods; (2)the wave 
generation region must be narrow in height and remain at a fixed height over many wave 
periods; (3)the frequency for which the preceding two conditions are met must 
correspond to the presence of a node in the wave generation region. It seems unlikely 
that these three requirements, or their equivalent, will be met in the real solar 
atmosphere, and we conclude that the large 'resonant' energy fluxes discussed by 
Hollweg (1978b) are an artefact of the model considered and should not be invoked in 
discussing the transport of energy from the photosphere to the corona. 

On the basis of the preceding analysis and of the observational results presented by 
Athay and White (1979b), we can place limits on the energy flux that can be transported 
from the lower solar atmosphere to the corona by Al&6n waves. At the atmospheric 
levels where observational information on 3v is available, if co > v2 the energy flux 
density passing into the corona is given by 

d?A = n m  ( ~ ) 2 )  VA(I_ R) ,  (47) 

where R is given by (46). Even if co > V'AO/2~Z, (47) is approximately correct provided 
we take R = 0 (cf. (45)). If co ,~ VA there is rigid body oscillation everywhere above the 
level where by is measured, so ~Sv o ~ by and 

4)A ~ nora < ~Sv 2 > VA0. (48) 

When co is comparable to v 2 (47) and (48) can be used in conjunction to estimate q~a" 
Applying the above procedure to the data provided in Table 1 of Athay and White 
(1979b) leads us to conclude that Alfv6n waves generated in the upper chromosphere 
or below, with wave periods between about 30 and 3000 s, can provide an energy flux 
density of no more than 1 x 10 s erg cm -2 s -  1 to the corona. For wave periods of longer 
than one hour, a large-scale Alfv6n wave might give rise to a Doppler shift of spectral 
lines rather than simply to line broadening, which is the effect on which the preceding 
interpretation is based. For such long periods, however, the atmosphere will be in rigid 
body motion everywhere from the middle chromosphere to the corona, so that an energy 
flux entering the corona of more than 105 ergcm -2 s - '  at these periods would 
correspond to chromospheric velocities of more than 10 km s ~. As such large 
chromospheric Doppler shifts are not observed, the upper limit given above would seem 
to apply to these longer periods as well. Finally, one might expect that very short period 
waves (r < a few seconds) could carry larger energy fluxes to the corona, given the 
observational constraints on the velocity amplitude in the lower solar atmosphere, but 
these waves tend to be damped strongly by viscous and frictional effects in the 
photosphere and the chromosphere (Osterbrock, 1961), Of course, energy flux densities 
of the order 105 erg cm -2 s-1 in the corona generally imply non-linear waves in the 
photosphere and lower chromosphere, and such waves should be strongly damped in 
these lower regions (Parker, 1960; Osterbrock, 1961). We conclude, therefore that an 
energy flux density of more than 105 erg c m  - 2  s -  l carried into the region of supersonic 
solar wind flow by Alfv6n waves cannot have been transported upward from the 
photosphere or chromosphere by Alfv6n waves alone and thus must have arisen, at least 
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in part, from the generation of Alfv6n waves in the transition region or the lower corona. 

In the simple model described above, with h A = o0 above the coronal base, Alfvdn 
waves of all frequencies propagate as short-wave-iength (WKB) waves in the corona 
and the solar wind. In reality, of course, v A does vary above the coronal base, and waves 
with periods longer than a few hours do not propagate so simply in this region. The 
description of non-WKB effects becomes a bit more complicated in this case, however, 
because one can no longer assume that u ~ v A, and (27) and (28) must be replaced 
(Heinemann and Olbert, 1980) by 

0 0 I f  dlnv A 
~- + (u - v a )  -2- = �89 - VA) - - ,  (49) 
dt OS dr  

+ (u + VA) g = 2 f ( u  + VA ) d lnva ,  (50) 
dr  

where ds is a length element along the magnetic field (u x B = 0), which is no longer 
assumed radial, and f and g are related to by and/SB through 

1 1/'4 + 1 / 2  ' 
by -- ~ t  1 1 1/2 1 + (51) 

~B--B ' 1/4( ?~ g ) 
- -  ( 5 2 )  1 1/2 1/2 ' VA 1 + 

where t/= P/Pa ,  and the subscript a refers to the Alfv6n point, where u = v/,. Well inside 
the Alfv6n point, u ,~ v A, and the discussion of simple wave propagation and rigid body 
oscillation in connection with (27) and (28) applies quite well, but when u > VA the 
problem is more complicated, and numerical solutions to (49) and (50) are generally 

required (cf. Figure 7). There is, however, a simple case of some interest in which 
analytic solutions to these equations exist: i.e., the case in which co~ 0 (~/~3t terms 
negligible) for a toroidal Alfv6nic disturbance that is symmetric about the solar rotation 
axis. This is, of course, the case considered by Weber and Davis (1967), in which the 
Alfv6nic disturbance of zero frequency corresponds to solar rotation; the solutions to 
(49) and (50) are (Heinemann and Olbert, 1980) 

f oc - e - -  icot 

\ V A J  J 
(53) 

g oc + vaa e-  io~t, (54) 
\ V A /  
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Fig, 7. The background flow speed and Alfv6n speed as functions of radial distance for a spherically 
symmetric flow geometry (solid lines) and for the average rapidly diverging flow geometry implied by the 
coronal hole boundary of Munro and Jackson (1977) (dashed lines). The inward-propagating wave 
amplitudes, IfJ 2, for different wave frequencies oJ, are shown as functions of radial distance for the spherical 

and rapidly diverging flow geometries (adapted from Heinemann and Olbert (1980)). 

and these give velocities and magnetic fields agreeing with those of Weber and Davis 
(1967). In obtaining (53) and (54), the boundary condition f ,  = 0 is applied. That this 
is always a sensible condition is readily seen by considering the facts that f and g 
correspond to inward and outward propagating waves (though f and g are not proper 
eigenmodes of the system) and that in r > r~ the inward wave ( f )  is convected outward 
by the super-Alfv~nic flow. 

If we define f =  f e  i~' and ~ = g e i~' and normalize such that I~12 _fz = 1, then the 
condition If~l 2 = 0 (and thus I~12 = 1)leads to the results (Heinemann and Olbert, 
1980) shown in Figure 7 for toroidal Alfv6nic disturbances in a spherically symmetric 
and a rapidly expanding coronal expansion. When the coupling between outward and 
inward propagating waves is weak, [fl 2 < I~12, and the disturbance propagates outward 
as a simple (WKB) wave. Inside the Alfv6n radius (i.e., in r < r~), the coupling is very 
weak for wave periods of a few hours or less, but is significant for periods of a day or 
longer. Coronal hole geometries, which lead to a decrease in the scale length over which 
v A varies, cause only slightly stronger coupling (near the coronal base) than is found 
for spherical geometry. Outside the Alfv6n radius (i.e., in r >  r~), the coupling 
again is very weak for periods of a few hours or less, but strong for periods of more 
than a day. In all regions the maximum coupling is attained as m ~ 0  and 
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1 (For a more detailed discussion of these points, see [ ? 1 2 - ~  t ( / ) A / V A a  n u "I)Aa/VA)- ~. 
Heinemann and Olbert (1980).) 

The force exerted by the Alfv6nic oscillations on the solar wind plasma is composed 
of a centrifugal force and a Lorentz force (the centrifugal force being important only 
when the coupling is strong). This force varies on a time scale z/4, where T = 2re/co is 
the wave period, and this time scale can be compared with the solar wind expansion 
time, ~'exp = I (U/H) ( d n / d r )  l - 1. If z ~ Zex p the solar wind responds to the average effect 
of the force over a wave period, but if z > "C,• the variation of the force over a wave 
period must be considered. In the following section we shall assume that : ~ %xp, 
although for waves with "c > 1 hour this assumption will break down, most severely in 
the vicinity of the sonic point, where Ze• p is smallest. 

5. Interaction of Alfv6n Waves with the Solar Wind 

A simple illustration of energy addition to the solar wind is provided by the interaction 
of Alfv6n waves with the solar wind. The simplicity arises, in part, from the fact that 
Alfv6n waves transport energy along the magnetic field, which allows us to continue to 
describe solar wind flow along an isolated infinitesimal flow tube. Because linear 
damping of these waves is very weak above the coronal base, their energy is not 
dissipated as heat in the plasma until the wave amplitude becomes very large (i.e., 
bB ~ B), and for reasonable wave energy fluxes this does not occur in the region of 
subsonic flow. Consequently, Alfv6n waves, through the force associated with the 
gradient in their energy density, supply only momentum (not heat) to the subsonic solar 
wind. In the supersonic region, both heat and momentum are added, as non-linear 
dissipation becomes important. This energy addition by Alfv6n waves, then, affects both 
the solar wind mass flux and energy flux, and determination of its effect on the solar 
wind flow speed at 1 AU requires careful consideration. 

The subject of Alfv6n waves in the solar wind has been considered by several workers 
(e.g., Alazraki and Couturier, 1971; Belcher, 1971; Hollweg, 1973, 1978a; Jacques, 
1977; see also references given by Hollweg, 1978a). These authors have all made use 
of the short-wave-length (WKB) approximation, as shall we in the following discussion 
(cf. Section 4 and Heinemann and Olbert, 1980). In general, little attention has been 
given to the coronal base boundary conditions: frequently, the base density has been 
allowed to take on unrealistically low values so as to produce a reasonable solar wind 
mass flux. We shall reproduce here the essential results of the several studies mentioned 
above, but we shall fix the coronal base pressure at a realistic value and investigate the 
effects of Alfv6n waves on the mass flux, energy flux, and flow speed at 1 AU, in a 
manner similar to that employed in discussing the general subject of energy addition in 
Section 3. Our approach will involve simplifying the model of Hollweg (1978a), so that 
it retains the basic physics but admits analytic solutions, which should provide us with 
greater physical insight into the problem (cf. Leer et  al., 1980). 

Let us begin by reconsidering the conservation laws used to describe energy addition 
in the solar wind. The mass conservation Equation (1) remains unchanged, and the 
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momentum Equation (13) is specialized by associating the force per unit mass, D, with 
the Alfv6n wave pressure gradient: 

1 d ( ( ~ B 2 )  '] 
D - . (55) 

p d r \  8~ / 

We replace the energy Equation (15) by the assumption that the temperature is constant 
in the subsonic region (T = T o in r o < r < re) and that the solar wind energy flux at the 
critical point is given by 

[ GM 1 
O~" 1 2 ( 5  q- 3(X) kTO F~= ~ 5u c+ . (56) 

m 

This treatment of energy balance produces results very similar to those that are obtained 
using Hollweg's (1976) description of thermal conduction (cf. Sections 2 and 3 and 

Hollweg, 1978a), but allows us to derive an analytic description and thus to illuminate, 
in a simple way, the important physical effects of Alfv4n waves on the solar wind. 

The force on the solar wind due to Alfv6n waves, given in (55), can be expressed in 
terms of coronal base parameters and the solar wind density by employing the principle 
of conservation of wave action (e.g., Dewar, 1970; Bretherton, 1970; Jacques, 1977), 
which allows us to write the Alfvdn-wave energy density, e, and energy flux, F W, as 

follows: 

-- <(%B2> - M A ~  ]- q--MA(}~ 2 (57) 
e 80 MA \ 1 + M A , /  4~ 

1 q" 3M A (1  ~ MAOX~ 2 (58) 
F w = F w ~  l + 3 2 M A A o \ l + M A /  

where m A = u/v A and Fw = 8(vA + 3u)A. Now we can write the equation of motion 
describing the solar wind expansion in the presence of Alfv4n waves in a standard form: 

1 d u ( 2 k T * )  2kT* 1 dA GM 
_ u 2 - ( 5 9 )  

u dr \ m d dr r 2 ' 

where we have defined the effective temperature, T*, by 

2kT* _ 2kT o 

m I/7 
+ (by 2 ) ,  

I + M A /  
(60) 

and in the WKB limit ({il) 2) ---- ((}B2)/47~p. (59) has the same form as the equation 
of motion describing a solar wind expansion driven only by the thermal pressure, with 
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p = 2nkT*; indeed, (2kT*/m)  w2 measures the speed at which a compressive wave 
propagates parallel to the magnetic field in the subsonic solar wind plasma in the 
presence of relatively short-wave-length Alfv6n waves. Thus the critical point at r = r,, 
where 

GMm 
r~ 4kT~*fi~ (61) 

u,. = (2kT,* /m)  ~/2 , (62) 

is appropriately considered the point separating subsonic from supersonic flow. To 
understand why the presence of Alfv6n waves modifies the speed with which a 
compressive wave propagates, we must remember that the Alfv6n-wave energy density 
depends on the plasma density (cf. (57)); 

( ~SB 2 ) oc p~/2~(p), (63) 

where ~(p) = [(1 + MAO)/(1 + MA)] 2 ~ 1 f o r m  A ~ 1. When the plasmais compressed, 
therefore, both the internal energy density of the plasma (oc pT) and the Alfv6n-wave 
energy density (oc ( bB 2 ) ) are increased, and the restoring force in a compressive wave, 
which depends on the gradient of the total perturbed energy density, is larger than it 
would be in the absence of Alfvhn waves. 

We are now in a position to calculate the effect of Alfv4n waves on the solar wind 
mass flux, energy flux, and flow speed at 1 AU. Making use of definitions o f f  and fi 
in Section 2, we can integrate (59) from the coronal base (r = r0) to the critical point 
(r = r,.) to obtain the solar wind proton flux density at 1 AU: 

x exp --re- 0 + ( 2 f i c + ~ ) _ _ + ( 2 f i ~ _ � 8 9  , 
\ f E B /  2@ 4@ 

(64) 

2 2GM/r ,v  2 = (2kT/m) l /2 ,andwehaveassumedu2  ~ 2kTo/m,(nc/no)  l/z ~ 1, where Ve = 

and MA0 < MAC "~ 1. When/Sv c ~ 0, (64) reduces to (8), as it should. (64) indicates that 
the presence of Alfv6n waves in the solar wind tends to increase the mass flux, as was 
anticipated in the discussion of momentum addition in Section 3. The mass flux 
(oc neue) can be expressed in terms of coronal base parameters (except for fc and tic) 
if we can relate 6vc to 6v o. From (57) we find ( 6V2o > = < bv~ > (nSno)  1/2 and use of(64) 
enables us to obtain an implicit equation expressing the desired relation: 

L 2 1 UeO 3 ( ~1)2 ) 
(6v2o)2= ( 6 v  2 ) 2 e x p  -2v2r+(2f lc+2)  4 @ -  + (2tic- �89 " (65) 
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Since virtually all the solar wind energy flux is carried by the flow at 1 AU in a model 
like the one we are using, the flow speed at 1 AU is given by 

, 2 = (s + Fwc)/~ % (66) i u E  

where .3 = n/:mu/::f/j'}: is given by (64), F by (56), and F~,(, by (58). (64)-(66) allow 
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Fig. 8. Proton flux density (nl~UF.) and flow speed (uE) at 1 AU as functions of the coronal-base Alfv6n- 
wave amplitude (6v o = x / (  6v2 ) ) .  The coronal-base pressure is specified by noT  o = 2 • 1014 cm -3 K, the 
(radial) magnetic field at 1 A U  is B e = 4 x 10 -5 G, and the coronal temperature is T O = 1.1 • 106 K in (a) 
and T O = 1.3 x 106K in (b). Results for both spherically symmetric flow (solid curves) and rapidly 

expanding flow (dashed curves), with f e  = 7, f~ = 5, a n d / ~  = 1.5, are shown. 



A C C E L E R A T I O N  O F  T H E  S O L A R  W I N D  189 

us to calculate u e and nEu E in terms of coronal base parameters, and some results of 
such calculations are shown in Figures 8, 9, and 10. 

Figure 8 illustrates the effects of varying the Alfv6n-wave velocity amplitude at the 
coronal base (6Vo) on the solar wind mass flux (oc nEuE) and flow speed (uE). When 
the wave energy density is small in comparison with the thermal energy density (i.e., 
< ~v 2 ) ~ v 2) the mass flux is determined primarily by the temperature, and varying bvo 
affects nEu e very little. For a sufficiently large magnetic field, however, the energy flux 
carried by the waves (oc Bo < 6v~ > p~/2) can be large enough that increasing avo can 
substantially increase u e when nEu e is essentially unchanged (cf. (66)). This behavior 
is illustrated in Figure 8 for 6v o < 30 km s- 1. For larger avo, the Alfv6n waves begin to 
play a significant role in determining the mass flux, leading to such a rapid increase in 
neu E with increasing by o that u e peaks and actually begins to decrease slowly as/SVo 
continues to increase (cf. (66)). For higher coronal temperature (T O -- 1.1 x 108 K in 
Figure 8a and To = 1.3 x l0 s K in Figure 8b), the change in u e produced by a given 
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Fig. 9. Flow speed at 1 A U  (u~.) as a function of magnetic field strength at 1 A U  (BE), for  &'o = 20 km s -  i, 

T o = 1.1 x 106 K (I) a n d  1.3 x 106 K (II), and otherwise the same parameters as Figure 8. The particle flux 

densities at  1 A U  are  n e u  e = 3.5 x 1 0 8 c m  2 s - ~  (I) a n d  8.3 x 1 0 8 c m - 2 s  1 (II) for spherical symmetry 
(solid curves) and 2.9 x 108 cm z s-1 (I) and 7.0 x 108 c m - 2 s  1 (II) for rapidly expanding flow (dashed 

curves). 
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Alfv6n wave energy flux (oc B o < by g > p~12) is not as large, because the mass flux is larger 
for the higher temperature and the energy per unit mass supplied by the Alfv6n waves 
is correspondingly lower. Note that rapidly expanding flow geometries (dashed curves) 
do not lead to results significantly different from those for spherically symmetric flow. 

The importance of the magnitude of the magnetic field is illustrated in Figure 9, where 
by o ( = 20 km s -  l )  is held constant. Because the mass flux depends on < ~Vo >, not Bo, 
whereas the energy flux depends on both, only u E is plotted as a function of B o (note: 
B o = BefErZ/r2o). The monotonic increase of the Alfv6n-wave energy flux with increas- 
ing Bo gives rise to the increase in ue with increasing BE(oc Bo) , and the higher flow 
speeds associated with lower coronal temperature reflect the effect of the lower mass 
flux arising from lower To (cf. (64), (66)). Figure 10 shows several of the requirements 
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on coronal parameters if Alfv~n waves are to play a role in driving high-speed solar wind 

streams, given observational constraints on nF.uE, ui~, and noTo: (b) larger wave ampli- 

tudes and lower coronal temperatures lead to higher-speed winds (neu e and not  o fixed); 
(a) a narrow range of values of To and aVo are possible if a high-speed stream is to have 

a reasonable mass flux; (d) even a broad range of observationally acceptable values of 
the coronal base pressure (say, 1014 ~ noT o ~ 6 • 1014 cm -3 K) provide little latitude 

for variations of bvo and To; (c) the same is true for acceptable values of 
Bo( = B~fEr2 /r2). 

From the preceding results, one can see that it is not unreasonable to suppose 
that high-speed streams can be produced in a solar wind with Alfv6n waves 
present, if by o ~ 2 0 - 3 0 k m  s -1. Yet the observational constraints at 1 AU of 
nEu u ~ 3  x 108cm - 2 s - I  and 2 x  10 5 < B E < 7  x 10 - S G  (e.g., Feldman elal., 
1977) and at the coronalbase of 1014 ~ no t  o ~ 6 X 1014 cm 3 s-  1 (e.g. Withbroe, 1977) 

place such tight restrictions on possible values of av o and T o that one must be very 
careful in drawing any definitive conclusions. At present, we can only say that the 
high-speed stream models invoking Alfv6n waves as a source of additional energy can 
be made consistent with the limited coronal observations available (see Withbroe (1982) 

for inferences regarding ~Sv o and To). 

6. Stellar Winds Driven by Alfv6n Waves 

Late-type giant and supergiant stars frequently exhibit cool, massive stellar winds (see 
reviews by Cassinelli (1979) and Cassinelli and MacGregor (1982) and references 
therein), and it has been suggested that Alfv6n waves might play an important role in 
driving such winds (Belcher and Olbert, 1975; Hartmann and MacGregor, 1980; Holzer 

et al., 1982). Because the models proposed to describe these stellar winds differ in 
important respects from that for the solar wind, discussed in Section 5, it will be 

instructive to consider briefly a representative stellar wind model. In such a model (e.g. 
Hartmann and MacGregor, 1980), the temperature of the atmosphere ( ~  10 4 K) is SO 

low that the thermal pressure gradient force is relatively unimportant, but the stellar 
gravity is so weak ( M . R 2 / M o R  2 ~ 10 -4) that a moderate Alfv6n-wave energy flux 

density ( ~  106 erg cm 2 s-  1 at the stellar Surface) can drive a quite massive wind. The 
winds, however, are so cool and dense that frictional damping of the Alfv6n waves (cf. 
Section 4 and Osterbrock, 1961) and radiative energy loss from the plasma play 

important roles. We can understand most of the relevant physical effects in such models 
by taking a simple approach, similar to that of Section 5. 

Let us consider a one-fluid, isothermal model: mass conservation is given by (1), 
momentum conservation by (13) and (55), and energy conservation by T = T o = con- 
stant, in place of (14) or (15). The isothermal assumption is a reasonable first 
approximation, because energy balance in such an atmosphere consists basically of a 
balance between wave heating and radiative cooling, and the latter depends so strongly 
on temperature that the variation of temperature through the region of subsonic flow 
is generally quite modest, even if the wave-heating rate varies considerably. An 
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important implication of this energy balance is that a substantial fraction of the 
Alfv6n-wave energy flux can be lost to the stellar radiation field, whereas in the solar 
case virtually the entire wave flux is converted into the flow energy of the wind. 

If the local damping length of the Alfv6n waves is L, then (57) and (58) are modified 
by the same exponential factor: viz., (57) becomes 

 A0/l+ A0 2 idrLl) - -  e o MA \ i + M A /  e x p ( -  , (67) 
ro 

4re 

where the subscript 0 refers to the reference level r = r o. Combining (1), (3), (13), (55), 
and (67), the stellar wind equation of motion for spherical symmetry is obtained: 

1 dU[u 2 1(1 +3MA)  ] 
u drL - v 2 - 4 \  1 - + M A /  (5v2) = 

~I  1 (1  ~-3MA~ 1 r l vff ] 
= V ~ + 4 \ l + M A / ( b V 2 ) + 4 Z ( 6 V 2 ) - 4  �9 (68) 

(Note that (68) differs from (59) only in the damping term, (r/4L) (51) 2 }.)  Before 
discussing solutions of (68), let us consider the limit of weak damping (L ~ ~) ,  low 
temperature (v 2 .~ ( 5v 2 } ), strong radial magnetic field (MAc "~ 1), and moderate wave 
amplitude (6Vo 2 ,~ /)e2). It is then readily shown that 

r c = 1.75ro, 

Pc = Po( 1.75 (Sv2}/V~o) 2 , 

poUo = �89 3 ( bV2o ) 2 . 

(69) 

(70) 

(71) 

If we take r o to be the stellar radius, B. to be the stellar surface magnetic field in Gauss, 
and f~. to be the Alfv6n wave energy flux density in units of 10 6 erg cm -2 s- 1 at r = r o, 
and if we define R. = ro/R o and M. = M / M o ,  the mass loss rate driven by Alfvbn waves, 
in units of solar masses per year, is 

- M =  1.8• lO-13(fw*R*]2(R*~ 3/2. 
\ B.  / \ M . /  

(72) 

If all the Alfv6n wave energy flux is eventually converted into flow energy, the asymptotic 
flow speed, uo~, can be calculated from the energy conservation requirement that 
u 2 -  v~ + 2 ( b v 2 } / M A  = const: 

(73a) 

= VeO 

C 
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For R. ~> M. ~> 1, as is the case for the cool giants and supergiants under consideration, 
(72) indicates that undamped Alfv6n waves can drive a quite massive wind, when their 
energy flux density is of the order 106 erg cm -2 s-1 and the stellar magnetic field is a 

few Gauss or less. If the requirement MAC "~ 1 (which is necessary for (69)-(73) to be 
valid) is met, then (73b) indicates that the asymptotic flow speed is much larger than 
the gravitational escape speed at the stellar surface. As we shall see, this large asymptotic 
flow speed seems to raise difficulties for the models of Alfv6n-wave-driven stellar winds. 

The problem we encountered in the solar wind (cf. Section 2, 3, and 5) was to explain 
the relatively low mass flux and high asymptotic flow speed. For winds from cool giants 
and supergiants the problem is just the reverse: it is necessary to explain very large mass 
fluxes and very low asymptotic flow speeds " 2 0.e., u~ ~ V~o ). (73b) illustrates the difficulty 

one encounters in trying to drive such winds with undamped Alfv6n waves: viz., too 
high an asymptotic flow speed is produced. As we shall see later, this difficulty continues 
to plague us even when the effects of wave damping are included. Before discussing 
damping, however, let us consider the transition from thermally dominated winds (cf. 
Sections 2 and 5) to wave dominated winds (cf. (69)-(73)), in the context of undamped 

Alfv6n waves. 
For this purpose, we can use (56) and (64)-(66), for which it was assumed that 

MAO < MAC "~ 1, U~ ~ 2kTo/m, and (no/no) 1/2 ~ 1. We can readily eliminate the latter 
two assumptions and include the generally small terms that become important as r~ ~ r o. 
Solutions to these equations are shown in Figure 11. In a thermally dominated wind, 
the critical point is seen to move inward with increasing temperature, eventually reaching 
the coronal base (cf. Figure 1 la in the region 2 2 2 VT/VeO > 5 X 10- and (61) in the limit 
( g)v 2 ) --, 0). As the temperature decreases, however, a maximum critical point radius 
is reached (near 2 2 = vr/VeO 5 x 1 0 - 2 f o r 1 0 - 4 <  (~vg)/ve2o < 10 2), and as the tempera- 

ture continues to decrease the critical point moves inward, approaching r c = 1.75ro, as 
2 2 long as OVo/Veo < 10 .2 (cf. (69)). This behavior of the critical point is an indication of 

the transition to the dominance of wave effects over the thermal effects, and this 
transition to wave-dominance occurs when ( iSv 2 ) ~ v 2, because (/Sv 2 ) (oc p-  1/2) 

increases rapidly with radial distance as the density scale-height decreases (cf. (65)). In 
the limit 2 2 vr/Veo-, O, the Alfv6n waves completely control the radial atmospheric 

(~v o )/Veo (cf. (70)). As the structure, and the density scale-height is determined by 2 2 
velocity amplitude of the waves becomes large (0.1 < ( 2 3Vo )/V;o < 1), the critical point, 
of course, moves inward (from r~. -- 1.75ro) toward the atmospheric base (r~ = to). The 
mass flux (oc Uo) is seen (Figure l lb) to increase with increasing temperature in the 
region of thermal dominance and to increase with increasing wave-amplitude in the 
region of wave dominance, as one would expect. Figure 11 illustrates the fact that the 
solar wind is thermally dominated; the wind models for the cool-giants and supergiants 
we are considering fall in the region of wave-dominance. The division between the 
thermally driven and wave-driven winds can be represented approximately by the line 
(in Figure 1 l b )  

1 

v~o/ ~ ~ \ ~ o /  ' (74) 
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with both wave pressure and thermal pressure playing a significant role in determining 
the mass flux in a narrow region around this line. As shown in Section 5, even when 
Alfv6n waves are unimportant in determining the mass flux (6vo <~ IOOv4/V3eO), they may 
(for a large enough magnetic field) play an important role in determining the asymptotic 
flow Speed, uo~. 

(a) 

I I 
i0-~ 10-2 iO-I 
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Z/V~o V T 
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Fig. II. Alfv6n-wave driven stellar winds. (a) Dimensionless critical radius (rc/ro) as a function of the 
dimensionless thermal energy per unit mass (vat~v20) and of the dimensionless wave energy per unit mass 
(< 6v20 )/V~o ) at the atmospheric base. (b) Dimensionless measure of the stellar mass loss rate ( uo /%) ,  as 
a function of v~/v~o and (by 2 )/v20 . The dashed line shows the approximate boundary between thermally 
dominated mass loss (to the left and above) and wave-dominated mass loss (to the right and below). The 

hatched areas represent the range of solar wind parameters. 
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Now let us turn to the subject of the damping of Alfv6n waves and its effect on the 

mass flux and asymptotic flow speed of a wave-driven wind. One can infer from 

Section 3 that to maintain the large mass flux produced by undamped Alfv6n waves 
(cf. (72)) and to decrease substantially the corresponding asymptotic flow speed 
(cf. (73)), it is necessary to maintain the work done on the flow by waves in the region 
of subsonic flow and to minimize the work done in the supersonic region. To do this 
the waves must be damped just beyond the critical point, and as r C ~ 1.75r o for the 
wave-driven winds, one would expect the required damping length to be L ~ ro. 
Hartman and MacGregor (1980) have constructed Alfv6n-wave-driven wind models in 
which the damping length, L, is assumed constant and taken to be L = R. (where 

r o = R. and (68) is used). These authors did, indeed, find that this particular damping 
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Fig. 12. Asymptotic flow speed in units of gravitational escape speed at the atmospheric base (u~/veo) 
and a dimensionless measure  of the mass  loss rate (Uo/V~o) as functions of the Alfv6n-wave damping length 
in units of  stellar radii (L/R.). For strong damping (L/R..~ 1), the mass  loss is negligible and u~  corresponds 
to the solution passing through the outermost (thermal) critical point. For weak'damping (L/R. ,> 1), both 
u o and u~  correspond to the solution passing through the inner (wave-driven) critical point. For moderate 
damping (L/R. ~ 1) both critical solutions exist and u o and uo~ for both are shown, the lower values o fu  o 
and uo~ corresponding to the solution passing through the outer critical point. Parameters corresponding 
to model 6 of Har tmann  and MacGregor (1980) have been used: )14. = 16Mo, R. = 400Ro, T = 104 K, 

n o = l0 II cm -3, B o = 10 G, fwo = 3.36 x 106 erg cm -2 s 1, # = 0.667 m~. 



196 EGIL LEER ET AL, 

length leads to a large mass flux and an asymptotic flow speed less than the surface 
escape speed. One might ask, however, just how sensitive these results are to the choice 
of the damping length and what physical mechanism(s) can produce the required 
damping length. The first of these questions is answered in Figure 12, where the mass 
flux (oc Uo) and asymptotic flow speed are shown over a range of damping lengths for 
the stellar parameters used by Hartlnann and MacGregor (1980) in their model 6. For 

L < 0.85R. the waves are damped so rapidly that they cannot drive a wind, but the 
thermal pressure gradient in the (assumed) isothermal atmosphere drives a wind that 
is subsonic out to r c = 31.4R. and has a small mass flux and low asymptotic flow 

speed (uoo = 0.22re0). For 0.85R. < L < 2.25R, both thermally driven (re = 31.4R.) 
and wave-driven (r c ~ 1.75R,) winds are possible, the former exhibiting a mass flux that 
increases very rapidly with increasing L and the latter exhibiting a uniformly large mass 

flux. The thermally driven wind again has a low asymptotic flow speed, but the 
wave-driven wind has a flow speed that increases rapidly with increasing L, such that 
uo~ > VeO for L > 1.9R.. For L > 2.25R., only a wave-driven wind exists, but its large 

mass flux is accompanied by a high asymptotic flow speed. Hence, only for a very small 
range of damping lengths (0.85R. < L < 1.9R.) can a wind with large mass flux and a 

relatively low asymptotic flow speed (u s < Veo ) be produced. The range is much smaller 
(0.85R. < L < 1.0R.) if something nearer the inferred observational constraint on flow 

speed is applied (viz., uo~ < V~o/2). Certainly, the large-mass-flux, low-asymptotic-flow- 
speed solutions to (69) that Hartmann and MacGregor (1980) showed would not seem 

to be typical of Alfv6n-wave-driven stellar winds. 
The question arises as to whether such solutions are at all physically relevant: viz., 

is there a physical mechanism which might lead to wave damping that would produce 
the same effect on the wind as a constant damping length of L ~ R,? Hartmann and 
MacGregor (1980) considered frictional damping (e.g., O sterbrock (1961), Kulsrud and 
Pierce (1969)), for which L oc co -2, and they noted that for their stellar parameters 
L = R. would correspond to co = 3.55 x 10 4 s-  ~ (i.e., a wave period of nearly 5 hr). 

Obviously, for any reasonably broad wave spectrum, most of the energy flux carried by 
Alfv6n waves would be damped on a scale outside the range 0.85R. < L < 1.0R., with 
the low-frequency waves damped more quickly and the high-frequency waves damped 
more slowly. (Of course, the frictional damping process depends not only on frequency, 
but also on density, temperature, ionization fraction, and magnetic field intensity, so L 
generally varies by several orders of magnitude over a few stellar radii outward from the 
stellar surface.) Other damping processes, such as those involving nonlinear interactions 
or mode-conversion, will also lead to an effective damping length of L ~ R, only for a 
small range of stellar parameters, if at all (e.g., Holzer et a l ,  1982). 

Although we are forced to conclude that a low asymptotic flow speed (u{~_ ~ v~o) will 
probably not be produced in an Alfv6n-wave driven stellar wind, we need not necessarily 
conclude that the massive winds from cool giants and supergiants are not driven by 
Alfv6n waves. This is because in these wave-driven winds the asymptotic flow speed 
may not be approached until u > VA, which may occur farther from the star than the 
point at which observers normally infer asymptotic flow speed. In other words, stellar 
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wind observers must make sure they are measuring uo~ and not the flow speed in, say, 

the region beyond which little spectral information about the atmosphere is available, 
2 2 then almost any mechanism for because of its low density. In any case, if u~ ~ Veo, 

driving the stellar wind will face problems similar to those faced by the Alfv6n-wave 
mechanism. 

7. Closing Remarks 

In this review, we have discussed critically recent research on the acceleration of the 
solar wind (and of related stellar winds), giving emphasis to high-speed solar wind 
streams emanating from solar coronal holes. We have seen that existing conductive solar 
wind models cannot produce high-speed streams with a reasonable mass flux (given a 
reasonable coronal base pressure), although more realistic descriptions of the thermal 
conduction could modify this result (Olbert, 1981). It seems, therefore, that the addition 
of energy to the solar wind above the coronal base is required to accelerate the wind 
to speeds at 1 AU of more than 600 km s- 1. A significant fraction of this energy must 
be added in the region of supersonic flow in order to increase the flow speed, because 
subsonic energy addition tends to increase the solar wind mass flux as much as or more 
than the solar wind energy flux (thus producing little change in or a decrease of the wind 
energy-per-unit mass, which determines the flow speed at 1 AU). 

The energy that must be added to the solar wind to produce high speed streams may 
be supplied in any number of ways, but we have chosen to concentrate, for illustrative 
purposes, on Alfv6n waves, because they are relatively easy to describe and have been 
quite well studied. One should not, however, conclude that the Alfv6n wave is likely to 
be the most important type of hydromagnetic wave in accelerating the solar wind or 
other stellar winds. In a fluctuating, magnetized atmosphere, all hydromagnetic wave 
modes will be present and will be exchanging energy with each other, and any or all or 
none may play a significant role in accelerating the wind. For example, it is possible that 
the refractive properties of fast-mode waves may enable them to drive high-speed solar 
wind streams in coronal holes, despite a modest upward wave energy flux density at the 

coronal base (Habbal et al., 1982). In any case, certain aspects of the physical effects 
involved in the interaction of Alfv6n waves with the solar (a stellar) atmosphere and 
wind are common to other hydromagnetic modes and an understanding of these effects 
should provide a useful basis for studying the other modes and even other processes 
not involving hydromagnetic waves. 

There have recently been suggestions of alternative mechanisms for the acceleration 
of the solar wind which we have not touched on in this review. R. N. Thomas and his 
colleagues (see Heidman and Thomas (1980) and references therein) have suggested 
that a stellar chromosphere, corona, and wind have a common origin in an intrinsic mass 
flux from within a star, and that the stellar corona plays no role in the determination 
of the mass flux, but that the conversion of flow energy to internal energy plays a significant 
role in heating the chromosphere and corona. This suggestion, which contrasts sharply 
with Parker's theory (cf. Sections 2 and 3), has not been worked out in detail by Thomas 
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and colleagues, and the only quantitative analyses of it that have been made have failed 
to provide any support for it (Parker, 1981; Wolfson and Holzer, 1982). Another 
suggestion of a solar wind acceleration mechanism involves the revival by Pneuman 
(1982) of Schl~iter's 'melon seed' model for ejecting a bubble of magnetized plasma from 
the solar atmosphere (Schlfiter, 1957; Parker, 1957). The driving force expelling such 
a bubble is the Lorentz force, and the excess energy necessary for the bubble to escape 
the solar gravitational field is provided by the injection of the bubble into the atmos- 
phere, which serves to distort (thus adding energy to) the ambient magnetic field. No 
quantitative analyses have yet been presented to describe the formation and injection 
of the bubble and to indicate the magnitude of the effect such bubbles might have on 
the solar wind, so we cannot yet evaluate the possible relevance of such an acceleration 
mechanism. 
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