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Abstract. Present status of the theories for presupernova evolution and triggering mechanisms of 
supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure 
and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract 
physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the 
evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova 
explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the 
total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron 
nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are 
typical types of the sueprnovae. Between them there remains a range of mass for which collapse of the 
stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite 
oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation 
of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by 
electron-pair creation in very massive stars. 
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1. Introduction 

It  has been  about  twenty  years since Hoyle  and Fowler  (1960) advanced an excellent  

theory explaining the causes of supernova  explosion.  They  assigned the supernova  

explosions tr iggered by nuclear  flash in e l ec t ron-degenera te  core to type I super-  

novae,  and those tr iggered by photodissocia t ion of i ron nuclei  to type II. Even  in 

the presen t  days the basic ideas for the tr iggering mechanisms  are considered to be 

essentially the same, though the difference in the types are a t t r ibuted  to the 

difference in the envelopes  of p resupernovae  ra ther  than  the tr iggering mechan i sm 

itself. 
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Since then a great progress has been accomplished. In the observational side many 
neutron stars have been discovered as pulsars. Of particular importance is the 

discovery of a neutron star in the Crab nebula. It gave a strong evidence that a 
neutron star should be left after some supernova explosions as imagined by Oppen- 
heimer and Volkoff (1939) many years ago. Moreover,  a black hole has also been 
discovered as Cyg X -  1. It gave also an evidence that a black hole should be formed 
in a gravitational collapse of massive object as discussed also by Oppenheimer and 
Snyder (1939) long time ago. 

The aim of theories for supernova explosion has been to explain these processes by 
using appropriate models which cover the evolution of the star to presupernova stage 
through the dynamical collapse and explosion. 

During these fifteen years, many models for the evolution of the stars have been 
computed up to the presupernova stage. As a result of such effort, we have the 
following picture concerning the final fate of evolution. In what follows, we will 
denote the mass of a star at its zero-age main-sequence by Mms. It is, in general, 
different from the current mass of the star M in a later phase of evolution, because 
the star may have suffered from mass loss or mass accretion by itself or in binary 
system. According to common sense of the picture, the star of M,~s ~< 4M| loses its 
mass in its red giant phase and its mass is reduced down to the Chandrasekhar limit as 
was first discussed by Paczyfiski and Ziotkowski (1968). Its final fate is a white dwarf 
composed mainly of helium or carbon plus oxygen, depending upon its M,,s. 

In the stars of mass 4 ~< M/M| <~ 8, the mass of the carbon-oxygen (C-O) core is 
smaller than the Chandrasekhar limit and thus electrons are degenerate in it. The 
core mass grows as the hydrogen- and helium-shell burnings process matter  into 
carbon and oxygen. When the core mass becomes very close to the Chandrasekhar 
limit and when the density of matter  at the center of the star reaches pc = 
2 • 109 g cm -3, carbon bigins to burn. The carbon burning runs away and the energy 

generation becomes explosive as first suggested by Arnet t  (1968). The carbon 
burning releases nuclear energy more than the gravitational binding energy of the 
stellar core, and after all the core is totally disrupted and no remnant is left behind. 
This phenomenon is called as carbon deflagration (or detonation) supernova. 

This total disruption of the star raised problems of the shortage of pulsar 
progenitors and over-production of iron group elements. Though much effort has 
been done to suppress the explosive nuclear burning anticipating to leave a neutron 
star, it has been unsuccessful. 

For the mass range of 8 <<-M/M| 12 electrons are non-degenerate in the C-O 
core but become degenerate in the succeeding phase of oxygen core. Little is known 
about this mass range, because the evolution of the core is very complicated after the 
carbon burning phase and because electron captures complicate the transition stages 
from the presupernova through the core collapse. Such stars will be discussed in 
Sections 8 and 9 as a supernova triggered by electron captures. 

The star of mass in the range of 102~ > MmJMo ~> 12 evolves until an iron core is 
formed in its central region. After Colgate and White (1966), and Arnet t  (1967) a 
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great many numerical experiments have been done for the purpose of simulating the 
collapse of iron core. However, such simulations did not yield any clear-cut results, 
and did not seem to succeed in leaving an neutron star either. After Colgate and 
White (1966), input physics became much more elaborate. However, weak inter- 
action processes, effect of general relativity, and more plausible equation of state had 
not helped the situation, but, contrary, the bounce of the collapsing core and the mass 
ejection therefrom had seemed more difficult. 

In 1973 experiments gave evidence for the existence of neutral currents in the 
weak interaction of the elementary particles (Hasert et al., 1973; Benvenuti et al., 
1974). As its result and according to Weinberg (1967) and Salam's (1968) unified 
theory of weak and electromagnetic interactions, neutrinos were shown to be 
scattered coherently by atomic nucleus (Freedman, 1974), which yields a cross 
section per nucleon of about A / 4  times the scattering by an electron. This lit a hope 
that the neutrinos emitted from the core should be scattered in outer layers, where 
the nuclei of large mass number A still exist, and should deposit energy there. 
However, such neutrino deposition does not seem strong enough to expel the outer 
mantle of the core, as far as the plausible value for the Weinberg's angle is concerned 
(e.g. Bruenn et al., 1977). 

Another effect of the increased scattering cross section of neutrino is that the 
neutrinos should be trapped within the stellar core. Recently many investigations 
have been done concerning the effects of the neutrino trapping and of revision in the 
equation of state at high densities. The core bounce and the associated mass ejection 
seem hopeful as will be discussed in Section 11. 

In the stars of masses Mms ~ 100M| electron-pair creation becomes appreciable 
in the phase of oxygen core (Arnett, 1973a). It reduces the ratios of specific heats y 
below 4, and the star becomes dynamically unstable. Then the star explodes by 
oxygen burning (Barkat et al., 1967; Fraley, 1968), or collapses into a black hole 
(Wheeler, 1977). 

The above are a historical summary and a present-day picture of matter. They are 
neither complete nor fine enough. One of the most difficult points is that we have no 
detailed model in which neutron stars can be formed consistently. This difficulty may 
be related with the fact that almost all of our quantitative studies have been confined 
within the regime of spherical stars. Of course, such difficulty might be lifted if we 
considered effects of rotation, magnetic field etc. However, only under simplifying 
assumptions we can study such effects quantitati,~ely, and the results of such studies 
are in many cases difficult to evaluate. Therefore, it is important to make clear how 
far we can conclude quantitatively within the frame-work of spherical stars. 
Throughout the present article we assume that the star is spherical and that there is 
neither rotation of the star nor magnetic field in the star. 

Even under such restrictions the problems of presupernova and supernova 
explosion are too diversified yet too complicated to be treated in a single article. As 
for selected topics, some excellent review articles are available. For carbon detona- 
tion supernova, the process of detonation was extensively discussed by Bruenn 
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(1972a) and by Buchler etal. (1974). For the collapses of iron cores Arnett (1978a, b, 
1979a) discussed them in great detail. Beside them many review talks have been 
given in relevant symposia and workshops (Schramm, 1977; Giacconi and Ruffini, 
1978; Danziger and Renzini, 1978), though they are not for ordinary audience but 
rather for specialists. We need not duplicate such review articles. 

When we read such excellent articles and recent papers, we personally have the 
following impressions. The physical elementary processes are well described and 
then they suddenly jump into a huge pile of numerical results. Moreover, such pile 
is described too much in every detail to make a bold assessment among known 
facts. It is rather difficult to understand the physics involved in stellar structure and 
stellar hydrodynamics, i.e., the mechanism through which such elementary processes 
lead to such numerical behavior of models. Such tendency seems to become stronger 
and stronger as numerical models take more details into accounts. By means of such 
modelling we can know some specific results but they hardly extend our understand- 
ing of logics governing stellar evolution. Rather than more detailed modelling we 
need more numerical experiments to extract intentionally the physics through bold 
interpretations and assessments of numerical results. 

In the present article, therefore, we will try to extract such accounts and to 
construct overall and clear-cut picture and summary of problems. Moreover, we will 
concentrate more to the presupernova evolution than the supernova explosions 
themselves, because the latter have been discussed in more numbers of review 
articles. 

Recently, supernova explosions in binary system are also paid attention to. They 
consist of three topics. In the first place, evolution of the stars and mass exchange in 
binary system may affect the presupernova model. Secondly, mass accretion from a 
companion star induces supernova explosions in different conditions. Thirdly, 
observations of X-ray binaries give information restricting the theory of presuper- 
nova evolution and supernova explosion. The second topics will be discussed 
in Section 7. However, the first and the third topics will be left to somewhere 
else. (Notations are summarized in Appendix.) 

2. Validity of Single Star Approximation for the Evolution of Stellar Core 

Recently, studies of stellar evolution are presented only by their numerical results. 
Moreover, they become too complex because everything from the stellar core 
through the hydrogen-rich envelope is put into one melting pot. However, the 
following simple considerations, which will be discussed in this and the next section, 
give understanding and insight to their numerical results. It is the usual way in physics 
to divide a complex system into sub-systems among which the interactions are 
relatively weak but within each of which the internal coupling is strong. Those who 
may be interested only in specific results and not in their logical connection may skip 
Sections 2 and 3. 
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2.1. H Y D R O S T A T I C  E Q U I L I B R I U M  O F  T H E  S T A R S  

The hydrostat ic  equilibrium of a spherical star is described by 

d In M r =  4r (2.1) 
U -  d l n r  Mr ' 

V -  d l n P =  G M r p  (2.2) 
d l n r  rP  ' 

where  r is the radial distance of a shell f rom the center  of the star, and Mr is the mass 

conta ined interior to its shell. The  density p and the pressure P are related by the 
polytropic  index as 

d l n p  _ N 

d l n P  N + I  " 
(2.3) 

Differentiat ing Equat ions  (2.1) and (2.2) we obtain 

1 
d In r = - ~  (d In U -  d In V ) ,  

A - 2 U +  V - 4 ,  

d l n  0 = - - -  
U - 1  

A 
(d In U - d In V) - d In V,  

O=-P/p. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

We  shall compare  two core solutions each other  as illustrated in Figure 2.1. The  

center  of the star corresponds  to the point  c, at which U = 3 and V = 0 according to 

bounda ry  conditions. Two core solutions extend as c - a  - 2 ,  and c - b  - 3 ,  respec- 

tively. For  the purpose  of compar ison  and of the following discussions, segments  of 

U - V curves are also shown in this figure for poly t ropes  of N = 0 (c - b0), N = 1.5 

( c -  bl.5) and N = oo ( c -  ao~). 

Integrat ing Equa t ion  (2.6) along a closed path  of L ( c  - b - 3 - 2 - a - c )  and using 

Stokes '  t heorem we obtain 

~ d l o g  0 = I(SA) + [ ( S B ) ,  

L 

(2.8) 

V 2 U d U d V  
I ( S )  - -  (log e) J zl 2 U V '  (2.9) 

S 

where  Sa is the area enclosed by b - 3 - 2 - a - b and SB is one  by c - b - a - c. Here ,  
we assume that  these curves do not  cross the locus of A = 0, and the segment  2 - 3 and 

ao~-  a - b - b~.5 - bo are taken along which V~ U = constant  and, in particular,  
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Fig. 2.1. Solutions for stellar structure illustrated in U - V  plane. 

V = 2 U for the latter. Therefore,  the integrand of Equation (2.9) is always positive in 
SA and negative in SB. We can estimate the upper bound of the absolute value of 
I(SB) as fol lows 

I(c -bo -ao~-c )  = - 0 . 2 1  <I(c  - b l . 5 - a ~ - c )  = - 0 . 1 2  

< I(SB) ~< 0.  (2.10) 

Unless  the central region is superadiabatic, - 0 . 1 2  ~< I(SB) <~ 0 are the strict bounds. 
The difference in 0 between the two U - V  curves c - b -  3 and c - a -  2 are 

obtained from Equations (2.6) and (2.8) as 

log (0c/02) = log V2 + I(SA) + log .13 + I(SB), (2.11) 

log J -= log (0~/O) - log V. (2.12) 

As  seen from Equations (2.4) and (2.6), J3 is increasing toward the stellar surface in 
the region of U < 1. For Emden  solution it tends to a certain limiting value when the 
point 3 approaches to the stellar surface (V3 ~ oo and thus U3 -* 0). Its limiting value 
is log J3 ~ - 0 . 2 7  for the polytrope of N = 1.5 and log a% ~ - 0 . 0 7  for N = 3. 

Therefore a large value of log (0c/02) can be realized when the fol lowing condi-  
tions are satisfied: (i) Vz is large; (ii) I(SA) is large; and/or  (iii) the U - V curve runs 
close to the locus of A = 0. 
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2.2. D E F I N I T I O N  OF  T H E  C O R E  A N D  T H E  MASS C O N T A I N E D  IN T H E  E N V E L O P E  

Examples of U-V curves for the presupernova stages are shown in Figure 2.2 for the 

supernova triggered by the photo-dissociation of iron core (Model A; Sugimoto and 
Nomoto, 1974) and in Figure 2.3 for the carbon deftagration supernova (Model B; 
Sugimoto and Nomoto, 1975). In Figure 2.4, their 0-distributions are also shown 
against log (U/V).  

As seen in these figures and from Equation (2.4), the value of U! V is decreasing as 
we go outward from the center of the star where A is positive. When a point of A = 0 is 
reached, the value of U! V takes a local minimum there, and then turns to increase. 
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We define the point of the first local minimum to be the core edge, which will be 
denoted by the subscript 1, and the region interior to it will be called the core. Then by 

definition we have 

d 1 = 0 .  (2.13) 

In many cases the core edge corresponds to the bottom of the hydrogen-rich 
envelope, but in Model A it does to the oxygen-burning shell as seen in Figure 2.2. 

The region exterior of the core edge will be called the envelope. Let us consider 
how much mass can be contained above a shell e in the envelope. If Ae is positive, the 
mass fraction contained in the envelope Oe and the pressure exerted at the shell e are 
expressed by 

Oe M - M e  (U) 1 
M = ef(VT, N ) '  (2.14) 

Pe = feQe 4@r2e ge , (2.15) 

GMr 
g- -  2 , (2.16) 

f 

f - l = ( N + l )  1 V / ~ B(N+I)/v(N+I,3-N),  

= ~, bk, (2.17) 
k=0 
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k + 3  N + I  
bo = 1, bk = bk-1N + k + 1 ( - - ' ~ )  " (2.18) 

In Equation (2.17) the polytropic index N is assumed to be constant and B is the 
incomplete beta function (Sugimoto and Fujimoto, 1978). We call f the flatness 
parameter: For a flat configuration, i.e., for Hp/r = 1/V << 1, it tends to f -  1, while 
f<< 1 for a spherical configuration with Hp/r of the order of unity, or more precisely, 
for A << 1. Equation (2.17) is exact to the order of (U! V) << 1, and it converges when 
( N +  1 ) / V <  1. If V >>4, the envelope above the shell e is flat ( f - 1 )  and it can 
contain mass fraction only of the order of (U/V)e. (See Equation (2.22) for Hp.) 

Let  us estimate actual value of (U! V)I at the core edge for a model with relatively 
large 0c/0x. In the preceding subsection the conditions for large value of 0c/02 were 
summarized. Here  we assign the point 2 to the core edge 1. Then we have 1/1 = 4 so 
that the condition (i) is not satisfied. The condition (ii) for large I(SA) can be satisfied 
if the area in log U-log V plane becomes large in the region of small/1. As seen in 
Equation (2.4) and in Figures 2.2 and 2.3, however, the U-V curve runs close to the 
line of U/V = constant near the core edge with small/1. Therefore  the decrease in 
(U/V)x is inefficient to increase I(SA), or, in other words, the value of ( U! V)I has to 
decrease by a large factor in order to increase I(SA) and thus 8~/01 only by a small 
amount. The condition (iii) is hardly satisfied either by the same reason. Then, a 
relatively large or even moderate value of 0~/01 (>~5) can be realized only by 
reducing the value of (U/V)t to a very small value (<~0.03). 

If we had assigned the core edge to be the point e with/1e > 0, the mass fraction of 
the envelope would have been as small as (U/V)e = (U/Vh. However,  the mass 
contained above the core is a given quantity, which has been determined irrespec- 

tively of such situation but by the evolutionary history of the star. 
How can the envelope mass be accommodated if its mass fraction exceeds (U/V)I 

appreciably? It can be done if the value of A is negative in the envelope just above 
the core edge. Then the U-V curve can run to the direction of increasing U/V as 
seen in Equation (2.4) and in Figures 2.2 and 2.3. It takes a local maximum where the 
value of U/V becomes of the order of mass fraction contained in the envelope and 
then the sign of/1 changes back to positive, i.e., the U-V curve makes a loop. Such 
structure corresponds to the envelope of a red giant star, in which the bulk of the 
envelope mass is contained in outer shells around the local maximum of U/V. 

As can be understood from the discussions above, a relatively large envelope mass 
can be compatible with a relatively large 0c/81, only if the envelope takes a red giant 
structure. Here  we have to discuss the implication of large 0~/01. For this purpose it is 
convenient to express equation of state in a generalized form as 

P k A T  
0 . . . . .  (2.19) 

o Hfl~"  

Here  k is the Boltzmann constant, H the atomic mass unit, > the mean molecular 
weight, T the temperature,  fl the ratio of the gas pressure to the total pressure, and A 
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describes the effect of electron degeneracy. When electrons are strongly degenerate, 
we have A T  ~ p2/3 for non-relativistic degeneracy and A T  ~ 1 o  1/3 for relativistic 

degeneracy. Therefore,  a higher central temperature,  a lower temperature at the 
core edge and a stronger degeneracy at the center make the same effect to the stellar 
structure through Equation (2.11). On the other hand, a smaller fl, i.e., larger 
radiation pressure at the core edge and a larger mean molecular weight in the 
underlying layers make the effect in the opposite direction. 

As discussed in the preceding subsection and as seen in Figure 2.4, the value of 
0c/01 cannot be larger than about 5, if the U-V curve runs in the region of positive zl 
and ends at a ~ = 0. Nevertheless a large value of (A T)c/(A T)I is required for the core 
with strong electron degeneracy or with high central temperature. These two 
requirements are made compatible when fll becomes small so that the luminosity 
approaches the local Eddington limit corresponding to M 1 -  Mr(r = rl). (See Equa- 
tion (4.3) for definition.) 

As seen in Model B of Figure 2.4, the value of G/0  can become rather large near 
the helium-burning shell, which is situated at the point of a log (V/U)= 
log(V/U)He=5.34. Such value of G/0H~ is possible because the mass fraction 
contained in the helium zone is as small as 4.6 x 10 -6 [ -~ (U/V)He] and the value of 
Vr~e can be large. It is also consistent with Equation (2.11). In such model of the 
double (H and He) shell-burnings, the mass fraction of the helium zone is determined 
by the temperature or 0-distribution in the core so as to be consistent with such 

solution. 
In case of Model A in Figures 2.2 and 2.4, the situation is different. The mass 

fraction of each shell with a specific nuclear fuel is determined by its preceding 
history of nuclear burnings, and the mass fractions are too large to be accommodated 

within a region of low temperature.  Therefore,  the U-V curve has to cross A = 0 and 
make a loop near the oxygen-burning shell, for example, in order to reduce the value 
of 0~/01. 

2.3. SINGLE STAR APPROXIMATION 

The pressure at the core edge is expressed by Equation (2.15) or by 

[ 1  UM, ] 
P1  i [4--~r2 ~ r j l g  I . (2.20) 

This implies that the core feels the weight of the envelope only for the mass in the 
amount of 

]dMr/d In P[~ = (U/V)IM1, (2.21) 

which is the mass contained within unit scale height of pressure 

Hp =- -dr/d  In P .  (2.22) 

Whatever large mass is contained in the envelope, the structure of the core is, 
therefore, determined as if it would have the envelope of mass as small as (U /V h M1 .  
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In other words, the core behaves as if it would have negligible mass in the envelope. 
Therefore the interior of the core is approximated to high accuracy by the interior of 
a single star of mass M1. This is the single star approximation. 

One may ask what is the effect exerted by the higher temperature at the core edge 
than at the photosphere of the single star. However, this is the same question as one 
why the approximation by the radiative zero boundary condition (P = T = 0) is valid 
for a single star instead of the boundary conditions at the photosphere. As discussed 
in many articles (Schwarzschild, 1958; Hayashi et al., 1962; Nomoto and Sugimoto, 
1974, for example), two solutions, which are integrated inward from different 
boundary conditions, become almost identical each other when the pressure is 
still much lower than the central pressure. This is understood also from the 
discussions in Section 3. 

The envelope solutions are very sensitive to its initial values near the point of A 1, 
and practically envelopes of any masses can be fitted to the core at this point if other 
conditions such as the temperature and the density are the same. Because of such 
nature of the envelope solution, the envelope of a red giant can be replaced with 
appropriate boundary conditions at the core edge, as discussed by Hayashi et al. 
(1962) and as applied extensively by Sugimoto and his collaborators (see e.g., 
Sugimoto, 1970a), i.e., 

A I = 0  , 

(N1 + 1) rad  = / 
I/1, 
(N1 + 1)ad / 

(2.23) 

(2.24) 

where (N + 1)rad and (N + 1)ad are the radiative and convective polytropic index, 
respectively. This is the revised version of the single-star approximation with which 
we Can compute physical quantities at the core edge as well as the energy flux 
(luminosity) in the envelope. Since these boundary conditions do not contain the 
total mass of the star at all, the core solution has nothing to do with the total mass. 
This is the reason why those physical quantities of red giant stars are determined only 
by the core mass (Hayashi et al., 1962) as seen in the core-mass to luminosity relation 
(Paczyfiski, 1970) for instance. 

2.4. REASON WHY T H E  S T A R  B E C O M E S  A R E D  G I A N T  

The discussion in the preceding subsections gives a clear-cut answer to this 
fundamental question. When the core becomes of condensed type, i.e., 0c/01 
becomes large, the value of (U /V)1  becomes small. Nevertheless a large mass 
fraction in the envelope has to be accommodated. Therefore, the U - V  curve makes a 
loop, i.e., crosses A = 0, and runs in the region of small value of U with negative A. 
Such envelope solution of condensed type has a property that V--> N + 1 as r--> 0 
(Chandrasekhar, 1939; Hayashi et al., 1962). When N is close to 3, the absolute 
value of n is thus very small, which makes the stellar radius very large according to 
Equation (2.4). Conversely, this is also the reason why the stellar radius becomes 
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relatively small, or is limited when a surface convection zone extends deep into the 
interior and reduces the value of the polytropic index. 

However, such explanations are somewhat sophisticated. Though less quan- 
titative, the following will be more intuitive and instructive. 

We take the core edge as the hydrogen-burning shell. Its thermal energy should be 
comparable with the gravitational energy. (More exactly, A~ ----- 0 or V1 ~ 4.) Because 
the temperature thereof must not exceed the hydrogen-burning temperature TH, its 
radius must not become smaller than a certain value, i.e., 

rl = - - ~ \ ~ - ~ ) 1  k- 4T-~H' (2.25) 

according to Equation (2.2). 
As the star evolves, the central part of the core contracts to increase the central 

density and temperature. Nevertheless the size of the core hardly changes, because rl 
is almost fixed. Therefore as illustrated in Figure 2.5, the density has to decrease in 
the shells near the core edge, which results in the decrease in pressure. In order to 
sustain the envelope against the gravity with this decreased pressure, the bulk of the 
envelope should be pushed away to a larger radial distance where the gravitational 

2 

0 

-1 

0 0.5 
t (106yr) 

Fig. 2.5. Evolution of a star of 7M| toward a red giant, Changes in the radial distances of different 
Lagrangian shells are plotted against time of evolution. (Taken from Hofmeister etal. (1964),) The edge of 
the helium core is situated at the mass fraction of q = 0.16 (H-b). As the core contracts, the envelope 

expands, keeping the hydrogen burning-shell as a node approximately. 
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acceleration is weaker. Thus, when the core contracts, the envelope expands keeping 
the hydrogen-burning shell as a node. 

The explanation above is given for equilibrium configuration. However, the 
hydrogen shell-burning can supply necessary energy to expand the envelope. As an 
initial value problem it proceeds as follows. When the pressure at the hydrogen- 
burning shell decreases, the bottom of the envelope contracts to release more nuclear 
energy than to recover the photon losses. The excessive energy then expands the 
envelope against the gravitational attraction by the core. Then a new configuration is 
reached in which the envelope is more extended than in the initial configuration. In 
such explanation, however, we cannot understand why the new configuration should 
have a larger radius than the initial one. Therefore, the explanation in terms of the 
boundary value problem has to be supplemented as done in the main part of the 
present subsection. 

3. Structure of the Core 

Before entering into specific models of stellar evolution, we discuss the central 
density and temperature of the core from a standpoint of a generalized theory. 

3.1. HYDROSTATIC EQUILIBRIUM IN NON-DIMENSIONAL FORM 

Let us define the non-dimensional variables by 

r = ro~, M r  = M o r  

P = P c &  p = o c T .  

(3.1) 

If we take 

2=  1 Pc (3.2) 
ro 4r p~ ' 

1 p3 
- , ( 3 . 3 )  M 2 4,n.G 3 p 4 

equations of hydrostatic equilibrium (2.1)-(2.3) are rewritten as 

u = d l n r  V =  dlno3_(bT/ 
d l n s  c r ' d l n ~  sea5 ' 

d ln  r~ = N 

dlno3 N + I "  

(3.4) 

The boundary conditions at the center are 

r  o0=1, 77=1, at ~ = 0 .  (3.5) 

Therefore we can start integration from the center of the star, if N is given. 
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3 .2 .  N O N - D I M E N S I O N A L  MASS 

At the stellar surface or at the core edge, 

Ml=M0~bl at c = ~ 1 ,  (3.6) 

is to be satisfied. We call (~1 the non-dimensional mass of the core (or the star). Let us 
compare the non-dimensional masses between two core solutions or stars as done in 
Figure 2.1. From Equations (2.4), (3.1), and (3.4), we have 

~b = - U ( d  In U - d  In V),  (3.7) d In 
Xl 

Integrating it and using Stokes' theorem we obtain 

I d l n ~ b = _ I  4 U  4 ~-~-dln U d l n  V = - f  ~ - - ~ d U  dV,  

L S S 

(3.8) 

(Sugimoto, 1964). The integrand in the right hand side of Equation (3.8) is relatively 
large for a relatively central region of V<~ 4. For a region of large values of V, i.e., 
near the core edge, it is relatively small, because its integrand 4 UA -2~- 4 UV -2 is 
small. Therefore, the non-dimensional mass is determined mainly by the solutions in 
the relatively central region as discussed in detail by Sugimoto (1964). 

Because the relatively outer region affects only slightly, the difference in the value 
of ~bl between a core and a single star is small as far as the structures in the central 
region are common to both of them. This is also the single star approximation. 
Therefore we may represent the core by an Emden solution of a polytrope with index 
N for which the value of its non-dimensional mass is equal to that of the core. The 
values of ~bl for the polytropes are summarized in Table 3.1 (Sugimoto, 1964). The 

TABLE 3.1 

The values of ~bl for the polytropes of index N 

N 0 1.5 3.0 4.5 5.0 

&l. �9 �9 4.899 10.73 16.14 22.42 25.46 

values of (~1 a re  different only by a factor of 1.50 between the polytropes of indices 
1.5 and 3.0, which correspond to the adiabatic polytropic indices for gas consisting of 
non-relativistic and extremely relativistic particles, respectively. 

3 .3 .  R E L A T I O N  BETWEEN THE CENTRAL T E M P E R A T U R E  AND DENSITY 

Once the value of ~/~1 is known, the value of p3/p4 can be computed for any (core) 
mass M1 using Equations (3.3) and (3.6). If we specify the value of one more 
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thermodynamic variable, e.g., the central temperature Tc, the thermodynamic state 
at the center is fixed. Figures 3.1 and 3.2 give such relations quantitatively, where the 
values of M1 = 3 3 4 1/2 (Pc/4~rG pc) c~1 are plotted against the central density pc for 
different values of To. In this figure the value of ~b 1 is approximated by its value for the 
polytrope with the adiabatic polytropic index corresponding to the set of Tc and pc. 

Its nature is explained as follows. When the density is small, the radiation pressure 
is dominant so that MI ~ (T3/pc) 2. When the equation of state is represented by ideal 
gas, we have M1 ~ (T3~/pc) 1/2. When electrons are strongly degenerate, we have 
M~-p~/z  for non-relativistic case. For extremely relativistic degeneracy, M1 
approaches the constant value that is equal to the Chandrasekhar limit Mch. Note 
that it takes a minimum value between the regimes of the ideal gas and the 
non-relativistic degeneracy. For temperatures higher than 2 x 10 9 K, such minimum 
disappears because the electrons become relativistic without passing through the 
regime of non-relativistic degeneracy. Their relevances to stellar evolution will be 
discussed in later sections. 

•) 
I I I I 

1 ~.5 ~ ~1ogTr 
? 
I[ 
~ 0  
_q 

k ' 7 ~  

I " ~ , ~ - "  ,(T~=O) , , , 
3 4 5 6 7 8 9 

log Pc (g cm-3 ) 

Fig. 3.1. Relation between the stellar masses or the core masses and the central densities plotted for 
different central temperatures. The different slopes result from different contributions in the equation of 
state, i.e., from the radiation pressure, ideal gas or nonrelativistic/relativistic degeneracy of electrons. 
Nuclear flash in the central region of a core proceeds along 1 - P - N  and the maximum central 
temperature is realized at the point P. (The gravitational contraction proceeds in the opposite direction.) 
Chemical composition is taken as carbon and oxygen with the concentrations of X(12C ) = X(160) = 0.5. 
(Taken from a book written in Japanese: D. Sugimoto, 1973, Ucha Butsurigaku (Astrophysics), p. 119, 
edited by C. Hayashi and S. Hayakawa, in a series of Gendai Butsurigaku no Kiso (Basis of the Modern 

Physics), edited by H. Yukawa, Vol. 12, Iwanami Shoten Publishers, Tokyo.) 
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Fig. 3.2. 
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A part of Figure 3.1 is enlarged. The local minimum in the locus of constant central temperature 
disappears above Tc = 2 • 109 K. 

4. Core Masses 

It is important to know the relation between the initial mass of the star Mms and the 
core mass 3//1, because later evolution is determined mainly by the core mass. 
Moreover such core will become a real single star in a close binary system when the 
hydrogen-rich envelope is stripped off by mass transfer. 

4.1. MASS OF HELIUM CORES 

Arnett (1978b) summarized the masses of the helium cores which are formed after the 
hydrogen burning in the core. Its mass is denoted by Mt~ because the hydrogen- 
burning shell lies at the core edge. We have added other results of computation 
(Alcock and Paczyfiski, 1978; Becker and Iben, 1979) to them. The mass fraction of 
the helium core MI-I/Mm~ is about i for relatively small mass but �89 for relatively large 
mass. Its interpolation formula is given by 

mH/Mms = 0.24 log (M.,JM| (4.1) 

for 5 < Mms/M| < 100, within the error of 10%. 
In the later phases of evolution the value of M H  changes by two processes: It 

increases by the hydrogen shell-burning and decreases by penetration of convective 
envelope into the helium region. The increase in M H  due to the burning is important 
when electrons are degenerate in the core. For the star of Mms ~ 2M| the core mass 
grows until the helium flash is triggered. Similar growth of the carbon--oxygen core 
takes place in the star of Mms ~ 8M| as will be discussed in Section 5. 
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4.2. R E D U C T I O N  OF THE CORE MASS BY PENETRATION OF CONVECTIVE 

E N V E L O PE  

As the star evolves, the core contracts and the envelope expands as discussed in 
Section 2.4. Then the surface convection zone becomes deeper and deeper as 
discussed first by Hoyle and Schwarzschild (1955). As a result of it, the stellar radius 
becomes close to the Hayashi limit for the convective envelope in the HR diagram 
(Hayashi et al., 1962). Such limitation to the radius of the star comes from the 
consistency between the photospheric condition and the interior solutions of the star, 
but it is understood more intuitively as the conditionthat the mean density of the star 
should be lower than that of the photosphere (denoted by the subscript ph), i.e., 

M > (4/3)~-R 3pph ~- (8/9)irR =K~, (4.2) 

where Kph is the opacity at the photosphere (Sugimoto and Nomoto, 1974). The 
reason why the deep convection is consistent with a relatively small radius was 
discussed in Section 2.4. 

As the core evolves, the density at the hydrogen-burning shell PH decreases as 
discussed in Section 2.4. Since the temperature thereof TH changes only a little, the 
specific entropy thereof Sla increases. On the other hand, the specific entropy near the 
photosphere sph is determined by the photospheric condition, i.e., by the stellar mass, 
radius and luminosity, and it is higher for the larger radius and the higher luminosity. 
When SH becomes higher than Sph, the convection begins to penetrate into the core, if 
the convection in the envelope is adiabatic (Sugimoto, 1970a, b, 1971). When it is 
superadiabatic, there is a difference in entropy As (>  0) between the photosphere 
and the bottom of the convective zone, as illustrated in Figure 4.1. Therefore, in 
actual case, the convective envelope penetrates into the core when SH becomes 
higher than Sph+AS (Nomoto and Sugimoto, 1972; Sugimoto and Nomoto, 1974). 

Therefore, the convective penetration is easier when the superadiabaticity As is 
smaller. Its amount is determined mainly by the ratio of stellar luminosity to masses, 

T 
tD 

SH- 

J 

0 core M1 envelope I~I 
Mr 

Fig. 4.1. Illustration of entropy distributions in the stellar envelope and core. In the radiative region it is 
increasing outward. In the convective region it is decreasing outward because of the super-adiabatic 
gradient. When the specific entropy at the core edge Srl becomes higher than the entropy at the 

photosphere sph plus the superadiabaticity As, the convective envelope penetrates into the core. 
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i.e., by L/MH and L/M. They will be expressed more conveniently if we define the 
local Eddington's critical luminosity by 

Lcr(Mr) 4,n'GcMr~= 3.70• (\ "J'-+---S] 1.73 ~ (~Mr) L| (4.3) 

In the extreme right hand side, the electron scattering opacity is substituted and X 
denotes the concentration by weight of hydrogen. Thus the superadiabaticity 
depends upon L/Lcr(M) and L/Lcr(MH) though the latter is common among 
different stellar masses due to the core-mass to luminosity relation. Another 
important parameter to determine As is the efficiency of convective energy transport, 
which is represented by the ratio a = l/Hp of mixing length of convection l to the 
scale height of pressure Hp for instance (Nomoto and Sugimoto, 1972). When L/Lcr 
is small or when a is large, the convection can transport its luminosity without 
producing As, i.e., without the superadiabatic gradient. 

In actual stars the penetration of the convective envelope becomes important, if 
any, after the formation of the carbon-oxygen core, because 0c/0H becomes large 
enough to increase SH. Because it depends on the structure of the core, the situations 
are classified by masses of the stars. For the stars of 0.5M| ~< Mm, <- 8M| electrons 
become degenerate in the carbon-oxygen core which makes OcocA~T~ large. 
However, for the stars of Mms ~< 3M| the envelope will be ejected through the 
dynamical instability (Paczyfiski and ZioJ'kowski, 1968). The upper bound of the 
mass depends on the assumption in the mixing length theory, i.e., it ranges 3-5M| 

3 2 for o~ = ~-X, respectively (Fujimoto et al., 1976b). 
For the stars of mass Mms ~< 5M| the convective zone does not reach the bottom of 

the hydrogen-rich envelope, because the mass contained in the helium zone is 
relatively small and because a relatively high value of L/Lcr(M) makes the envelope 
well superadiabatic. The upper bound of the mass depends, of course, on a and the 
chemical composition. According to computations by Becker and Iben (1979), the 
upper bound of the mass changes in the range of 3.3-5.5M| for the concentration of 
metals Z = 0.001-0.03 for which the concentration of helium is taken as Y = 0.28 
and a = 1.0. 

For the stars of mass 5M| ~< Mm~ ~< 8M| electrons become well degenerate (A~ 
large)~ Moreover the mass of the helium zone is large enough to be regarded as an 
envelope of the carbon-oxygen core. This is clearly seen in the U-V curve of Figure 
4.2 which crosses A = 0 at the helium-burning shell and makes a loop (Sugimoto, 
1971). Therefore the helium zone expands as the core contracts. Such an expansion is 
also seen in computation of the evolution of helium star (Rose, 1969; Paczyfiski, 
1971). As a result of expansion, the temperature at the hydrogen-rich envelope 
becomes so low that the hydrogen shell-burning is extinguished. In such situation, 
the convective envelope penetrates easily into the helium zone, because the depth of 
the convective zone is determined mainly by the temperature and the specific 
entropy thereof and has nothing to do with the mass contained in the convective 
envelope (Nomoto and Sugimoto, 1972). 
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Fig. 4.2. Change in the U-V curve due to the penetration of convective envelope into the core. Case of 
7M| star with a carbon-oxygen core. The solid curve is for a stage before the convective penetration. The 
mass contained in the helium zone was as much as 0,45M| Therefore, its U-V curve made a loop at the 
helium-burning shell and the helium zone behaved as an envelope to the carbon-oxygen core. The dashed 
curve is for a stage when the convective penetration has almost finished, The mass in the helium zone is 
now as small as 0.03M| and it can be accommodated without making a loop in the U-V curve. (Computed 

by Sugimoto (1971), but was not published therein.) 

In numerical computations, such penetrations were obtained by Paczyfiski (1970), 

Sugimoto (1971), and others, as seen in Figure 4.3. In particular, Becker and Iben 

(1979) obtained recently the results that for the star of 7M| the value of MH is 

reduced from 1.5Me down to 0 .95Me by the penetration both with a = 0.7 and 1.0. 

As seen in their results and as understood from the discussions in the earlier part of 

this subsection, the amount of penetration depends but only slightly upon the value 

of a, because L / L c r ( M )  is as small as 0.05. 
As the mixing proceeds, the mass of the helium zone becomes small. Then, the 

loop in the U - V  curve disappears as seen in Figure 4.2 and the hydrogen-shell 

burning is reignited, which stops the penetration. This consists also of the reason why 

the final value of Mn depends only slightly on a. 
The upper bound of this mass range varies from 7.4M| to 9.6M| for Z = 0.001 to 

0.03 (Y = 0.28) according to Becker and Iben (1979). Sometimes it is imagined that 

this upper bound would be reduced down to 5M| if no penetration took place. From 

our discussions, however, the cause of the penetration is so clear that such possibility 

cannot be imagined. 
For the stars of mass 8Me ~< Mms ~< 30M| electron degeneracy is only incipient 

and carbon burning begins in non-degenerate condition. Near the lower bound of the 

mass range, such situations were computed for 12M| star (Sugimoto, 1970b), 10M| 

star (Alcock and Paczyfiski, 1978), 9 and l l M |  star (Becker and Iben, 1979), and 

8M| star (Barkat etal. ,  1974). The value of 0 c / 0 H  remains relatively small so that the 

convective envelope does not penetrate seriously. On the other hand, Weaver et al. 
(1978) computed evolution of 25M| star and found that the penetration does not 

take place. Therefore the upper bound of this mass range will be set to about 30M| 
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Fig. 4.3. Chemical evolution and the penetration of convective envelope into the helium zone of 7M| 
star shown against the time of evolution. In this model two times of off-center carbon shell-flash took 
place. In the phase of the growing carbon--oxygen core the thermal pulses of helium shell-burning were 
suppressed artificially. (Taken from Sugimoto (1971), and Sugimoto and Nomoto (1975), and then 

combined into one figure.) 

For the stars of mass M,,s >~ 30M| the specific entropy at the core edge s~ becomes 
large because of the contribution of the radiation pressure. Therefore, the convective 
envelope penetrates into the core before the onset of carbon burning. For example, 
the convective penetration reduces MIa by 1.2M| and 6.4Mo for the stars of 30M| 
(Sugimoto, 1970b) and 60M| (Nomoto, 1974), respectively, as seen in Figures 4.4 
and 4.5. 

From the carbon burning phase on, evolution becomes very rapid for the star more 
massive than 12Mo, because copious neutrino loss accelerate evolution. Though 
0c/01 becomes larger and larger in such phases, the convective penetration does not 
proceed appreciably as seen in Figures 4.4 and 4.5. The reason is as follows 
(Sugimoto, 1970a). In order to mix a mass element into the envelope, its specific 
entropy has to be raised up to the value of sH. (Of course the difference in chemical 
compositions has to be taken into account.) It is realized by absorbing heat which 
comes from the interior of the core. Therefore the progress of the mixing or, in other 
words, the penetration of the convective envelope is limited by the time scale of heat 
transport "rh(Hp) over unit scale height of pressure at the outer edge of the helium 
zone as 

_ dMH<~ AM(Hp) (4.4) 
dt 7"h(Hp) ' 

where AM(H~)=(U/V)MH is the mass contained within unit scale height of 
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Fig. 4.4. Chemical evolution and penetration of convective envelope into the helium zone for 30Mo 
star. Note that the evolutionary time in the abscissa is in the logarithmic scale. When the timesca]e of 
evolution becomes short, the convective envelope has no time to penetrate any more. (Taken from 

Sugimoto and Nomoto (1974).) 

Fig. 4.5. 
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Same as Figure 4.4 but for the star of 60M| (Taken from Nomoto (1974).) 

pressure. In numerical computations, the penetration proceeds at the speed for 
which the equality holds approximately in (4.4) (Sugimoto, 1970b; Fujimoto et al., 
1976a). From the carbon burning phase on, the timescale of evolution is short enough 
as compared with rh(Hp). Therefore we conclude that the reduction in MH is 
negligible after the carbon burning phase. 

5. Evolution ot Intermediate Mass Stars Toward Carbon Deflagration 

In Figure 5.1 we summarize the evolutions in the central temperature and density (To 
- pc) diagram for the stars of different masses. In this section only the star of 
Mms = 7M| is relevant. The others will be discussed in corresponding sections. 

Here we discuss evolution of the growing electron-degenerate carbon-oxygen 
cores which were formed in the star of masses in the range of 4-8M| Such growth of 
the core will be treated in the same framework as the accreting white dwarfs. 
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Fig. 5.1. Evolution of the stars of different masses in the central temperature and the central density 
diagram. The star of 7Me is taken from Sugimoto (1971) and Sugimoto and Nomoto (1975) which evolves 
into the carbon deflagration supernova (Sections 5 and 6). The core corresponding to Mms = 8-12M| is 
taken from Miyaji et al. (1979) which evolves into an electron capture supernova associated with the 
deflagration of oxygen (Sections 8 and 9). The star of 60M| is taken from Nomoto (1974), 30M| and 
12Me from Sugimoto (1970b), Sugimoto and Nomoto (1974), and Nomoto et al. (1979a), which evolve 
into a supernova triggered by the photodissociation of iron (Sections 10 and 11). In the shaded region lying 
in the upper-left side of the figure the star is dynamically unstable by the phase transitions as indicated in 
the figure. The shades in the right hand side of the figure indicate that the electron captures are important. 
To the right hand side of the dotted line with ee = 4, electrons are appreciably degenerate. Also shown by 

dashed lines are the ignition loci for different nuclear fuels, based on updated reaction rates. 

5 .1 .  RELATION BETWEEN THE CORE MASS AND THE CENTRAL DENSITY 

As the electrons are strongly degenerate in the bulk of the core, its polytropic index N 
between the density and the pressure is determined by density and is almost 
independent of thermal state or the temperature in the core. Therefore the approx- 
imation discussed in Section 3.3 holds very precisely. As seen in Figure 3.1, the loci 
for constant temperature converge to that for zero temperature when the mass is 
smaller than Mch and the central density is high. This implies that the temperature 
and its distribution in the core affect only slightly to the central density. We may 
approximate the central density by 

log pc - log pc (MH, T = 0) 
(5.1) 

= 6.8 + 1.2 tan [1.7(MH/M| - 0.73)], 

for O.05<~MH/M| 1.40 within an accuracy of 10%. The core mass MH increases 
due to the hydrogen shell-burning at the rate of 

dMH = (dMH) LH (5.2) 
dt \ dt ], =-XEr~' 
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where Ln  and EH denote the integrated nuclear energy generation rate by the 
hydrogen shell-burning, and the nuclear energy release from unit mass of hydrogen 
(Eli = 6 .0x 10 as erg g-a), respectively. When the helium-burning shell is close in 
mass to the hydrogen-burning shell, the integrated energy generation rate by helium 

LHe is related with LH by 

Lvie = (EHe/XeEH)LH , (5.3) 

in its steady state, or in the mean over a relatively long interval, where EH,~-- 
6 • I0 a7 erg g-a is the energy release from unit mass of helium. Then the stellar 

luminosity is related by 

L = (1 + EH,/XeEH)LH, (5.4) 

i.e., L -  1.14LH for standard circumstances. 
There is another situation for the growth of the core. It is the accretion which takes 

place in binary star system consisting of a white dwarf and its companion star. When 
the companion star overfills its critical Roche lobe, the gas will overflow from it and 
accrete onto the white dwarf. When some envelope is formed, the hydrogen begins to 
burn in the bottom of the envelope. As will be discussed in some detail in the next 
subsection, such accretion and subsequent nuclear burnings make a series of shell 
flashes. However,  the core mass increases at the mean rate which is equal to the 

accretion rate (dM/dt) .... i.e., 

dMH - (--~-tM) (5.5) 
dt ace' 

if the accretion rate is lower than (dMH/dt)n. (If mass ejection follows the shell flash, 
the effective accretion rate should be used.) If the accretion rate is higher than 

(dMH/dt)n, the accreted gas forms a red-giant like envelope, and the rate of 

processing is limited by the value of (dMH/dt)~ as discussed by Nomoto et al. 

(1979c). 
The accreted hydrogen burns eventually into carbon and oxygen. The growth rate 

of the carbon-oxygen core is practically the same as dMn/d t  as far as the helium zone 
remains thin. Thus when dMH/dt is given, the central density is determined as a 

function of time. 

5.2. EVOLUTION IN THE CENTRAL TEMPERATURE AND DENSITY 

The timescale of heat transport is much longer than the timescale of the growth of the 
core mass so that the heat transport is negligible in the central region of the core. 
Therefore,  the loss of entropy from a mass element is described by 

kT  d In (T3/2/p) dt 
p.iH dMH - - e~ (p ,  T) d M  H , (5.6) 

where/xi and e~ are the mean molecular weight of ions and the neutrino loss rate, 
respectively. Here  the specific entropy of degenerate electrons and the effect of 
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Coulomb interaction between ions and electrons (Brush et al., 1966) are neglected 
though they are taken into account in detailed numerical computations. 

Using Equation (5.6) together with Equation (3.6) and the core-mass to 
luminosity relation or the accretion rate, we obtain the evolutionary locus in the 
central temperature to the central denstiy (To -Pc) plane. Such approach was done 
by Arnett (1971) and Paczyfiski (1971) for the growing core in red giant stars, and by 
Ergma and Tutukov (1976) for accreting carbon-oxygen white dwarf. 

5 . 3 .  U N C E R T A I N T I E S  IN T H E  R A T E  O F  C O R E  G R O W T H  A N D  I G N I T I O N  D E N S I T Y  

In this subsection we shall consider the growing core in red giant stars. Evolution of 
the core was computed for helium star of 1.45M| by Rose (1969) and for stars with 
hydrogen-rich envelope by Paczyfiski (1970) and Sugimoto and Nomoto (1975) for 
which thermal pulses of the helium burning-shell were suppressed artificially. An 
example of evolutionary locus is shown in pc - Tc diagram of Figure 5.1. Carbon 
burning was shown to be ignited at the central density of pc = 2 x 109 g cm -3. The 
carbon burning in such a strongly electron degenerate core grows into a violent 
deflagration and the star will be totally disrupted as discussed in Section 1 and in the 
next section. 

Anticipating to avoid the total disruption of the star, a series of efforts has been 
done to seek a possibility that the carbon burning is ignited at higher densities. If it 
were the case, beta processes and associated neutrino losses would bring the 
deflagrated core to reimplosion (Colgate, 1971). For this purpose the ignition density 
should be higher than 2 - 3 x  1011 g cm -3 (Bruenn, 1972a; Buchler et al., 1974). 

As seen in Equation (5.6), the parameter which affects the ignition density is the 
ratio of ( d M R / d t )  to the normalization factor for e~. For the neutrino loss rate, old 
computations were based on the theory of conserved vector current (cvc). However, 
it is to be revised to include the effect of neutral current in weak interactions. Such 
neutrino loss rates were computed by Dicus (1972) on the basis of Weinberg (1967) 
and Salam's (1968) theory (WS). The ratio of such neutrino loss e ws to that by cvc 
theory e~C depends on the Weinberg angle 0w as 

e pWl~_~/e plV_~ = 8 sin 4 0w + �89 (5.7) 

for the plasma-neutrino loss. In this expression electron neutrinos and muon 
neutrinos are taken into account. 

Recently, the existence of tau lepton was evidenced by experiment (Barbaro- 
Galtieri et al., 1977), with which tau neutrino is associated. Because v, pair is 
produced by the neutral current, its intensity will be the same as that for ~,. 
Therefore, Equation (5.7) is revised to 

e pWlSJe pl~_~ = 12 sin 4 0w - 2 sin 2 0w + ~. (5.7') 

For the plausible value of the Weinberg's angle (Dydak, 1979) 

sin 2 0w = 0.230+0.015, (5.8) 

this ratio is close to unity (0.92). 
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Cooling due to URCA shells was also investigated for 23Na~-23Ne etc. However, 
such cooling is negligible as compared with other neutrino processes because the 
abundance of such odd-odd nuclei is too low (Bruenn, 1972b). 

A larger uncertainty comes from the value of LH. First of all, the core-mass to 
luminosity relation depends on the efficiency of the convective energy transport. 
Paczyfiski (1970) gave his famous relation 

L / L| = 59250 (MH/ M |  0.5 22 ) , 

(0.6 < MH/M| < 1.39), (5.9) 

for a = 1. If we assume a higher efficiency, the luminosity is higher (Uus, 1972; 
Sugimoto and Nomoto, 1974, 1975); for a ~> 1.5 it is systematically more luminous 
by 20%. 

Another uncertainty comes from effects of thermal pulses in helium shell-burning 
which repeat themselves more than 4000 times during the phase of its core growth 
(Sugimoto and Nomoto, 1975; Paczyfiski, 1975). The thermal pulse is sometimes 
called as helium shell-flash. It was found first by Schwarzchild and H/irm (1965) and 
much discussed recently in relation to the origin of s-process elements. 

Such thermal pulse can now be treated semi-analytically (Sugimoto and Fujimoto, 
1978). It proceeds as follows (Iben, 1975; Fujimoto et al., 1976a). When the helium 
zone is thin, the helium shell burning is unstable and makes runaway. Because 
nuclear energy is released at a high rate, a convection zone develops in the helium 
zone. However, its top does not reach the bottom of the hydrogen-rich envelope 
(Fujimoto, 1977). After the runaway has ceased, the convective envelope penetrates 
into the helium zone and mixes out or, according to Iben's (1975) terminology, 
dredges up a part of helium zone into the hydrogen-rich envelope. 

Such thermal pulses do neither lead to any dynamical effect with a large margin nor 
induce total mixing of the helium zone under the standard conditions prevailing in 
the red giant stars. Therefore, we can regard the evolutionary sequence which is 
computed with the thermal pulses suppressed (Paczyfiski, 1970; Sugimot O and 
Nomoto, 1975) to be a good approximation to the mean evolution of the growing 
carbon-oxygen core. However, the dredging up affects the rate of the core growth. 

The dredged amount is about �89189 of the helium zone (Iben, 1975; Fujimoto et al., 
3 2 1976a) so that the rate of the core growth is reduced by a factor of ~-~. Concerning 

such theory of dredging-up, Paczyfiski (1977) raised a question about the efficiency 
of the convective dredging, but he did not give any recipe for a correct treatment of 
the problem. Therefore, we may conclude that the growth rate of the core is 
uncertain by a factor of 1.5. 

Such range of the rate of core growth covers only a fraction of the range which will 
be considered in the next subsection in relation with accreting white dwarfs. Using 
the results in the next subsection, we can estimate that the corresponding uncertainty 
in the ignition density is only a factor of 1.1. As seen in Figure 5.1 and as will be 
discussed in the next subsection, a revision of the electron screening factor in the 
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nuc lea r  r eac t ion  ra te  ( I toh et  al . ,  1977) changes  the  igni t ion dens i ty  somewha t .  W h e n  

we t ake  all of such fac tors  into account ,  the  igni t ion dens i ty  in the  core  of  a r ed  giant  

s tar  is r e g a r d e d  to be  

l o g  p~gn = 9.4 + 0 . 1 ,  (5.10) 

agains t  the  an t i c ipa t ion  of the  re implos ion .  

5.4. EVOLUTION OF ACCRETING CARBON-OXYGEN WHITE DWARFS 

In this subsec t ion  we cons ider  the  accre t ing  c a r b o n - o x y g e n  whi te  dwarf  in a b ina ry  

s tar  system.  If the  accre t ion  ra te  is much  lower  than  ( d M H / d t ) , ,  the  growth  of the  

core  is con t ro l l ed  by  the  accre t ion  ra te ,  i.e., by E q u a t i o n  (5.5). Put t ing  it into 

E q u a t i o n  (5.6) we see that  m o r e  e n t r o p y  is r a d i a t e d  away  t o g e t h e r  with neu t r inos  

and that  the  igni t ion dens i ty  becomes  higher .  

E r g m a  and  T u t u k o v  (1976) s tud ied  such evo lu t ion  for  d i f ferent  accre t ion  ra tes  

cover ing  the r ange  of 10 -6 -10  -9 M|  yr  -1. These  values  should  be c o m p a r e d  with  the  

s t a n d a r d  ra te  of the  core  g rowth  in red  giant  stars,  i.e., 6 x 10 .7 M e  yr  -1 nea r  the  

igni t ion stage.  F o r  s impl ic i ty  they  a s sumed  accre t ion  of m a t t e r  with the  compos i t i on  

of ca rbon  plus  oxygen  neglec t ing  the  h y d r o g e n  and he l ium shell  brunings  of the  

acc re t ed  ma t t e r .  The i r  resul ts  a re  r e p r o d u c e d  in F igure  5.2. 
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Fig. 5.2. Evolution of the electron degenerate carbon-oxygen cores in the central temperature to the 
central density plane. RG is the case of the core which lies deep in a red giant star (taken from Sugimoto 
and Nomoto (1975)). The others are the cases of accreting carbon-oxygen white dwarfs. Numbers 
attached to them are the accretion rates in units of M| yr -~ (taken from Ergma and Tutukov (1976)): 
Dashed curves are the ignition loci along which the nuclear energy generation ec--c balances with the 
neutrino loss e~. In computing them different enhancement factors for nuclear reactions are used as 
indicated by ITI (Itoh et al., 1977) DGC (DeWitt et aL, 1973) and SVH (Salpeter and Van Horn, 1969). 
Ignition loci by the pycnonuclear reaction are taken from Duncan et al. (1976) and shown by dash-dot 
lines: the left and right ones correspond to the static and relaxed lattice approximations (Salpeter and Van 
Horn, 1969), respectively. Thin dash-dot and dashed lines indicate critical densities for electron capture 

on oxygen and general relativistic instability, respectively. 
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In Section 5.2 we noted that the evolutionary tracks in Tc - Pc plane converge to a 
single track. It is right as far as we consider the carbon-oxygen cores embedded deep 
in a red giant. In an accreting white dwarf, however, we may imagine a quite large 
range for the thermal state in its initial stage when accretion commences. The white 
dwarf may have been cooled down, if there was enough time between the formation 
of the white dwarf and the onset of accretion. 

In computing the rate of carbon burning, Ergma and Tutukov (1976) applied the 
enhancement factors due to electron screening which were computed by Salpeter 
and Van Horn (1969) and by DeWitt et aL (1973). The corresponding ignition 
lines, along which the nuclear energy generation rate ec+c is equal to ev, are also 
shown in Figure 5.2. However, near the ignition points for the cases of slow 
accretion, the enhancement factors by both computations are greatly out of its 
applicability. 

After their paper, the enhancement factor in a dense plasma has been recomputed 
(Itoh et al., 1977; Alastuey and Jancovici, 1978; Itoh et al., 1979), which was based 
on new analysis (Hansen, 1973) of Monte Carlo computation for ion-ion correlation 
in dense plasma. Their result is shown in the ignition line of Figure 5.2, which is 
applicable for the temperatures above 2.3 x 108 K. In the temperature range of 
(1.5-1.0) x 108 K it is uncertain because the matter forms quantum liquid. Below 
1.0x 10SK it forms a solid, and the ignition line is drawn by equating the 
pycnonuclear reaction rate (Salpeter and Van Horn, 1969) with the heat 
capacity divided by the timescale of contraction due to accretion with critical rate 
(Duncan et al., 1976). When the accretion rate is lower than about 10 -8 M| yr -1, 
the carbon burning is ignited by the pycnonuclear reactions. 

Duncan et al. (1976), and Canal and Schatzmann (1976) considered the limiting 
case where the temperature is low enough, which corresponds to the case of infinitely 
slow accretion and which gives an upper bound to the ignition density. The 
pycnonuclear reaction is ignited at pc =0 .7-1 .0x  101~ g cm -3. In the regime of 
pycnonuclear reaction, its temperature dependence is weaker than those for the heat 
diffusion and for the neutrino loss. In this sense the pycnonuclear reactions proceed 
steadily in balance with such heat losses. However, the central density is increasing 
due to the core growth and a slight increase in the density makes the energy 
generation dominate over the heat losses and initiates the runaway of carbon- 
burning. 

Therefore, the density given above is the upper bound to the ignition density for 
any situation. It is lower than the threshold density for electron capture by 160 (EF = 
10.42 MeV, i.e., Pthr(160)• 1.9 x 101~ cm -3 for /xe = 2), lower than the critical 
density for the reimplosion of the core by beta processes (p~ = 3 x 101~ cm =3, 
Mazurek et al. (1974)), and lower than the critical density for the general relativistic 
instability (pc~ R = 2.3 x 10 l~ g cm-3; Chandrasekhar and Tooper (1964)) which is 
induced for the ratio of specific heats ~/very close to 4. Thus, in the event of carbon 
deflagration, the collapse of the core can not be anticipated as will be discussed in the 
next section. 
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6. Carbon Deflagration Supernova 

When the carbon-burning is ignited, it grows into an explosive burning. Different 

from earlier expectations, it does not grow into a detonation wave but becomes a 
deflagration. However ,  the star will be totally disrupted. 

6.1. F L A S H  A N D  B L O C K I N G  O F  H E A T  

As is well known a nuclear burning in the central region of the electron-degenerate  

core is thermally unstable, and it is called a nuclear flash. Detailed numerical 

computat ion for such flash was done first by H/irm and Schwarzschild (1964) for a 

core helium flash, and physical processes were visualized by Sugimoto (1964). When 

the nuclear energy generation minus energy loss by neutrinos overcomes the heat 
diffusion, heat is piled up in the energy generating region. It  is bet ter  to express it in 

terms of the specific entropy s than the heat, because the former  is a state variable. 

When the specific entropy increases in the central region, convection develops and 
levels the entropy distribution as illustrated in Figure 6.1. 

t 
t/)  I 
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I 
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Mr/MH 
Fig. 6.1. Illustration of the change in entropy distribution during the progress of the core nuclear flash. 
The stage No. 1 is the stage just before the ignition. Entropy production by nuclear burning tends to make 
a profile as shown by the dashed curve, but the convection levels it as shown for later stages Nos. 2-4. In 
the event of carbon deflagration supernova, the convection is not efficient enough and such an entropy 

profile is realized as one drawn by the dashed curve (Section 6.3). 

When the central region of the core is isentropic, i.e., its temperature  gradient is 

adiabatic, the approximation discussed in Section 3.3 holds very precisely. There-  
fore, the core evolves along the line of constant core mass in Figures 3.1 and 3.2, e.g., 
along the line I -  P -  N (Sugimoto, 1964). Thus the central tempera ture  changes as 
shown in Figure 6.2 where the core mass is taken as a parameter  (Nakada and 
Sugimoto, 1972). Because p~/p4 stays almost constant, the increasing specific 
entropy sc implies the corresponding decrease in the central density. 
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Fig. 6.2. Evolutionary loci of nuclear flash in the central region of the core. Cases with different core 
masses are shown. Taken mainly from Nakada and Sugimoto (1972), and was composed from Figure 3.2. 
This figure applies mainly to a good approximation to cores of any composition with/~e = 2. Ignition line is 
shown for the carbon burning by the dashed line. Evolution of the core should be dynamical above the 
dash-dot lines. Effects of inertia and the heat blocking are neglected in the evolutionary loci. Before 
reaching the point P, the carbon flash grows well into dynamical strength while the oxygen flash does not. 

The  central  t empera tu re  takes its max imum value at the point  P in Figures 3.1, 3.2, 

and 6.2 where  the line I - P - N is a tangent  to a locus with a constant  Tc and thus the 

electron degeneracy  is weak  (see Section 3.3). Af te r  it the central t empera ture  

decreases as electrons become  non-degenera te .  Such picture describes the progress 

of the flash very precisely as far as the convective energy t ranspor t  is efficient enough  

to realize isentropic convect ive core (Sugimoto,  1964). 

However ,  the efficiency of the convective energy t ranspor t  is finite. It will be 

discussed convenient ly  in terms of the nuclear t imescale for a change in t empera tu re  

r,  - c p r / e , ,  (6.1) 

and of the timescale of free fall 

r r t -  ( 24~Gp  ) -1 /2~  I/ c, . (6.2) 

Here  cp, c, and l are the specific heat  at constant  pressure,  sound velocity and the 

mixing length, respectively. W h e n  the ratio r , / r e  reaches about  0.01, heat  or  en t ropy  

is b locked appreciably in the central  region. In our  case of carbon burning, such 
situation takes place well before  the point  P as seen in Figure 6.2, where  the line for 

r ,  = r~ is also shown. 
The  blocking of heat  produces  a superadiabat ic  en t ropy  ( temperature)  gradient  

and reduces the value of the polytropic  index below its adiabatic value. This results in 

the decrease of the non-dimensional  mass 051 as seen in Table  3.1, and thus in the 
increase in the tempera ture  as can be unders tood  f rom Figure 3.1 and Equat ions  
(3.3) and (3.6). In such stages, Pc = constant  is a bet ter  approximat ion  as shown by 

Sugimoto  (1964) for cores in the helium flash. Such approximat ion  is unders tood  as 



PRESUPERNOVA MODELS AND SUPERNOVAE 185 

follows. When the heat is blocked, the strong nuclear energy generation is confined 
within the very central region. Since the mass contained in such superadiabatic core is 
small, it affects but slightly the hydrostatic equlibrium. Therefore the central 
pressure should remain almost constant to sustain the core. 

As the nuclear energy is released, the central temperature continues to rise. Then 
the nuclear energy generation rate becomes so high that the dynamical effect, i.e., the 
effect of inertia term in the equation of hydrodynamics becomes essential. The 
criterion for it is z,, =~-g and the corresponding temperature will be denoted as 
deflagration temperature Tda. In the limit of extremely fast energy generation, there 
is no time for expansion and the density remains almost constant in the central 
region. In such stages the energy conservation between the states before (subscript i) 
and after (subscript f) the nuclear deflagration gives an approximate relation as 

Ugas,f "1- b/rad,f = Ugas,i Jc"/-/rad,i + E n .  (6.3) 

Here ugh= is the specific internal energy of the gas, and Ur=d is the energy of the 
radiation field per volume in which unit mass of the gas is contained, 

b/rad ~ aT4/p, (6.4) 

and E ,  is the nuclear energy release per unit mass of matter. 
If we assume that electrons are degenerate for the initial state and non-degenerate 

for the final state, it is rewritten as 

a T~ 3 k Tf  aT  4 3 k Ti 
- - +  - ~ ~ - E . .  ( 6 . 5 )  

p 2 H /~ :  p 2 H i,.s 

If we use En = 5 • 1017 erg g-1 = 0.52 MeV nuc1-1 for carbon burning, we obtain 
Tf>~8 x 109K for p ~> 1 • 109 g cm -3. It is high enough to sustain the explosive 
nuclear burning, because the nuclear statistical equilibrium (NSE) is established in r e 
for temperatures higher than 3 • 109 K (Truran et al., 1967). According to Equation 
(6.5), the density as low as (0.2-1) • 107 g cm -3 for X(12C) = 0.5-1 is compatible with 
such explosive burning to NSE. Therefore, our carbon burning is well explosive to a 
large margin. 

6 . 2 .  C A R B O N  D E T O N A T I O N  A S S U M P T I O N  

As a result of the consideration in the preceding subsection, the carbon flash grows 
well into an explosive burning. Then it was imagined to become a detonation and 
such event was named as the carbon detonation supernova (Arnett, 1968, 1969). 
Bruenn (1971) computed its detailed model assuming that the detonation wave is 
initiated and propagates through the core. He did not compute the propagation of 
the detonation wave, but he made the detonation front propagate artificially with a 
sound speed in the material just behind the front, i.e., changed the fuel into NSE 
composition shell by shell successively with a given speed. This simulated the 
Chapman-Jouguet  detonation (CJD). Then he obtained the following results. 
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Before the detonation the gravitational potential energy of the core was g20-- 
-3 .1  x 1051 erg, and the internal energy of gas was U0= 2 .6x  1051 erg. Thus the 
gravitational binding energy was as small as EB = - (U0  + S20) = 5 x 1050 erg, i.e., only 
a sixth of the absolute value of the gravitational potential energy. The maximum 
temperature attained in the course of explosion was 8.0 x 109 K, which was high 
enough to bring matter  into NSE composition. It released nuclear energy as much as 
En = 7.7 x 1017 erg g-1 or 2.2 x 1051 erg for the whole core, of which the neutrino loss 

took away only 6 x 1049 erg. Therefore  the available nuclear energy was as much as 

4EB SO that the whole core was disrupted and dispersed with the kinetic energy equal 
to 1.6 x 1051 erg-~ 3EB. 

Such model of carbon detonation supernova raised two problems. One is the 
shortage of the pulsar progenitors (Gunn and Ostriker, 1970; Ostriker et al., 1974). 
If no remnant star is left after the carbon detonation, we have to assign the pulsar 
progenitor to more massive stars than 8MG. The other is the overproduction of the 
iron group elements in the Galaxy. If stars in the mass range of 4-8M| experience 
the carbon detonation and each star ejects iron group elements as much as 1.4Mo, 
the iron group elements should have been produced by six times more than observed 
in the Galaxy (Ostriker et al., 1974; Arnett,  1974). 

Something was thought to be wrong. Then, they had to check if the assumption of 
the detonation was consistent. It was done as follows (Buchler et al., 1971). Assume 
the detonation wave is initiated. Then a burning front and a preceding shock front are 
propagating. When the shock wave reaches a shell, the temperature of the shell is 
raised to Tsh due to the compression by the shock wave and to the entropy production 
at the shock front. If Tsh is higher than the deflagration temperature Taef, the shock 
front can detonate the shells successively and the burning front propagates just 
adjacent to the shock wave. Then energy generation by the detonation strengthens 
the shock wave. 

If this is the case, the assumption of the detonation was said consistent. Buchler et 
al. (1971) made such consistency check extensively under the assumption of the 
Chapman-Jouguet  detonation, which gives the fastest propagation and thus the 
weakest detonation. They obtained a result that even for the Chapman-Jouguet  
condition the assumption of detonation is consistent for densities higher than 
i x 107 g cm -3 

6.3. TRIALS TO AVOID THE TOTAL DISRUPTION 

Many trials have been done to seek for possibilities to avoid the total disruption of 
the star in the carbon detonation model. One is the carbon ignition at such higher 
densities that beta processes lead to reimplosion of the core. However,  it seems 
unlikely as was discussed in Section 5.3. 

Another  is the convective URCA process which may take energy away with 
neutrino pairs (Paczyfiski, 1972). It is assumed that an odd-odd nucleus such as 23Na 
captures an electron in high density region where nuclear energy is being generated 
and strong convection is taking place. The resultant nucleus is transported by 
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convection current to a region of lower density where it decay by emitting electron. 
Through this mechanism, neutrino pairs are produced which take away the excessive 
nuclear energy generation and the carbon burning would be stabilized. In order for 
this mechanism to work, everything has to be tuned very finely, because the 
convective turnover time and thus the time scales of beta processes should be much 
shorter than the lifetime of the stabilized carbon burning phase but no easy 
stabilizing mechanisms are involved. Nuclei have to capture and decay in appropriate 
shells. The convection should be strong enough to transport the electron-captured 
matter, i.e., matter with higher mean molecular weight to the region of lower mean 
molecular weight against the gravity. Despite that the carbon burning should not be 
too strong to tune everything. Iben (1978) is studying such possibility, but at present 
the carbon burning has not yet been regarded to be stabilized. 

6 . 4 .  S P H E R I C A L  D A M P I N G  OF SHOCK W A V E  

The consistency check discussed in Section 6.2 implies that it is consistent if the 
detonation wave has been formed. Therefore, we have to check whether the 
explosive burning grows into a detonation or not. In this relation it is important to 
remind us of (7)no's (1960) work concerning the shock propagation through 
inhomogeneous and spherical medium, i.e., through the interior of the star (Ono et 
al., 1961). He considered a shock wave which is continuously pushed by something 
like a piston. The shock strength is defined by using the pressures behind the shock 
front P2 and ahead of it P1 as 

z ~ Pz/P1. (6.6) 

As the shock propagates through the star, its strength changes as 

r l / l + a 2 z \ l / 2 ] V _ 4 / ( l +  ( z -  1)(1-)t 2 ) 
d In ( z -  1)_ [ ~ - ] - +  2~z(- i775i)  J / ,  [(1 + a 2)z(1 + ~. 2z)]~/2] 

d l n r  2 z - 1  [ I+Azz ]1/2' , (6.7) 
z + a 2  t-2 [z~+~-~)- J 

where )t is assumed to be constant and expressed by using the ratio of specific heats 
y = Cp/C,~ as 

a 2 = (Y-  1)/(y + 1). (6.8) 

In Equation (6.7) the numerator in the right hand side consists of two terms. 
According to 0no  (1960), the first term containing V describes the pressure growing 
of the shock and the second term describes the spherical damping. The spherical 
damping takes place because the area of the shock front increases. It balances with 
the pressure growing term at the point where 

( z _ l ) ( l _ A  2) -~ [ l+~2z  ]1/2],~ 
V = 4 / ( { 1 - ~  [ ( l + A ~ i + - ~ - z ) ] l / 2  J {N---~+2[zi~+~-~)j j ]  (6.9) 

holds. For the polytrope of N = 3 with 3' = 4, its numerical value is V = 1.8-2.0 for 
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z = 1-oo. Interior to this point the shock wave is damping in its strength as it 
propagates. Such a damping region contains 23-27% of the core mass. 

In the early phase of explosive carbon burning, the heat blocking takes place in the 
very central region and carbon is deflagrated in the region in which less than 0.1% of 
the core mass is contained. Therefore, the effect of the spherical damping is most 
important. 

In the consistency check which was discussed in Section 6.2, the distance between 
the shock front and the burning front was tacitly assumed to be negligible as 
compared with the radius of the spherical shock front. In other words, it was treated 
as one-dimensional configuration in which the effect of spherical damping could 
never been taken into account. Now we have to check if the nuclear burning 
overcomes the spherical damping and the detonation wave is initiated (cf. Lee, 
1972). 

6 . 5 .  C A R B O N  D E F L A G R A T I O N  S U P E R N O V A  

Ivanova et  al. (1974) computed hydrodynamic evolution during the carbon burning 
without assuming a formation of detonation wave. They obtained an oscillation of 
the core instead of the total disruption. However, their result is strange. They did not 
include any mechanisms of heat transport. However, as can be read from Figures 3, 
4, and 5 of their paper, i.e., from the changes in temperature, density and pressure, 
the specific entropy of a shell increased during the stages when neither shock 
appeared nor nuclear burning begins. This entropy production could be ascribed 
only to numerical dissipation. Their carbon burning was ignited shell by shell as a 
result of this spurious entropy production. The same criticism applies also to their 
recent work (Ivanova et al., 1977a, b). Therefore the ignition was also spurious and 
we needed to recompute it taking account of appropriate mechanism of energy 
transport. 

Buchler and Mazurek (1975) tried to make such a computation but they could 
follow only to a relatively early stage of carbon burning. As far as they computed, 
no detonation waves were initiated, but further computations were needed. 

A little later Nomoto et al. (1976) published such a computation. They treated the 
energy transport as follows. As discussed in Section 6.1 and illustrated in Figure 6.1, 
the specific entropy of the burnt region becomes higher than those in the overlying 
layers. This implies that there is a large density inversion across the burning front and 
it drives the Rayleigh-Taylor instability. Then fresh fuel is taken into hot region and 
deflagrates. They described the propagation of such deflagration front by means of 
the mixing length theory of convection. They expressed the propagation velocity vaef 
a s  

va~f = ad~f[ (GMr/4r  z) 1A In 0] 1/2 . (6.10) 

Uncertainties arise from the mixing length theory itself and from applying it to a 
finite jump in densities A In p across the front. Such uncertainties were all transferred 
into a single parameter aa~f. 
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Assuming a value of adef they computed evolution of the carbon-oxygen core from 
a stage well before the onset of the fash, through the heat blocking in flash, and up to 
the stage of explosion, which cover continuously the stages with the time scale of 10 s 
years through fraction of a second. The computation of such transition stages is 
important because it determines how much fraction of the core is deflagrated almost 
simultaneously in its early stages. If only a small fraction of the core is deflagrated, 
the effect of the spherical damping is serious. If the carbon burning flared up in a 
relatively large fraction of the core, the spherical damping would be less serious. 

They computed the cases for C~da = 0.05 and 1.0, and obtained the following 
results. No strong shock waves and thus no detonation waves are formed in both 
cases. The carbon burning front remained to be the deflagration front, i.e., it 
propagated with the speed less than the sound speed, i.e., Vda--~ 0.01C~ and 0.2c~ for 
OLdef = 0.05 and 1.0, respectively. Because of its relatively slow propagation, the core 
expanded appreciably. In the case of O[de f ~- 1 . 0 ,  the total energy of the core becomes 
positive when 20% of the core mass has been processed into NSE. In the case of 
ad~f = 0.05, the core expanded more as reproduced in Figure 6.3, and the carbon 
burning becomes almost extinct at stage No. 6. At this stage the total energy of the 
core is still negative and then the core turns to contract again. In this time, however, 
the density is as low as (1 - 1.6) x 106 g cm -3 at the burning front. Therefore, the heat 
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Fig. 6.3. Expansion and oscillation of Lagrangian shells in the carbon deflagration supernova for the case 
of adef = 0.05. The defiagration front propagates as shown by dashed curve. At the stage No. 10 the 

expansion velocities exceed local escape velocities for all shells. (Taken from Nomoto et al. (1976).) 
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capacity of the radiation field absorbs the nuclear energy and, according to Equation 
(6.5), the maximum attainable temperature is as low as 2.2 x 109 K. The nuclear 
burning does not proceed to NSE. 

However, the amount of the nuclear energy release is large enough to lift the total 
energy of the star positive. As a result of it the star is totally disrupted even in this case 
of relatively small value of ad~. 

Though the conclusion depends on the value of ad~f, it is almost certain that a 
detonation wave is not formed and that the carbon burning remains to be a 
deflagration. Even in the deflagration regime, the star is totally disrupted and no 
remnant is left. If ad~f- 0.05 is the case, the star is not totally incinerated into NSE 
composition, and the resultant abundance is 11% of iron group elements, 7% of 
elements in the range of Z~ through 28Si, and 82% of the unburnt fuel (12C + 160). 
In this sense, the difficulty of the overproduction of the iron group elements is 
avoided but the difficulty of the shortage of pulsar progenitors still remains. 

Recently, the birth rate of the pulsars is reanalyzed by Taylor and Manchester 
(1977) using new data of 149 pulsars. According to them, the result depends upon 
the average interstellar electron density (ne), which affects the estimate of their 
distances. Wheeler (1978) showed that the critical stellar mass above which all star 
should leave neutron stars is 3M| and 10M| for (he)= 0.03 and 0.02 cm -3, 
respectively. If the latter is the case, we are not necessarily short of the pulsar 
progenitors. 

The results obtained above can be understood from the standpoint of energetics. 
In the case of relativistic electron degeneracy, the value of 3' is close to 4 so that the 
gravitational binding energy (En = 5 x 1050 erg) is much smaller than the absolute 
value of the gravitational potential energy (-g20=3.1 x 1051 erg) and than the 
internal energy (U0 = 2.6 x 1051 erg). When the energy of the order of EB is released, 
the star can be disrupted. However, the shock formation requires energies of the 
order of Uo. When the nuclear burning is taking place in the central region in 
particular, the nuclear energy release (0.5 MeV nuc1-1 for carbon burning only and 
0.3 MeV nuc1-1 for the establishment of NSE state) should be compared with the 
specific internal energy in the central region (Uo,c = 1.5 MeV nucl-1). Therefore, the 
overpressure in the central region is only 20% of the initial pressure at the center, 
which is too small to overcome the spherical damping. In short the nuclear energy is 
large as compared with the gravitational binding energy but is small compared with 
the internal energy in the central region. 

7. Combustion and Detonation of Helium in Accreting White Dwarfs 

Type I supernovae occur in elliptical galaxies as well as in spiral and irregular 
galaxies. Since the star formation seems to be finished long before in the elliptical 
galaxies, less massive stars may be related with some of type I supernovae. In this 
section we will discuss a possibility that such supernovae may be related with 
accreting white dwarfs. This, of course, does not rule out the existence of other 
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classes of type I supernovae of which the progenitor is relatively massive (Arnett, 
1979b). Such ones will be treated in other sections. 

7 . 1 .  A C C R E T I O N  ONTO C O M P A C T  STARS A N D  SHELL FLASHES 

Recently, accretion onto compact stars is discussed extensively. It takes place mainly 
in the phase of the second mass exchange in close binary systems and partly in dense 
gas clouds. The compact star accretes mass from its companion star which is ejecting 
gas as stellar wind or which is overflowing its critical Roche lobe. 

Problems, which have been discussed most extensively, are nova explosion of 
accreting white dwarfs. When the accreted gas has formed a certain amount of 
hydrogen-rich envelope, a hydrogen shell-flash takes place, which grows into nova 
explosion depending on situations of the accretion (see e.g. Sparks et  aI., 1977; 
Prialnik et  al., 1979; Nariai et al., 1979; and references quoted therein). The amount 
of the gas, which accretes before the ignition of the shell flash, depends sensitively on 
the accretion rate, but it is in the range of 10 - 2 -  10 -4 M| (e.g. Sugimoto et  al., 
1979). 

The hydrogen burning involves two beta decays to synthesize one helium nucleus, 
the half lives of which are of the order of 100 s. Therefore, energy generation is 
relatively slow and limited to the value of eH = 5.9 x 1015 XcNo erg g-1 s-l, where 
XcNo is the abundance of CNO elements. The energy generation is too slow to grow 
into a detonation. When the nuclear energy has been released as much as the 
gravitational energy of the hydrogen-rich envelope, the released heat makes the 
envelope expand and the hydrogen shell-flash is quenched. Therefore only a part of 
the nuclear energy can be released by the hydrogen shell-flash. Numerically, it is 
about 1046-1047 erg which corresponds to the order of nova explosion. 

Starrfield et al. (1975) considered an extreme case, in which the number of carbon 
nuclei is the same as protons and all protons are captured by the carbon nuclei 
without waiting any beta decay. Then they computed a model for massive white 
dwarf of 1.25M| having the hydrogen-rich envelope of 1.7x 10-3Mo, which 
corresponds to the accretion time as long as the age of the universe (Nariai and 
Nomoto, 1979). Even for such an extreme case, they obtained an explosion with the 
kinetic energy of 1 x 1047 erg, which is too weak to be considered as a supernova 
explosion. 

Another problem is the accretion onto neutron stars. It is intended to interpret 
X-ray bursters. According to Joss (1978), the accreted hydrogen burns fuzzily and a 
helium zone is formed. Then the helium shell-flash takes place which releases energy 
of the order of 1039 erg. 

However, much stronger flash and detonation are possible when the gas accretes 
relatively slowly onto white dwarfs and if we consider helium burning in electron 
degenerate conditions. Such models will be discussed in the rest of this section. 

7 . 2 .  H E L I U M  D E T O N A T I O N  IN A C C R E T I N G  H E L I U M  W H I T E  D W A R F S  

In the nova event all of the accreted matter are not expelled. Therefore helium is 
accumulated as the hydrogen shell-flashes repeat themselves, and the mass of the 
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helium core grows. This core growth is assimilated by a steady accretion of helium gas 
onto a white dwarf. When a certain amount  of helium is accumulated, helium flash is 

ignited. 
Mazurek (1973) made hydrodynamic computat ion of such model. He  has shown 

that for the helium white dwarf of mass larger than 1M| it results in a helium 

detonation and the star is totally disrupted. In an old work Sugimoto (1964) 

considered helium flash in a relatively massive core and showed that the flash 
becomes dynamical if the core mass is greater than 0.7M| These results are 

consistent. 
In such works, however,  thermal history of accretion was not computed.  The initial 

model of the flash was approximated to be in thermal equilibrium, which assumes 

that the timescale of accretion is longer than the cooling time of the white dwarfs. 
However ,  the gas outflow from a binary companion is in many cases rather rapid (see 

e.g., Kippenhahn and Mayer-Hofmei ter ,  1977; Neo et al., 1977) so that we have to 

take account of the finiteness of the accretion rate. 
Nomoto  and Sugimoto (1977) followed the thermal history of accretion by 

numerical computation. They computed three cases for the accretion rate, i.e., 
d M / d t  = 4, 2, and 1 x 10 -s  M| yr -1 for Cases A, B, and C, respectively. These 

accretion rates cover only a factor of 4, but as seen in Figure 7.1, Case A 
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Fig. 7.1. Time scales of heat transport over unit scale height of pressure rh, mass accretion ~'acc=- 
dt/d In M, and compression by accretion ~'oomp---dt/d In p for the accreting helium white dwarf of mass 
0.4M| The latter two are inversely proportional to the accretion rate dM/dt. Values for the case of 

dM/dt = 4 x 10 -8 M| yr -1 are shown. (Taken from Nomoto and Sugimoto (1977).) 

corresponds to the accretion faster than the Kelvin timescale near the bot tom of the 
accreted layer, while Cases B and C are slow and thermally relaxed accretion. The 

initial model  was a helium white dwarf of 0 .4Mo with the central temperature  of 
Tc = 8 x  106K. 

In Case A a part  of entropy of the accreted mat ter  is radiated away but its 
appreciable fraction is retained and pushed into deep interior of the star. Therefore,  
the tempera ture  is maximum in the accreted matter.  When the mass of the white 
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dwarf reaches 0.66M| the temperature becomes high enough to ignite helium flash 
in the shell of mass fraction M J M n  = 0.86. It begins as a helium flash in an electron 
degenerate layer, but it shifts into a shell flash in non-degenerate layer. The flashing 
shell moves outward in mass to Mr/MH = 0.90. The maximum temperature and 
energy generation rate during the flash were found to be T (max) = 3.2 x 108 K and 
L ( m a x )  _ Iae - 5.3 x 101~ Lo, which are too low to induce any dynamical effects. 

In Cases B and C, on the other hand, the core is thermally well relaxed and 
temperature is maximum at the center of the core. The helium burning is ignited at 
the center when the core mass reaches 0.78 and 0.99MG respectively. Computation 
was continued from the accretion phase through the flash phase up to a dynamical 
stage. 

The sequence of events is analogous to the case of the carbon deflagration 
supernova except for the followings. The deflagration temperature is Tdef = 
2.5 X 108 K. When the temperature exceeds 1.5 x 109 K, the triple-alpha reactions 
are almost saturated and energy is generated mainly by successive a-captures on 12C, 
i.e., 12C(a, 3/) 160(o~, y) Z~ y) 24Mg etc. For such situation, behavior of a wave of 

overpressure was computed. It was shown to grow into a detonation wave overcom- 
ing the spherical damping (Nomoto and Sugimoto, 1977). 

The difference from the carbon deflagration is ascribed to the difference in the 
energetics. In the case of the helium burning, the central density is as low as 
log p = 6.85 and the internal energy is as low as Ugas = 0.13 MeV nuc1-1. Since the 
nuclear energy generation is 0.60 MeVnuc1-1 for helium burning and 
1.5 MeV nucl -~ for the establishment of NSE, the overpressure due to the deflagra- 
tion amounts to as much as 2.7 times the initial pressure. 

In the model of Case B, the gravitational binding energy is EB = 7.5 x 1049 erg. On 
the other hand, the nuclear energy of the core is En = 2.3 x 1051 erg when the helium 
burning proceeds to the NSE state. According to Mazurek (1973) and Nomoto and 
Sugimoto (1977), the star is totally disrupted and more than 0.7M| of NSE 
composition is returned back to the interstellar space with the kinitic energy of about 
1051 erg. 

In the model of Case A, the flash was not strong enough to produce NSE elements. 

However,  such flash in an outer shell will take place recurrently if the accretion is 
continuing and the core mass is kept growing. In the central region of such white 
dwarf appreciable amount of helium (0.5M| for the case A) is left unburnt. 

However,  this helium will be ignited eventually, when the mass of the white dwarf 
becomes close to the mass at which the white dwarf of Case B is ignited. Because the 
energetics for Case B suggest the NSE and the total disruption with a large margin, 
the situation will not be altered in the Case A either, even if appreciable amount of 
helium has been converted into carbon and oxygen by preceding shell flashes. 

One may ask if it is possible to disrupt the star without producing NSE elements. 
Consider the case in which the accretion commences as soon as the white dwarf is 
formed, i.e., before the white dwarf has been cooled appreciably. Then the thermal 
condition is close to that of the helium core embedded deep in a red giant star, and 
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the helium flash is ignited at a relatively small core mass, i.e., at a relatively low 

density. 
According to Sugimoto (1964) the heat becomes blocked and the flash grows into 

dynamical strength, when the core mass is greater than 0.7M| When we take 
account of the relativistic effect in the equation of state of partially degenerate 
electrons, this limiting core mass should be revised to 0.65M| (Nomoto and 
Sugimoto, 1977), which corresponds to the central density of p~n = 4 x 106 g cm -3 at 

the stage of ignition. 
On the other hand, we estimate the lower bound of the density above which the 

detonated material becomes NSE composition. According to Equation (6.5), the 
final temperature of T r ~> 3 x 109 K requires the density p aef at the deftagration stage 
higher than pr~sz = 2 x 106 g cm -3. Once the helium flash becomes dynamical, there- 

fore, the helium white dwarf will be incinerated into the NSE composition in most 
cases, though p~f  is somewhat lower than p~n. 

7.3.  STRONG HELIUM SHELL FLASH IN ACCRETING CARBON-OXYGEN WHITE 

DWARFS 

Let us consider the case where the accreting white dwarf is composed of carbon plus 
oxygen. The accreted gas is processed by the hydrogen shell-burning and then forms 
a helium shell surrounding the carbon-oxygen core. When a certain mass of helium 
has been accumulated, helium shell-flash is ignited. It proceeds in the same way as 
the thermal pulses which take place in the phase of growing carbon-oxygen core of 
the intermediate mass stars and which were discussed in Section 5.3. 

However,  in the case of accreting white dwarf, there are wide varieties in the 
accretion rates and in the initial conditions. When the white dwarf has been cooled 
down to a lower temperature before the onset of mass accretion, or when the 

accretion is slower, the entropy of the accreted matter is well transported away and 
more mass of helium can be accumulated before the ignition of the helium shell-flash. 
According to the generalized theory of shell flash (Sugimoto and Fujimoto, 1978), 
the maximum energy generation by the helium shell-burning is given by 

log L(H~a")/Lo = 8.1 + 4.9(1og PH~ -- 20) -- 0.6(log PHi-- 20) 2 + 

+ 10.5 log (MuD/M| + 5.0 log (1 -MwD/1.6M| 
(7.1) 

Here  Mwo is the mass of the white dwarf and PHe is the pressure of the helium 
burning-shell at the onset stage of the flash. The latter is expressed by means of 
Equations (2.20) and an interpolation formula for the radius of the core as 

PHe (AMae~(Mwz)~(l_ MWD ~-4  (7.2) 
1020dyncm - 2 = 3 8  \ M e  1 \  M| / 1.6M| ' 

where dMae is the mass of the helium zone contained above the burning shell. These 
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L (max) : 7 x 1013 L| equations give the maximum energy generation rate as high as r~e 

for AMMe = 0.043M| and M w o  = 1.077M| for example. 

Numerical computation by Fujimoto and Sugimoto (1979) gives a following 
model. A carbon-oxygen white dwarf of 1.077M| was cooled for 9.6 x 107 years 
after its formation. Then, the helium gas began to accrete at the rate of 3.16x 
10 -8 M| yr -1. After 2.7 x 106 years the helium shell-flash is ignited when the helium 

zone of 0.097M| is formed. The maximum energy generation rate is found to be as 
high as L~n~2 x) = 8.4 x 1015 L| At this stage the helium-burning shell has been shifted 

to AMH~ = 0.043M| 
At the stage of the maximum energy generation, the ratio of the timescales rJrn ,  

which were defined by Equations (6.1) and (6.2), amounts to as much as 5. Therefore 
the helium burning would have been well detonative, if the inertia term had been 
included into their computation. The density at this stage is 5 • 105 g cm -3 which is 
lower than the critical density pNsz = 2 • 106g cm -3 for the incineration to NSE 

composition. 
They computed also a case of slower accretion with the rate of 3.16• 

10-9M| yr -1. When the helium zone of AMr~ = 0.29Mo is formed, the helium 
burning is ignited at the density of 2 • 1 0  7 g cm -3. Though they did not follow the 

flash to its peak, the helium zone of this model would have been incinerated well into 
NSE composition. It is interesting to note that the nuclear energy available in such 
detonation is 3 • 1051 erg for AMu~ = 0.1M| which is well of the order of the energy 
of type I supernova. In this sense such models will deserve well of further studies. 

8. Evolution Toward Electron-Degenerate Oxygen Core 

In this section we discuss the mass range of 8-12Mo, for which the carbon burning 
proceeds under non-degenerate conditions but electrons become degenerate in the 
oxygen core. Its supernova explosion will be triggered by electron captures as will be 
discussed in the next section. 

8.1. E V O L U T I O N  N E A R  T H E  U P P E R  M A S S  L I M I T  O F  12Mo 

Numerical studies on evolution are scarce for this mass range, because its evolution is 
rather complicated after the carbon-burning phase. 

Sugimoto (1970b), and Nomoto etal. (1979a) studied evolution of a helium core of 
3M| up to the presupernova stage. Its chemical evolution, evolutionary track in the 
central temperature-density diagram and a U - V  curve of a presupernova stage are 
shown in Figures 8.1, 5.1, and 8.2, respectively. Here the core implies that its edge 
was fitted to the boundary conditions (2.23) and (2.24) at the bottom of the 
hydrogen-rich envelope. This model approximates the core embedded in the star of 

Mms = 12M| according to Equation (4.1). When the carbon is exhausted in the 
non-degenerate core, a oxygen core of mass 0.7Mo is formed. Then the carbon 
burning shifts to the shell burning, which grows to the values as strong as Lr = 
1 • 106-2 • 107 L| at the stages with the central temperatures of log Tc = 8.94-9.12, 
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is the core as defined in Section 2.2. Other  notat ions are the same as in Figure 2.2. 

respectively. The neutrino losses are L ,  = 2 x 106-6 x 107 L| for the corresponding 
stages, i.e., larger than Lc+o  Therefore  the energy for neutrino loss is supplied 
mainly by the gravitational contraction. 

Because of the carbon shell-burning, the oxygen core grows up to 1.38M| and the 
electrons become somewhat degenerate in the central region. The degree of 
degeneracy is conveniently expressed by the value of 6e, which is the chemical 
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protential fie of an electron without the rest mass in units of kT, i.e., 

I/le = fie/ k T .  (8.1) 

The maximum value of r attained during the growing oxygen core was Oe,c = 7.3 at 
the stage of log pe = 7.486 and log Tc = 9.122. This degeneracy is moderate but is not 
strong enough to consider the core as an electron degenerate core. Such results can 
be understood if we look into the U - V  curve of stellar structure in Figure 8.2. It 
crosses the locus of A = 0 at the helium-burning shell and makes a loop there. 
Consequently, core edge as defined in Section 2.2 lies at the helium-burning shell and 
the core mass is 1.62Mo. This is somewhat larger than the Chandrasekhar limit so 
that the degree of electron degeneracy does not become too strong. 

In this model the core was composed of neon, oxygen, and magnesium. At the 
stage of log pc = 7.3, neon began to burn as a weak flash. The rate of neon burning 
reached 4 x 10 l~ L| at its maximum. After this weak flash neon and oxygen burnings 
took place under non-degenerate conditions. 

In view of these results the helium core of 3Mo, i.e., the main-sequence mass of 
Mms = 12Mo is a limiting mass below which electrons become degenerate in the 
oxygen core. 

8 . 2 .  E V O L U T I O N  N E A R  T H E  L O W E R  MASS LIMIT OF 8 M |  

According to the discussions in Section 4.2, the critical mass, above which the 

carbon-oxygen core is non-degenerate,  lies within 8MG • 1Mo depending on chem- 
ical compositions. Barkat et al. (1974) paid and wanted to draw attentions to the lack 
of studies in the mass range of 8 M o - 1 2 M e ,  and they computed evolution of the star 
of 8M| However,  their description in their Let ter  to the Editors (Barkat etal., 1974) 
was only sketchy, but we can draw Figure 8.3 from their letter. 

In their model the carbon burning took place in the core under non-electron- 
degenerate condition. Therefore  the surface convective zone did not penetrate into 
the core as discussed in Section 4.2. After the carbon-burning phase, the structure of 
the core is rather complicated, because the carbon shell-burning (stage No. 2 in 
Figure 8.3), off-center ignition of oxygen burning (No. 3) etc. complicate the 
chemical evolution of the core. Anyway they followed evolution until the stage No. 4 
at which the central temperature and density reached Tc = 4.5 • 108K and pc = 
8 . 5  • 10  9 g c m  -3 .  

Though the chemical evolution depicted in Figure 8.3 seems very complicated, it 
can be interpreted easily as far as the qualitative nature is concerned. The convection 
in the carbon shell-burning (No. 2) is due to the high rate of energy generation which 
is necessary to supply the energy lost by neutrino emission. When the carbon-shell 
burning decays, the effective mass of the oxygen core grows almost suddenly. 
Therefore  oxygen is ignited (No. 3) in an outer shell, as in the case A of rapidly 
accreting helium white dwarf which was discussed in Section 7.2. When carbon is 
almost exhausted, the growth of the core mass becomes to be controlled by the rate of 
the helium shell-burning. Evolution becomes relatively slow because the neutrino 
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Fig. 8.3. 
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Chemical evolution of 8M| star read out of a paper by Barkat et al. (1974). Four different stages 
are shown. Regions with spiral coils are in convective equilibrium. 

loss is negligible from the helium-burning shell. However,  it is about EHXe/EHe ~ 7 

times more rapid than the growth of the carbon-oxygen core in a red giant star. 
Therefore  things left are just to construct numerical models. The importance of 

this mass range was stressed by Barkat et al. (1974) five years ago. However,  such 
numerical works have not been accomplished. The reason seems to be related with 
the fact that we have not done much work concerning supernova explosion triggered 
by electron capture. However,  it is now available as will be discussed in the next 
section. 

8.3.  OXYGEN FLASH 

Before entering into detailed processes of electron capture supernova it is instructive 
to discuss the oxygen flash from a standpoint of the generalized theory as discussed in 
Section 3.3. We see in Figure 3.2 that a line with constant central temperature has a 
minimum if it is lower than log Tc = 9.3. The maximum temperature,  that can be 
assigned to the core of the Chandrasekhar's limiting mass, is close to this value as also 
seen in Figure 6.2. Because this value is higher than the oxygen burning temperature,  
there exists the oxygen flash. However,  the maximum temperature attained is only 
log Tc = 9.3. As can be seen from Figures 3.2 and 6.2 the corresponding central 
density is log pc = 8.2. The nuclear energy generation rate is as low as eo+o = 5 x 1014 
erg g-~ s -1, or Lo§ = 9 x 1012 Lo, and the condition for the heat blocking is not 
satisfied with a large margin as seen also in Figure 6.2. 

This result implies that the oxygen flash is a relatively weak as compared with the 
carbon deflagration. (Note that Figures 3.1 and 3.2 are almost determined only by 
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the mean molecular weight of electrons but that the temperatures necessary for 
deflagration are different very much among different kinds of nuclear fuels.) For a 
strong deflagration of oxygen, some mechanisms are necessary which make the 
central temperature higher than the value referred above as will be discussed in the 
next section. 

9. Supernova Explosion Triggered by Electron Captures 

Until recent days this type of supernova was paid only a little attention, probably 
because this lies between the two major types of supernovae, the deflagration of 
carbon cores and the collapse of iron cores. Because of such situation there are 
relatively small number of works and yet unclear understanding of physical concepts. 
In this section we criticize them and give a clear picture together with a recent 
modeling by Miyaji et al. (1979). 

9.1 .  EFFECTS OF ELECTRON CAPTURE ON STELLAR STRUCTURE 

Stellar evolution in the central temperature - the central density diagram are usually 
drawn in a plane like Figure 5.1. In its shaded region, the value of the adiabatic 
exponent % i.e., the ratio of the specific heats, is smaller than 4, and the star is 
dynamically unstable. Such region is usually said to consist of three parts cor- 
responding to three types of phase changes, i.e., (i) Photodissociation of nuclei or 
NSE state, (ii) electron pairs in equilibrium with the radiation field, and (iii) electron 
capture-beta decay equilibrium. 

In the former two cases the reaction time is much shorter than the dynamical time 
scale of stellar collapse/explosion, and the mass element can be regarded as a closed 
system as far as the local thermodynamic equilibrium (LTE) is concerned. In other 
words, the thermodynamic change can always be regarded to be quasi-static as 
compared with the recovery of LTE. It guarantees the validity of the concept of the 
adiabatic exponent % 

On the contrary, -/is not a good concept in the case of the electron capture. In the 
first place, neutrinos escape from the system, i.e., the local mass element is an open 
system. Secondly, the timescales of electron capture and beta decay are, at the 
fastest, comparable with and/or longer than the relevant timescale of quasi-static or 
dynamical evolution of the star. Therefore, the electron captures do not become even 
in detailed balance with beta decay, as illustrated by Sugimoto (1970c) and as will be 
discussed later in this section. Therefore, the concept of % which premised the 
establishment of LTE, breaks down. One might think that neutrino energy tends to 
vanish when temperature is zero and the Fermi energy of electron is just equal to the 
threshold energy of the electron capture. In such case, however, the reaction time is 
infinitely long. When we consider the adiabatic exponent for a change with the 
dynamical time scale, we should compute the value of y with the beta processes 
frozen. 
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Therefore,  it is bet ter  to treat  the electron captures in the same way as the nuclear 

reactions, i.e., as a slow process through which chemical composition changes with 
releasing or absorbing subatomic energy. Here  we note that the nuclear reactions in 

the stars are also understood to be the process approaching very slowly to NSE. 
In many works electron capture is described in terms of the rate of electron capture 

hec and the neutrino loss rate (E~)hec (e.g., Hansen,  1968), where (E~) is the mean 
energy of an emitted neutrino. However ,  these two rates do not contain enough 

information. As shown in Figure 9.1 we have to add information of the energy 

Ethr,  O i 

1 ' 

"Y..ek T 

Fig. 9.1. Energies relevant to electron capture. An electron with Ee is captured on the parent nucleus of 
(A, Z) to an excited state of the daughter nucleus (A, Z - 1). This is the case where the transition between 
ground states is highly forbidden because of their spin-parities. A neutrino with E~" and then a gamma 
ray with E v are emitted. The distribution function of electrons, whose chemical potential is OekT, suffers 

from a distortion. 

difference between the ground states of the daughter and the parent  nuclei Ethr, 0 and 
the energy of the associated gamma ray emission Ev if any. If an electron is captured 
on an excited state of the daughter nucleus, they will be, for simplicity, t reated 

separately as if they were different kinds of nuclei in the following formulation. 

If we denote the mean energy of the captured electrons by (Ee), these quantities 

are related by 

(9.1) 

From the standpoint of stellar structure, only the sum of Ethr, 0 + (E~) is important,  
and it is not relevant how much it is shared between them. In other words, we need to 
know only (Ee) and E v, i.e., the energy of electron which is lost f rom the system and 
the energy of the gamma ray which is returned to the system. Such presentat ion is 

urged in further computations of electron capture rates. 
Though the energy in a mass element dies away into a neutrino and the subatomic 

energy, the change in the tempera ture  is a quite different matter,  when the mass 
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element lies within the star. In order to separate the effect of the energy loss from the 
gravothermal effect, it is better to discuss it in terms of the specific entropy rather 
than the temperature. If the system is adiabatic except for neutrino escape the laws of 
thermodynamics give the change in the entropy of matter as 

d(Neo-e) dNe 
kT + T - "  = [Et.~, o + (E~)- OekT] 

dt dt dt 

= [(Ee)- OekT-Ev] dNe 
dt ' 

(9.2) 

where Ne is the number of electrons in unit mass of matter, o-~ is the entropy of 
electrons per one electron in units of k, and sl the specific entropy of ions. This 
equation expresses the entropy production due to the electron capture as an 
irreversible process. Since dN~/dt is negative, entropy is produced when the gamma 
ray is emitted (Rudzskii and Seidov, 1974; Bisnovatyi-Kogan et aL, 1974), and when 
(Ee) is smaller than OekT. The latter is the entropy production due to the distortion in 
the Fermi-Dirac distribution function and resultant down scattering of electron in 
momentum space (Bisnovatyi-Kogan and Seidov, 1970; Sugimoto, 1970c; 
Nakazawa et aL, 1970). 

The threshold energy for the electron capture is given by 

E t h r  = Et~r, o + Ey. (9.3) 

When the density is low and the corresponding chemical potential OekT is lower than 
Ethr the energy of the captured electron (Ee) is higher than OekT and the term 
(Ee)- OekT plays a role to reduce the entropy. In such case, however, the electron 
captures proceed very slowly. In practically interesting cases, OekT is much higher 
than Ethr and the electron captures proceed rapidly. In the limit of OekT >> Ethr, (Ee) 
tends to (2) O~kT so that the entropy production is appreciably large (Nakazawa et al., 
1970). When OekT is moderately large, both of the distortion of the distribution 
function and the gamma-ray emission are important to increase the entropy of 
matter. 

As another result of the electron capture, the pressure decreases because the 
number of electrons decreases. It is followed by the gravitational contraction of the 
star. All of these effects raise the temperature of the matter, though the electron 
capture itself is an energy absorbing process. For application to the stellar structure 
equation, we have to add in- and outcome of other energies and it is conveniently 
formulated as 

dLr ( o )  _ T dsi d(Neo-e) 
d--~= e , - e ~  -d-~-kT d--'----~-JVSec, (9.4) 

where e(~ TM is the neutrino loss rate excluding the nuetrinos from the electron 
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captures and where the energy rate by the electron capture is defined by 

( dN2~ 
eec = [ Oek T - ( E e )  + Ev] \ - ~ f - /  

( dN~] 
= [OekT-Ethr, o-(E,,)] \ - d i - ]  (9.5) 

According to the discussions above, e~ can be both negative and positive. It is 
negative, if any, only in the early stages of a phase with electron captures when the 
Fermi energy of electron is low and the electron capture is very slow. In most of its 
phase Sec is positive. The temperature rise due to the electron captures and 
associated contraction of the core were computed by Sugimoto (1970c) but he 
treated only the cores somewhat more massive than the Chandrasekhar's limiting 
mass. 

9.2. D E C R E A S E  OF THE C H A N D R A S E K H A R ' S  LIMITING MASS D U E  TO ELECTRON 

CAPTURE 

The Chandrasekhar's limiting mass is expressed as 

Mch = 1.46(Ye/0.5) 2 M| (9.6) 

where Ye is the mole number of electrons in one gram of matter, 

Ye = Ne/NA, (9.7) 

w i t h  N A  being the Avogadro number. When the electron captures proceed, Ye 
decreases and correspondingly Chandrasekhar's limiting mass decreases. It may be 
reduced even below the core mass if the core mass is smaller than yet close to the 
initial value of Mch. Then, as seen in Figure 3.1, there are no solutions with vahishing 
temperature any more, and the core will begin to collapse. 

Finzi and Wolf (1967) proposed such evolution as a cause of type I supernova. The 
presupernova star is a white dwarf which contains 24Mg as much as 10% by mass. It 
captures electron when the density is higher than 3.2 x 10 9 g cm -3. They showed that 
the white dwarfs of mass between 1.396 and 1.400M| will begin such collapse in 101~ 
and ]_06 years, respectively. However, they did not make detailed computation for 
the evolutionary processes associated with the electron captures. 

9.3. M O D E L  OF ELECTRON CAPTURE SUPERNOVA 

Bisnovatyi-Kogan and Seidov (]_970), Nakazawa (]_973), Rudzskii and Seidov 
(1974), and Basko and Imshennik (]_975) discussed the thermal balance as expressed 
by Equation (9.4) in the iron core or in the white dwarf for the case of OekT >> E~ and 
Ethr, 0, but they did not compute the stellar structure. Sugimoto (1970c) computed 
the stellar structure together with Equation (9.4), but he neglected E v and, 
moreover, his treatment of electron capture was too rough. So we need a much 
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refined model. Recently, such computation has been done by Miyaji etal. (1979). We 

summarize some of their important results. 
For the initial model they constructed a white dwarf of mass 3//1 = 1.2Me which 

consists of 160, 2~ and 24Mg. Their concentrations by weight were assumed to be 
x(a60) = 0.35, X(2~ = 0.55 and X(24Mg) = 0.10, which were the composition left 

after the carbon burning in the helium star of 4MQ (Arnett, 1973b). This white dwarf 
will approximate the O-Ne-Mg core embedded in the star of mass Mms = 8-12Me.  

Therefore, the mass of the helium core should be in the range of 2-3Mo. The growth 
of the O-Ne-Mg core by helium shell-burning was assimilated by accretion of the gas 
with the same composition at the rate of 

dMi = 4 x 1 0  -6  M1 yr -1 (9.8) 
dt 

The evolution of the core proceeds through the following phases. In Figure 9.2 the 
energy generations/losses and the timescales involved are shown against the 
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Fig. 9.2. Evolution of oxygen core leading to a supernova collapse which is triggered by electron capture. 
The central density increases as the evolution proceeds. The  timescales of contraction % =-dt/d In Pc and 
of free fall rff are shown. The energy rates are also shown for the loss by neutrinos L~, the energy 
generat ion by oxygen burning Lo+o,  and the energy absorption by dissociation of nuclei into lighter ones 
--LNsE in the NSE core. Threshold densities against electron capture for different nuclei are also shown. 

(Taken from Miyaji et al. (1979).) 
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increasing central density. Evolutionary changes in the central density and tempera-  
ture are shown in Figure 5.1. 

(1) Growth of the core: As the core mass grows the central density increases with 
the timescale as long as 104 yr. 

(2) Electron capture on Z4Mg: It  commences when pc reached 4 x 109 g cm -3 (No. 

2 in Figure 9.2). The resultant 24Na captures also an electron after the stage of 

Pc = 5 x 109g cm -3 (No. 3). The central part  of the core is heated mainly by the 

~associated gamma-rays.  Tempera ture  rises and a convective core appears as shown 
m Figure 9.3. It  extends eventually to Mr = 0.6M| and prevents 24Mg from being 
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Fig. 9.3, Quasi-static through quasi-dynamic contraction of the oxygen core which is shown in Figure 
9.2. Thin lines are Lagrangian shells to which attached are their mass fractions. Their contractions are 
shown by plotting their radial distance r against the increasing central density. Development of the 
convective core and propagation of the deflagration front (DF) are also shown. Behind the deflagration 

front a core is left with NSE composition. (Taken from Nomoto et al. (1979b).) 

exhausted in the central region. The mole number  of electrons Ye decreases in the 
entire convective core, i.e., over a relatively large portion of the core. It results in 

appreciable decrease in Mch as discussed in the preceding subsection, and the 
contraction of the core is accelerated. 

(3) Electron capture on ZONe: Beyond the stage of pc = 9 x 109 g cm -3 (No. 4), ZONe 

captures electron and the resultant 2~ captures another  electron immediately. The 
Chandrasekhar  limit at this stage seems to be almost equal to the core mass. The 
contraction becomes faster and faster as seen in Figure 9.2. 

(4) Ignition of oxygen burning: When pc reaches 2.5 x 101~ cm -3 (No. 6), the 
oxygen burning is ignited. It  grows into a deflagration and the fuel is processed into 
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NSE composition. However,  the nuclear energy release is 0.4 MeV nuc1-1 which is 

only 4% of the internal energy u = 10 MeV nuc1-1. 
(5) Competition between the oxygen deflagration and the electron captures: The 

deflagration is so weak that its front does not propagate by itself but that it is almost 
standing in Eulerian coordinate (Figure 9.3). In other words, it does not propagate by 
the heat transport, but each shell is ignited consecutively as it is compressed to the 
density of about 2.5 x 10 9 g cm -3 by the quasi-dynamic collapse. It does not grow 

into a detonation either. Aftet  the deflagration the matter  is processed into NSE 
composition as shown in Figure 9.3. Though energy is generated near the deflagra- 
tion front at the rate of Lo+o as seen in Figure 9.2, almost the same energy is 
absorbed in the NSE core at the rate of --LNsE, because nuclei are dissolved into 
lighter ones. Between the stages with pc = 2.5 x 101~ and i x 1011 g cm -3, the gravi- 

tational binding energy of the core increased by 3 x 10 s~ erg. This amount of energy 

was carried away with neutrinos which were generated by electron captures in the 
NSE core. 

Though their computation was stopped at the stage with pc = 1 x 1011 g cm -3, the 

quasi-dynamic collapse will continue further because of the following reasons. First 
of all the total energy is decreasing, i.e., the gravitational binding energy is increas- 
ing. Secondly, the Chandrasekhar limit seems to have already been reduced below 
the core mass. Thirdly, the central density has already exceeded the critical density 

GR 101o Per = 2.3 x gcm -3 beyond which the star enters into the regime of general 
relativistic instability (Chandrasekhar and Tooper,  1964). We have seen that the 

oxygen burning does not win over the electron capture. The main reason has been in 
the energetics. 

9 . 4 .  P R O D U C T I O N  OF N E U T R O N  STARS 

Since Miyaji et aI. (1979) stopped their computation at the stage with pc = 
I x 1011 g cm -3, it is not certain whether the quasi-dynamic collapse results in the 
formation of a neutron star or a black hole. However,  further evolution of the core 
will be similar to the collapse of 1.4M| iron core which was computed by Arnet t  
(1977b). It will make a bounce when the central density reaches around the nuclear 
density (see Section 11.4). 

However,  only the bounce does not always guarantee the formation of a neutron 
star, because the overlying layers continue to fall onto the bounced core as will be 
discussed in Section 11.6. Nevertheless in our O -N e-Mg  core, it does not seem 
necessary to worry about it. The mass of the core is smaller than the limiting mass of 
the neutron star, the mass contained in the carbon-oxygen zone is negligible, the 
mass of the helium zone is likely to be small because of the penetration of a 
convective envelope in the preceding stages, and the gravitational binding energy of 
the hydrogen-rich envelope is negligible. In order to reach a definite conclusion, 
however, further computations are necessary not only for the collapsing stages but 
also for the presupernova evolution. 
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9.5. F O R M A T I O N  O F  O-Ne-Mg  W H I T E  D W A R F  A N D  Q U I E T  S U P E R N O V A  

When the star of mass in the range of 8-12M| is a primary star in a close binary 
system, it will evolve as fol!ows (Nomoto et al., 1979b). After the first mass exchange, 
it leaves a helium star of mass 2-3M| Since the carbon burning takes place in the 
non-degenerate condition, the helium envelope does not expand to a red-giant size. 
In the resultant O-Ne-Mg  core, electrons become degenerate. During the stages 
when the core mass grows by the carbon shell-burning, the timescale of evolution is 
so short that the helium envelope will not expand appreciably. After the carbon zone 
becomes thin in mass, the growth of the core is controlled by the helium shell- 
burning. Now the evolution is relatively slow so that its evolution is similar to that of 
2M| helium star having the carbon-oxygen core which was studied by Paczyfiski 
(1971). The helium zone will expand to a red giant size and it overflows the Roche 
lobe. Then the star will cool down to leave an O-N e-Mg  white dwarf. 

When the companion star evolves to fill its Roche lobe, the mass begins to accrete 
onto the O-Ne - Mg  white dwarf. Evolution of this accreting white dwarf is essentially 
the same as those discussed in this section. Therefore,  the white dwarf collapses to 
form a neutron star. This event will be associated, if any, only with a very small 
amount of mass ejection. In this sense this is a quiet supernova to produce the 
neutron star. There will be only a slight sling shot and the binary orbit will remain 
almost circular, even if the companion star is less massive. Such quiet supernova 
seems to be required in interpreting the origin of some X-ray binaries (cf. van den 
Heuvel,  1977). 

10. Evolution of Massive Stars Toward Presupernova Stage 

In this section we will discuss the evolutions toward the formation of iron core for the 
stars of masses in the range of 12- !00M|  and the formation of oxygen core for the 
stars more massive than 100M| From the standpoint of presupernova models, main 
concerns are the values of masses of the iron core or the oxygen core which are 
formed during the course of evolution. 

10.1. SUMMARY OF EXISTING COMPUTATIONS 

Recently some numbers of computations are available which extend well up to stages 
of presupernovae as summarized in Table 10.1. In earlier computations, the hydro- 
gen-rich envelope and even some other layers were neglected. This was a single star 
approximation which was discussed in Section 2. Such approximations are specified 
in the second column of Table 10.1 by indicating the composition of their outermost 
layer (envelope). Here,  star indicates that the specified layer was fitted to the outer 
boundary conditions of a single star, while core does that it was fitted to the boundary 
conditions (2.23) and (2.24) at the core edge. The mass of the carbon-oxygen star, for 
example, is listed in the column of MH~, since the surface of the carbon-oxygen star 
would correspond to the bottom of the helium zone if it were taken into computation. 
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TABLE 10.1 

Summary of presupernova structure* 

207 

Approximation Mms/Me MH/Me MHe/M| M c / M e  M o / M e  Msi/M| 

R . . . 0  s tar . . .  

I . . . C + O  star 

S N . . .  He core 

A . . . H e  star. 

W . . . H  s tar . . .  

(25-30) 
(50) 

(>70) 

(15.6) 2.6 
(24) 5 
(35) lo 

(>70) 30 

(12) 3 1.6 
(30) 10 6.9 

(14) 4 1.8 
(19) 6 3.4 
(24) 8 4.9 
(33) 12 8.5 
(40) 16 12 
(70) 32 24 

15 4.5 2.6 
25 9.5 7.0 

2 
4 

10 

2.0 
2.1 
2.5 
9.6 

1.6 
1.9 

1.8 
1.8 
2.4 
2.7 
7.6 

1.9 
2.7 

1.5 
1.7 
2.8 

1.8 
1.6 
2.3 
3.7 

1.5 
1.7 

1.5 
1.7 
1.6 
2.0 
2.4 
3.4 

1.6 
1.9 

1.4 
1.4 
2.2 

1.4 
1 .0  
1.8 
3.0 

1.2 
1.4 

1.4 
1.4 
1.3 
1.6 

2.2 

1.4 
1.6 

* Note: 
R: Rakavy etaL (1967). 
I: Ikeuchi et al. (1971, 1972). 
SN: Sugimoto (1970b), Nomoto et al. (1979a). 
A: Arnett (1973b, 1977a, 1978a). 
W: Weaver etal. (1978). 

The corresponding masses of the main-sequence stars are also listed and enclosed 
with parenthesis. In modern computations the initial model is chosen to be a 
main-sequence star (Weaver et aL, 1978) which is specified as H-star in Table 10.1. 

Examples of chemical evolutions of the stars with Mms = 12, 30, and 60M| 
(Sugimoto, 1970b; Nomoto  et al., 1979a; Nomoto,  1974) are shown in Figures 8.1, 
4.4, and 4,5, respectively. For many models they are complicated because of many 
shell burnings in convective equilibrium. Therefore we listed in Table 10.1 only the 
masses of the oxygen core Mc, the silicon core 34o and the iron core Msi, which are 
taken from the last stage of each computation. We notice that the iron-core masses 
depend but slightly on Mms, and they are close to 1.4M| value of mass is close to 
the Chandrasekhar limit for a star with Ye = 0.5 (/Ze = 2), but exceeds this limit for 
pure 56Fe (Ye = 0. 464) which is 1.26Me. 

10.2.  EFFECT OF NEUTRINO LOSS AND MASS OF THE IRON CORE 

When the temperature of the star exceeds 5 x 10 8 K, the effect of neutrino loss by 
direct interaction between electrons and neutrinos becomes essential in determining 
thermal state of the stellar interior. Neutrinos take away the specific entropy of 
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matter with them. Then the central region of the star becomes almost isothermal 
when there is no nuclear energy generation therein. Evolutionary changes in the 
central temperature and density are drawn in Figure 5.1. 

When the core mass is greater than the Chandrasekhar limit, the central tempera- 
ture increases as the specific entropy is extracted from the central region of the star 
and the gravitational contraction follows it. On the contrary, the higher temperature 
results in the higher neutrino loss rate so that the neutrino loss works as a thermostat. 
Structure and evolution of such a cooled core are described as follows. Because of the 
weak temperature gradient in the core, the polytropic index between the pressure 

and the temperature 

n + l  = d In P /d  In T, (10.1) 

becomes large. It is reflected to a large polytropic index N between the density and 
the pressure which was defined by Equation (2.3). When gas is the ideal gas, these 
two polytropic indices are identical. When N becomes large in the core, the 
non-dimensional mass of the core ~bl, which was defined by Equation (3.6), becomes 
large as seen in Table 2.1. If we take such effect into account, the ordinate of Figure 
3.1 should read as M* = M(01,ad/&l), where &l, aa is its value corresponding to the 
adiabatic polytropic index Nad at the center of the polytrope. A thermal state of a star 
with a larger q~l corresponds to a star with a smaller mass M*.  Then the central 
temperature can stay relatively low despite the low entropy. This is the reason why 
the evolutionary loci in Figure 5.1 become less steep after the carbon-burning phase. 

Around and after the silicon-burning phase, however, the situation becomes quite 
different. Because of high central densities, the chemical potential of electrons 
becomes well relativistic even when the electron degeneracy is only incipient. Then 
the polytropic index N, which determines the stellar structure, becomes different 
very much from the polytropic index n, and the value of N becomes close to 3. For 
example, the state with log p = 8.032 and log T = 9.375 corresponds to We -- 7 and 
12e = ~OekT = 2.8meC 2, where me is the electron rest mass, and N varies only between 
2.7 and 3.3 corresponding to the range between the adiabatic and the isothermal 

(n = ec) temperature gradients. 
When the value of N becomes relatively close to N,d, Figure 3.1 becomes 

applicable again with M* nearly equal to M. Then the core cannot be sustained 
against the gravity and it begins to contract. The central temperature tends to rise up 
to the value which corresponds to the entropy in the central region. However,  such a 
large difference in 0 (see Equation (2.7)) between the center and the helium-burning 
shell Oc/OHe cannot be accommodated in a single (A >~ 0) core solution as discussed in 
Section 2.2. Then the U - V  curve should make a loop at the oxygen-burning shell to 
shift the core edge (A1 = 0) from the helium-burning shell to the oxygen-burning 

shell as discussed in Section 2.2 and as seen in Figure 2.2. 
As an initial value problem, this shift of the core edge is accomplished as follows. 

The oxygen-burning shell contracts together with the central region of the core. Then 
the rate of the oxygen shell-burning eo§ becomes larger than the neutrino loss rate 
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e~. This shell burning is unstable, makes an oxygen shell-flash and adds much 

entropy. It changes characteristics of the U - V  curve to make a loop near  the flashing 

shell. This is the same change as seen in the hydrogen shell-flash model  of nova 

explosion (Nariai et al., 1979). (When M,~s is as small as 12Mo, the mass contained 
between the oxygen-burning shell and the helium-burning shell is small, i.e., 
MHe-----Mo (Figure 8.1) so that the helium-burning shell remains to be the core edge 

(Figure 8.2).) 

When such shift of the core is accomplished, the silicon core of mass M o  can now 
be regarded to be the core in the sense as defined in Section 2. As discussed above the 

polytropic index N in the central region is now close to Nad and the relations in 
Figure 3.1 hold more  closely. Therefore,  the core mass has to be close to the value 

corresponding to the silicon-burning tempera ture  Tsi-~3 x 109K and the central 
density higher than 1 x 10 s g cm -s, i.e., close to the Chandrasekhar  limit. This is the 

reason why the masses of the silicon cores M o  depend weakly on the main-sequence 

m a s s e s  Mms as seen in Table 10.1. 
Further evolution is determined mainly by these silicon-core masses. Therefore  

the resultant masses of the iron cores Msi should lie in the range of 1 .4 -1 .6Me for the 
stars of Mms = 1 2 - 1 0 0 M o  as seen in Table 10.1. In the iron core the central density 

is higher and the relativistic effect is stronger than in the silicon core. Therefore,  the 

discussions, which were given for the silicon core, hold better  for the iron core, 

though the core edge should be taken as the oxygen-burning shell even for the iron 

core. 

10.3. SILICON FLASH 

Arnet t  (1977a) discussed silicon flashes in helium stars of masses in the range of 

4 -8Mo.  Such silicon flashes were also encountered in other numerical computat ions 
(Ikeuchi et aI., 1971, 1972; Nomoto  et al., 1979a). As discussed in Section 8.3, the 
oxygen flash is the last flash to take place because the curve for the tempera ture  

corresponding to the silicon burning (Tsi-~ 3 x 109 K) does not have a minimum in 

Figure 3.2. However ,  it is only under the assumption that ~bl is close to dh.ad. 
As discussed in the preceding subsection, dh becomes rather close to ~bl, ad in the 

silicon core, but &l is still somewhat  larger than ~bl. ~d. When the silicon burning 

begins, a convective core appears  and the effective polytropic index decreases. Then 
q~l approaches to ~bl, ad, and the central tempera ture  and density shift f rom the values 
corresponding to M *  to one corresponding to somewhat  larger mass M in Figure 3.1, 

which makes  the central tempera ture  increase. This increase in the central t empera-  

ture overweighs its decrease due to the addition of entropy by the silicon burning and 
the resultant expansion of the core. Thus the silicon flash is driven by a quite different 
mechanism from one driving the helium, carbon, or oxygen flash. 

In the case of Mm~ = 12Mo star, the silicon burning is ignited in an outer  shell of 
Mr -- 0 .18Mo as seen in Figure 8.1. An iron zone is formed which lies above the small 
silicon core. However  the central tempera ture  continues to rise and, after all, the 
silicon burning is ignited at the center of this small silicon core as seen in Figure 5.1. 
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Though numerical computat ion was stopped at this ignition stage, an iron core would 

be formed which extended from the center to Mr = 1.4M~. 

10.4.  PRESSURE DISTRIBUTION IN THE CORE 

The most important  structural parameters  in the presupernova models are the 

pressure distribution in the core, because the propagation of a shock wave is 

determined primarily by it (Section 6.4). In Figure 10.1 the pressure distributions at 
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Fig. 10.1. Pressure distributions at the presupernova stages for the stars of 30M| and 12Mo plotted 
against the Lagrangian mass coordinate Mr. Region of shell burning is shown by filled circle. The pressure 
gradient ]d In P/d In Mr] = U / V  is steepest at the oxygen-burning shell and helium-burning shell for the 

star of 30M| and 12M| respectively. (Taken from Nomoto et al. (1979a).) 

the presupernova stages are shown for the stars of 30M| and 12Mo against the 
Lagrangian mass coordinate (Sugimoto and Nomoto ,  1974; Nomoto  et al., 1979a). 
Arnet t  (1978a) published similar curves for the density distributions. As anticipated 
from the discussion in the preceding section, the pressure drops sharply near the core 
edge, i.e., near the transition region between the silicon zone and the oxygen zone. 

When we compare  the pressure distributions for different masses, they are almost 

the same as far as the regions within the core, i.e., interior to M r = M o ,  are 
concerned, because the core masses are almost the same for the two models and 
because the polytropic indices N in the cores are almost the same due to the 
relativistic degeneracy (Section 10.2). They can be well approximated by the 

polytropes of N = 3. 
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The pressure at the oxygen-burning shell is Po  = 2 x 10 23 d y n  c m  -2 for 30MQ star, 

which is only 0.03% of the pressure at the center. The mass contained in unit scale 

height of pressure is also as small as about 0 .06Mo at the oxygen-burning shell. Thus 
the core edge at Mo feels only this amount  of weight as discussed in Section 2.3. 
Therefore,  when we investigate the collapse of the iron core, its initial model can be 
well approximated consistently by a single star or even by the polytrope of N = 3 with 
M = Mo. However,  it has to contain the silicon zone within Mo,  though it is thin in 
mass. According to computations of the gravitational collapse due to the photodis- 
sociation of iron nuclei (Arnett, 1977b; Nomoto et al., 1979a), the silicon shell- 
burning is ignited in a relatively early stage of the collapse where the central density is 
about 3 x 109 g cm -3 and the contraction is still relatively slow. Then, the core edge 

shifts again to the silicon-burning shell at M r = M s i  = 1.38M| for the star of 
Aims = 30M| (Nomoto et al., 1979a), for instance, and its U - V  curve makes a small 
loop there. After this stage, the collapsing core is well approximated by a single star 
with M = Msi, if we do not intend to compute nuclear processes in the silicon zone. If 
we intend to do so, the single star of mass Mo  with the silicon zone is recommended 
for the initial model. 

1 0 . 5 .  O X Y G E N  C O R E  OF V E R Y  MASSIVE STARS 

In the carbon burning phase the neutrino loss is appreciable but is not so strong as to 
cool down the central regions of very massive stars. Therefore,  the mass of the 
oxygen core 34c is rather large (Arnett, 1978a). Because the corresponding specific 
entropy in the central region is high, electron-positron pairs appear and make the 
adiabatic exponent  ~, smaller than 4 as can be imagined from the model of M,,s = 
60M| in Figure 5.1. Then the core becomes dynamically unstable and begins to 

collapse as will be discussed in Section 11.7. Such evolution takes place in the star of 
Mms greater than 100Me (Arnett, 1973a). (See also Section 12.1.) 

11. Gravitational Collapse Triggered by Photodissociation of Iron Nuclei 

Different from presupernova models and from deflagration-type supernovae, phy- 
sics involved in the gravitational collapse are much less enlightened. Difficulties 
come from several sides. First of all the equation of state at high densities is still 
uncertain. Secondly, the neutrino transport in the transition densities between 
transparent and opaque stages is too complicated. Thirdly, the overall hydro- 
dynamics is poorly understood even though there are some numerical computations 
available. Moreover,  a slight change in an input parameter  makes sometimes a large 
difference in the hydrodynamical results. Therefore,  when a parameter  involved in 
the physical processes is to be changed, it is very difficult to foresee its effect to overall 
hydrodynamics, bouncing of the core, shock generation, mass ejection and so on. For 
example, it used to be thought that the general relativistic effect and the softness of 
the equation of state help the collapse into a black hole. Recently they are thought to 
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help explosion as will be discussed in Section 11.4. (These two statements are not 
necessarily contradictory, because the explosion is a different matter from the 
bouncing of the core.) Of course some explanation is given for it, but a quantitative 
understanding seems still remote. 

Therefore,  discussions in this section are limited to summarize recent trends of 
studies. Nevertheless, they seem to be in progress toward final understanding of the 
problem, and, recently, it seems hopeful to succeed in constructing theoretical 
models in which neutron stars are formed after the gravitational collapse consistently 
with known basic physical processes. 

11.1. ENERGETICS OF SUPERNOVA EXPLOSION 

Different from deflagration-type supernovae, the photodissociation of iron is an 

endothermic reaction. Despite that the mass ejection has to occur. The energy of the 
ejected matter is denoted by Ee i>  0 in which included are thermal and kinetic 
energies of the ejected portion of the envelope and of an outer part of the core if any. 
On the other hand, a remnant star should be formed whose total energy, i.e., the 
thermal plus gravitational energies, is denoted by E . . . .  If we denote the total energy 
of the presupernova by Etot < 0, these are related by 

E r e m  = E t o t  - Q n u c  - Qloss  - E e j ,  (11.1) 

where Qnuc>0 is the energy absorbed into the subatomic energy through the 
photodissociation and electron captures, and where Qloss > 0 is the energy emitted as 
the radiation, the neutrinos and the gravitational wave. Since Etot is negative, Erem is 
negative and its absolute value has to be large, i.e., the remnant has to lie deep in the 
gravitational potential well. This implies that the energy released by the gravitational 
contraction/collapse should be transferred to the ejected envelope with some 
efficiency. 

11.2. NEUTRINO DEPOSITION 

As a mechanism of this transfer Colgate and White (1966) was the first to propose the 
neutrino deposition. It assumed that the neutrinos emitted from the core stop and 

deposit energy in a mantle of the core and then blow it off. However,  this mechanism 
was not shown to operate with the conserved vector current theory of weak 
interaction, when more detailed neutrino opacity and the effect of general relativity 
were taken into computation (Wilson, 1971). 

As discussed in Section 1, the situation seemed to have changed when the 
existence of the neutral current in the weak interaction was proven experimentally. 
Because of it the neutrinos are scattered by nuclei coherently (Freedman, 1974), and 
the mean free path of the neutrino becomes of the order of the size of neutron star 
when the density becomes higher than 1 • 1012 g cm -3 (see e.g., Arnett,  1979a). It 
was anticipated that the neutrinos emitted from the core stop in the mantle where 
nuclei are still left undissolved. 
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The neutrino deposition is conveniently described in terms of the local Edding- 
ton's critical neutrino luminosity which is expressed as 

L . . . .  (Mr) = 4~rcGMr/x~, (11.2) 

with K~ being the neutrino opacity. In order to blow the mantle off, the neutrino 
luminosity has to be higher than L . . . .  (Mr) in the mantle, i.e., Lv > L . . . .  (mantle). On 
the other hand, Lv has to be lower than L . . . .  (Mr) in the core, i.e., L~ < L  . . . .  (core). 
These conditions require a high K~ in the mantle while a relatively low K~ in the core. 
They would be compatible if the mass number of nuclei were large enough in the 
mantle and the nuclei were dissolved in the core. 

However,  the quantitative studies do not allow such situations. The neutrino 
luminosity of L . . . .  (mantle)---1054 erg s -1 is required (see, e.g., Freedman et aI., 
1977), while only 1 x 1052 erg s -1 (Nadyezhin, 1977; Arnett,  1977b) of L~ is emitted 
from the iron cores of masses 1.4-2M| Wilson (1978) obtained much higher value 
of L~ (core) = 8 x 1053 erg s -z, but did not find any explosion for standard models. 

Thus, the neutrino opacity is so high in the core that the neutrinos are trapped in the 
core rather than are deposited in the mantle. 

1 1 . 3 .  N E U T R I N O  T R A P P I N G  I N  T H E  C O R E  

The neutrino o f  lower energy has a smaller scattering cross section. When the 
neutrino (optical) depth is of the order of unity, the lower energy neutrinos in 
momentum space escape more easily than those close to the neutrino Fermi surface. 
It distorts the distribution function of neutrinos, and then the new Fermi-Dirac 
distribution function has to be reestablished through the down-scattering in 
momentum space. This is a process leading to new thermal equilibrium, with which 
associated is the entropy production. Though this is a complicated neutrino transfer 
problem, it is taken into recent computations under some approximations (see e.g. 
Bruenn et al., 1978). 

However,  such complication arises only for densities below 1 x 1012 g cm -3. 

Above this density, neutrinos can be considered as trapped in the core (Arnett, 
1977b). For this trapping, the following mechanism of positive feed back operates 
(Sato, 1975). When some neutrinos are trapped and its Fermi energy becomes 
appreciable, the electron captures on nuclei, i.e., the neutronizations are suppressed. 

Because the proton to neutron ratio does not decrease too much, the neutron drip 
and /or  the melting of nuclei are prevented, and the nuclei keep their mass number at 
a high value. Such nuclei help to keep the neutrino opacity at a relatively high value 
by their coherent  scattering, which helps still more the neutrino trapping, and 
prevents still more the electron capture from reducing the lepton number. 

Thus the problem is to find how much neutrinos escape and /or  how much lepton 
number is reduced during the phase before the neutrinos can be regarded as trapped. 
Such problem is answered by computing the neutrino transfer just mentioned above 
together with the collapse of the core. The results are, for example, Ye = 0.2 and 
Y~ ----- 6 x 10 -2 for the core of mass 1.4M| which was formed in the helium star of 
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8M| (Arnett, 1977b). Here Y~ is the mole number of neutrinos contained in one 
gram of matter. These quantities should be compared with the values Ye = 0.01 and 
Y~ = 0 for which the effect of the neutrino trapping was not taken into account 
(Arnett, 1977b). 

1 1 . 4 .  C O R E  B O U N C E  A N D  S H O C K  P R O P A G A T I O N  

As a result of the neutrino trapping, the pressure exerted by leptons becomes 
appreciably large. Moreover, the lepton gas is extremely relativistic and its adiabatic 
exponent 7 is very close to 4. This affects the equation of state appreciably, especially 
for the density range between 1 x 1012 and 3 x 1013 g cm -3 (Arnett, 1979a). As 
another effect of the neutrino trapping, further thermodynamic change can be 
regarded to be adiabatic in the core. This makes the hydrodynamics of collapse much 
less complicated. Van Riper (1978, 1979) studied such adiabatic collapse of 1.4M| 
iron core in the frameworks of both Newtonian gravity and of the general theory of 
relativity. He replaced the equation of state with a simple adiabatic relation. He 
assigned the adiabatic exponent , / to  appropriate values in an outer and in an inner 
part of the core, and then he joined them continuously inbetween. This is not a 
modelling but a numerical experiment. However, it leads to a relatively clear 
understanding of the problem as will be discussed below. 

Recent computations for collapsing core in the framework of Newtonian gravity 
showed that the core bounces at relatively low densities in the range of 1013- 
1014 g cm -3 (Wilson, 1978). However, Van Riper (1979) has shown that such low 
density bounce may not take place in the case of general relativistic treatment and 
that the collapse will proceed to nuclear densities. Van Riper (1978) continued his 
adiabatic equation of state with 3' = 1.33 into the regimes of cold catalyzed matter 
under different assumptions, and he found that the bounce of the core takes place at 
the neutron-star density. After the bounce, a reflecting shock was found to develop. 
It was stronger'~as the amplitude of the bounce was larger, i.e., as the bounce took 
place at higher densities and the bounced layer came back to a higher level. This 
amplitude is larger when the equation of state is softer in the sense that the effective 
adiabatic index 7e~ =7-2.6Pc/0c  c2 (Chandrasekhar, 1964) is smaller due to the 
general relativistic effect. Such dependence on ,/was also seen in Newtonian case 
(Van Riper, 1978). The reason why such a soft equation of state results in a stronger 
explosion was discussed by Arnett (1979a). 

Van Riper and Arnett (1978) extended them still to include equations of state 
which seem to be more realistic, and they computed collapses for different masses. 
When they used the equation of state by Pandharipande (1971) with hyperons, for 
example, they obtained the explosion at nuclear densities for cores of masses smaller 
than 1.93Mo though not for masses larger than 1.94M| Thus the critical mass which 
discriminates between the explosion and the continued collapse is 1.94Mo for this 
equation of state. However, it is to be noticed that the critical mass depends much on 
the choiee of the equation of state. The reflected shock is stronger and the energies of 
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ejection is larger for the core mass below but closer to this critical mass. This is due to 
the stronger softening effect in 3'~. 

Though uncertainties are still involved in the equation of state in the bouncing 
core, it is hopeful that the cores of masses around 1.4-1.9Mo make explosion even 
within the regime of spherical collapse of the star. 

11.5. MASS EJECTION 

In numerical models of the collapse and the following explosion, only the iron core or 
at most iron core plus silicon zones are taken into computation. In many models, 
mass ejection resulted when the shock wave propagated through the outer layers of 
such stars. Though the amount of the ejected mass Me] changes very much depending 
on the initial conditions and the assumptions on physical data, it lies in the range of 
0-0.14M| (Van Riper, 1979). From the standpoint of the shock propagation more 
important is the pressure Pej of the initial model at the point where the mass of the 
overlying layers is equal to Mej. For the polytrope of N = 3 having the central density 
of Pc = 1 x 109 g cm -3 and temperature of Tc = 5 x 109 K, which corresponds to a 
pre-supernova model of 30Mo (Sugimoto and Nomoto, 1974; Nomoto et al., 
1979a), the ejected masses of Me] = 10 -3, 10 -2, and 10 -~ M correspond to Pe] = 
8 X 1021, 1 X 1023, and 3 x 1024 dyn cm -2 respectively. As seen in Figure 10.1, these 
pressures correspond to those for carbon, oxygen, and silicon zone, respectively. 
Therefore, the outer layers than those will be ejected, if the corresponding mass 
ejection resulted in the computation of collapsing iron star. When the shock 
propagates through these shells, nuclear deflagration will take place (Ohyama, 
1963), which is related both with the formation of elements and with the energetics of 
explosion. They are, however, still open questions. 

What happens when no bouncing takes place and thus no reflected shock is 
generated either? The outer shells of nuclear fuel will collapse and their tempera- 
tures will increase by the adiabatic compression. Then they will be ignited and suffer 
from explosive nuclear burning. 

Barkat etal. (1975) studied a similar problem for several cases where a weak shock 
is generated by the bouncing at the nuclear density. In most cases the shock is so weak 
that it passes the silicon zone without igniting it. Then the silicon zone continues to 
collapse and is compressed. Finally it is ignited, but then the gravitational potential 
energy of the silicon zone is already larger than the available nuclear energy so that 
the collapse cannot be reversed back into an explosion. What happens in the outer 
layers, i.e., in oxygen, carbon, and helium zones? In the helium zone, in particular, 
the nuclear energy will not be smaller than the gravitational potential energy at the 
time of the collapse and the ignition, as can be estimated from its value of the specific 
entropy. In this sense it seems to deserve further investigations. 

If electrons are strongly degenerate in outer shells, the nuclear fuels can be ignited 
only by adding a relatively small amount of extra energy so that even a partial 
neutrino deposition may be able to set a fire (ignitatia) to a carbon-oxygen zone 
(Gershtein etal., 1975; Chechetkin etal., 1979). However, such electron-degenerate 
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shells should have been formed in a star which will end up as an electron capture 
supernova, as discussed in Sections 8 and 9. Such incendiarism will trigger the 
explosion of the corresponding mass range if the nuclear bounce is not the case. 

11.6. F O R M A T I O N  O F  B L A C K  H O L E S  

If the nuclear bounce does not take place, the core will continue to collapse until a 
trapped surface is formed. This direct formation of a black hole is the case when the 
core mass lies between the maximum mass of hot neutron stars and 2.5M| (Van 
Riper and Arnett,  1978). 

If the equation of state for the nuclear matter gives high enough pressure, even a 
core in this mass range will make a bounce and the direct formation of a black hole 
will not take place. However,  if the outer layers, i.e., the silicon, oxygen and carbon 
layers, are not ejected as discussed in the preceding subsection, they will continue to 
accrete the bounced core. Then the core will collapse eventually, when its mass 
exceeds the critical mass for the neutron stars. If the outer layers are ejected by 
explosion, a hot neutron star will be left as a result of the bounce. However,  the 
neutron star will cool down afterwards and eventually collapse into a black hole, 
because the core mass is larger than the maximum mass of the cold neutron stars 
(Van Riper and Arnett,  1978). 

If the core mass is greater than 2 .5Mo it makes a bounce by thermal pressure (Van 
Riper and Arnett,  1978), i.e., at the density lower than the nuclear. However,  such 
bounce will be led to a collapse again (Van Riper, 1979) as the bounced core exceeds 
the limiting mass of the cold neutron star. 

In short, the star of large Mms collapses into a black hole in its final stage of 
evolution. However,  the value of mass which discriminates its fate between a neutron 
star and a black hole is still uncertain. In order to fix it further studies are necessary on 
the equation of state at high densities as well as quasistatic evolution and hydro- 

dynamic collapse of the stars. 

11.7. E L E C T R O N - P A I R  I N S T A B I L I T Y  IN T H E  M A S S I V E  O X Y G E N  C O R E  

The collapse triggered by electron-positron pair formation was computed by Barkat 
et al. (1967) and Fraley (1968) for the oxygen stars of masses 40-60Mo,  and by 
Arnet t  (1973a) for the helium stars of 64 and 100M| Such stars become dynamic- 
ally unstable when the central temperature reaches (1.5-2.2)x 109K and the 
adiabatic exponent becomes smaller than 4. As the collapse continues, the central 
density increases and then the center of the star gets out of the region with 3' < 4. The 
stability is recovered and the collapse is halted. At this stage the central temperature 
is 3.2 x 109 K and the oxygen burning is rapid enough to make the star explode. 

In the case of relatively less massive stars the total energy of the star remains 
negative so that a part of the stellar core is left as a remnant. For example, the helium 
star of 64M| leaves a silicon star of 2.2M| after explosion (Arnett, 1973a). This 
silicon star will evolve further in the same way as those which were formed deep 
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interior of the stars, i.e., the star will proceed to the formation of the iron core and 

then to its collapse. 
In the case of relatively massive stars, i e., in the case of the oxygen core (star) of 

masses 50-60M| on the other hand, a sufficient amount of nuclear energy is 
released by the explosive oxygen burning and the star is disrupted completely. 

The cases of supermassive oxygen stars of 10 3 and 10 4 M| were computed by 
Wheeler (1977). The stars are so massive that the collapse is not halted despite the 
explosive oxygen burning. The star proceeds further to enter another unstable 
region, i.e., to the photodissociation of silicon and iron nuclei. After all, the stars of 

such high mass become black holes. 

12. Summary and Observational Accounts 

In Section 1 the overall pictures of supernova explosions were summarized in the 
historical point of view. In the present section we will summarize the present-day 
pictures and the discussions given in the preceding sections from the observational 

point of view. 

12.1. SINGLE STARS 

(1) 4Mo~M, , s<<-8M|  In the stars of this mass range an electron-degenerate 
carbon-oxygen core is formed (Section 6). It evolves to become the carbon deflagra- 
tion supernova (Section 7). The deflagration wave propagates at a speed of vdef by the 
convective energy transport across the deflagration front, though vaef itself is difficult 
to determine (Section 6.5). A part of the core material is processed into the i ron-peak  
elements. The star disrupts itself completely and no remnant is left. 

The abundance in the ejected matter  and the energy of explosion depend upon 

the assumption on Vdef. As the deflagration is faster, more iron-peak elements are 
produced and thus more energy is released as summarized in Table 12.1 (Nomoto et 

al., 1976). If the slow deflagration is the case, the difficulty of overproduction of the 
iron-peak elements can be avoided. 

(2) 8MG ~< M,~s ~< 12M| In the stars of this mass range, an electron-degenerate 
O - Ne - Mg  core is formed (Section 8). Electron captures on 24Mg and 2~ trigger the 
collapse of this core, and then oxygen is deflagrated. The collapse overcomes the 
oxygen deflagration (Section 9.3). The core material is processed into NSE elements 

TABLE 12.1 

Energy of explosion and nuclear products of carbon deflagration supernova 

Energy M(C + O) M(Ne- Si) M(Fe) 

a d e  f = 0 . 0 5  , . . 5 . 0  • 1 0 4 9  e r g  1.03MQ 0.22M| 0.15Mo 

eeaef = 1.0 ... 1.33 x 10 sl erg 0.10M| 0.28M| 1.02M| 
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through the oxygen-deflagration front. It is likely that the collapsing core becomes a 
neutron star, because the extended thin outer layers and the envelope surrounding 
the collapsing core are easily blown off by the passage of a shock wave (Section 9.4). 
Since the carbon-oxygen zone and the helium zone may be thin, the ejected matter 
will contain a relatively small amount of silicon or the iron-peak elements. 

(3) 12M| ~ Mms ~< 100M| In the stars of this mass range an iron core is formed 
whose mass is about 1.4M| irrespective of its main-sequence mass (Section 10.2). 
The core collapses due to photodissociation of iron nuclei. Such a star has much 
masses in the silicon through carbon zones (Section 10.1). When the star explodes 
and leaves a neutron star (Section 11.4), these zones of heavy elements must be 
ejected (Section 11.5). The yields from these massive stars were discussed in great 
detail by Arnett  (1978b). If M,,s is greater than a critical mass, the star will collapse 
into a black hole. However, the value of the critical mass is uncertain (Section 11.6). 

(4) Mms ~> 100M| When a massive core is formed in the stars of this mass range 
(Section 10.5), it becomes dynamically unstable due to the phase change of electron- 
positron pair creations. It collapses and then explodes by the explosive oxygen 
burning, unless the star is not too massive (Section 11.7). Products of the explosive 
oxygen burning will be ejected. 

However, the stars more massive than 60M| suffer from pulsational instability 
which is excited by the nuclear energy generation (e-mechanism) (Schwarzschild and 
H/irm, 1959). Such star will lose a rather large fraction of its mass before the 
formation of a helium core, though its details are uncertain (Appenzeller, 1970; 
Ziebarth, 1970; Talbot, 1971a, b). Even if such massive stars survive the hydrogen- 
burning phase without losing their masses, the penetration of the convective 
envelope will reduce their core masses in later phases (Section 4.2). Therefore, such a 
massive oxygen core may be a ghost. 

All the stars described in this subsection have hydrogen-rich envelopes of red- 
giant sizes. Therefore, their supernova explosion will be observed as type II (see, e. 
g., Oke and Searle, 1974). 

12.2. HELIUM STARS AND TYPE-I SUPERNOVAE 

In typical type I supernovae, hydrogen-emission lines are absent, which implies that 
the abundance of hydrogen should be vanishingly low (see, e.g., Lasher, 1975; 
Wheeler, 1978). Nevertheless their presupernova stars are required to have such a 
large radius as l0  s Ro in order to interpret their optical characteristics of type I 
(Lasher, 1975). The helium stars of masses in the ranges of 1.5-2M| and 2-3M| can 
meet these two conditions for type I, because they have strongly electron-degenerate 
C-O core and O-Ne-Mg core, respectively (Sections 4.2, 8, and 9.5). Such helium 
stars may be formed in some close binary systems. They explode as the carbon 
deflagration supernovae (Section 6.5) or as the supernovae triggered by electron 
captures (Section 9.3). These supernovae yield some amount of S6Ni, which decay 
through 56Ni-~ 56Co -~ S6Fe and will supply energy required to explain light curves of 
type I supernovae (see, e.g., Arnett, 1979b). 
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1 2 . 3 .  A C C R E T I N G  W H I T E  D W A R F S  

In some close binary systems, one of the component star is a white dwarf. Mass 
accretion onto such a white dwarf triggers various types of unstable nuclear burning 
in its interior. When the accretion rate is relatively rapid, the nuclear burning is 
relatively weak and it may be just a weak flash or may result only in nova explosion. 
When the accretion is relatively slow, on the contrary, and when some conditions are 
met, such nuclear burning grows into a supernova explosion (Sections 5.4, 7, and 
9.5). 

(1) Detonation in helium white dwarf: When a certain amount of hydrogen-rich 
gas is accreted, the hydrogen shell-flash is triggered. A part of the accreted gas will be 
ejected back to space, but another part is processed into helium and accretes onto the 
helium core of the white dwarf. As a result of many cycles of the accretion and the 
shell-flash, the mass of the helium core grows appreciably (Section 7.1). Then, the 
helium burning is ignited. If it is ignited in the central region of the core with mass 
larger than 0.65M| the white dwarf explodes as a helium detonation supernova. 
The star is disrupted completely and the ejected matter consists, in most cases, of the 
iron-peak elements (Section 7.2). 

(2) Strong helium shell-flashes in carbon-oxygen white dwarfs: When the star is a 
carbon-oxygen white dwarf, the accreted gas will form a helium zone surrounding 
the C-O core. When the mass of the helium zone grows up to 0.1-0.4M| depending 
upon the accretion rate, the mass of the carbon-oxygen core and so on, the helium 
shell-flash is triggered. It will grow into another type of the helium detonation 
super-nova. The matter in the helium zone is processed into the o~-process elements 
which are not in NSE, or into the iron-peak elements depending on the density at the 
ignition. Such elements will be ejected into space and a carbon-oxygen white dwarf 
will be left as a remnant star (Section 7.3). Numerical models of such an explosive 
case are only preliminary and await further studies. 

(3) Carbon deflagration in the carbon-oxygen white dwarfs: When the accretion is 
relatively rapid, the helium shell-flash does not grow into the explosion but just 
processes helium into carbon. After many cycles of the helium shell-flashes, the mass 
of the carbon-oxygen core grows close to the Chandrasekhar limit (Section 5.4). 
Then the carbon burning is ignited and it results in the carbon deflagration supernova 
(Section 6.5). Its fate will be the same as the usual carbon deflagration supernova, 
which was discussed in Section 6, i.e., even in the case of the ignition at the highest 
densities, it seems very difficult that the deflagrated core should make a reimplosion 
thereafter by beta processes (Section 5.4). 

(4) Quiet supernovae and O-Ne-Mg white dwarfs: White dwarf having O-Ne-Mg 
core may be formed from a star of mass 8-12M| as a result of mass exchange in a 
close binary system. When this white dwarf accretes matter from its companion star, 
many cycles of various shell flashes take place and eventually its O-Ne-Mg core 
grows close to the Chandrasekhar limit (Section 9.5). When the central density 
becomes high enough, the electrons are captured on 24Mg and 2~ and the 
quasi-dynamic collapse of the core is triggered (Section 9.3). It proceeds in the same 
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way as the ordinary electron capture supernova which were discussed in Section 
12.1. In this case, however, the ejected mass is very small, for example, of the order 
of 10-1-10 -2 M| since the star has only a very thin hydrogen-rich envelope in mass. 
Thus the sling effect on the companion star is avoided, even when the mass of the 
companion star is very small. Such a supernova may be called a quiet supernova, 
which may be required to interpret some X-ray binaries. 

The supernova explosions of white dwarfs, which are discussed in (1)-(3) above, 
may be related with type I supernovae in elliptical galaxies, because the ages of their 
progenitors should be very old (Whelan and Iben, 1973). Because these supernova 
explosions are of deflagration/detonation type, appreciable amount of iron-peak 
elements will be ejected into space except for some cases of helium shell-detonation 
at low ignition densities. However, it is an open question whether the overproduction 
of iron-peak elements is serious or not in this interpretation of type I supernovae. 
The frequency of such supernova explosions is difficult to estimate, because they 
depend upon the situations in binary systems, i.e., upon accretion rates and ages since 
the formation of the white dwarf. This question is related also with a problem of 
galactic wind, which may eject heavy elements from the galaxy (Arnett, 1979b). 

In the presupernova stages of these white dwarfs they may be chemically peculiar 
and rich in carbon and the s-process elements, because of the following reasons. 
When the accretion is relatively rapid, the relatively weak helium shell-flashes recur 
many times. During the flash a convetive shell developes in the helium zone. It 
reaches the bottom of the hydrogen-rich envelope, and mixes protons down into the 
helium zone, because an entropy barrier is low in the case of thin hydrogen-rich 
envelope (Fujimoto, 1977). Then the s-process elements are synthesized and 
brought up to the stellar surface (Sugimoto et al., 1977). In this sense it is an 
interesting suggestion that the type I supernovae are statistically related with the 
hydrogen-deficient carbon stars (Wheeler, 1978). 

13. Future Problems 

Even within the framework of spherical single stars there still remain many problems 
awaiting further investigation. Concerning the hydrostatic presupernova evolution, 
they are evolution of the stars in the range of Mms = 8-12M| For these stars, the 
shell flashes and associated convection make their chemical evolution complicated 
(Section 8). However, they affect very much the element synthesis, because the 
number of such stars are appreciably large. For more massive stars silicon shell-flash 
may change somewhat the mass of the iron core (Section 10), which affect rather 
sensitively the supernova collapse through the iron core mass (Sections 11.4 and 
11.5). Structures in the regions with steep pressure gradiant and with different 
compositions require further detailed study, because they are important in deter- 
mining the shells and their chemical compositions which are to be ejected in the event 
of explosion (Section 10.2). For the mass range around and below 8M| the 
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penetration of the convective envelope has to be elaborated because it affects 

somewhat the upper mass limit for the carbon deflagration supernova (Section 4.2). 
However,  it requires more elaborate theory of convective heat transport in the stellar 

interior. 
More uncertainties exist in the supernova explosions themselves. One might still 

seek a possibility that the carbon burning in the degenerate core should be stablilized 
(Section 6.3). It is also uncertain what are the appropriate treatments of convection 
and of the propagation of the carbon deflagration front. They affect the element 
synthesis sensitively in this type of supernova (Section 12.1). In the electron capture 

supernovae we need to start with detailed models of presupernovae and include 
detailed network of electron captures on 23Na, 2Ssi, etc, photo-dissociation of 
daughter nuclei and subsequent captures of neutrons (Sections 8 and 9). Moreover,  
the computation should be extended to the stages of nuclear densities in order to 
see if a neutron star is actually formed (Section 9.4). For the collapse which is 
triggered by the photodissociation of iron nuclei, uncertainties in the equation of 
state at high densities reflected directly to the uncertainties in the discrimination 
of its fate between a neutron star and a black hole formation (Section 11). 
Moreover,  a clear-cut understanding of the hydrodynamics of the collapse is 

badly needed. 
The next and relatively easy step of investigations is to apply the present theories 

of spherical stars to the evolution of the stars in binary systems, where a variety of 
different conditions are realized in determining the evolution of the core (Section 7). 
Evolution in such conditions can be understood relatively easily if we have good 
understanding of the physics involved in the stellar structure. As shown in Sections 2 
through 4, discussions in the phase plane, i.e., in the U - V  plane help it very 
much. Though one may think it somewhat old fashioned, it can uncover even the 
inaccuracies which may be hidden in a huge pile of numerical results. As the 
numerical computations become more and more sophisticated, such an approach 
becomes more indispensable because any inconsistencies are possible to be hidden 
more easily behind the complications. 

If we do not want to enter into fine details, however, the global nature of the stellar 
evolution and supernova explosion may be regarded to be understood as far as the 
spherical stars are concerned. Therefore,  their natural extensions are to include 
non-spherical effects such as the effects of rotation and magnetic field, and non- 
spherical explosion of the star. In some cases such effects may be more important 
than the existing uncertainties in the regime of the spherical star. Unfortunately, 
however, such nonspherical effects can, in many instances, be treated quantita- 
tively only under rough approximations in mathematical treatment. On the contrary, 
the spherical star can be treated rather rigorously as far as the mathematical 
treatment is concerned, though the spherical symmetry itself is a strong restriction or 
approximation to the physics. Therefore,  these studies should be complementary to 
each other. However,  the non-spherical stars are out of the scope of the present 
review. 
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Appendix: Notations 

Listed are symbols which are used frequently or have generalized significance. 
Numbers quoted in parentheses denote the equation number in which the symbol is 
defined explicitly or implicitly, or used primarily. 

A 
B~(a, b) 
Cp 
Cs 
c(sub) 

E~ 
Ethr 
Ethr,0 
E~ 

[ 
g 
H 
Ho 
H (sub) 
k 
l 
L~(M~) 
L,~ 
L,, 
L~. cr(Mr ) 
M 
M c  
MCh 
MH 
MHe 
Mms 
Mo 
M, 
Msi 
MwD 
Mo 
M1 
N 

mass number of atomic nucleus. 
incomplete beta function. 
specific heat at constant pressure. 
sound velocity. 
center of the star. 
mean energy of an electron captured by nucleus. 
nuclear energy release from unit mass of the nuclear fuel specified by n. 
threshold energy (9.3). 
energy difference between the ground states of daughter nucleus and parent nucleus (9.1). 
energy of gamma ray emitted from daughter nucleus (9.1). 
mean energy of a neutrino emitted by electron capture (9.1). 
flatness parameter (2.17). 
local gravitational acceleration (2.16). 
atomic mass unit. 
scale height of pressure (2.22). 
hydrogen-burning shell. 
Boltzmann constant. 
mixing length of convection. 
local Eddington's critical luminosity (4.3). 
integrated nuclear energy generation rate by nuclear fuel specified by n. 
neutrino luminosity. 
local Eddington's critical neutrino luminosity (11.2). 
(current) mass of a star. 
core mass contained interior to the carbon-burning shell. 
Chandrasekhar 's limiting mass (9.6). 
core mass contained interior to the hydrogen-burning shell. 
core mass contained interior to the helium-burning shell. 
mass of a star at its zero-age min-sequence. 
core mass contained interior to the oxygen-burning shell. 
mass contained interior to a shell at r. 
core mass contained interior to the silicon-burning shell. 
mass of white dwarf (7.1). 
normalization factor to the non-dimensional mass (3.3). 
core mass (3.6). 
polytropic index between pressure and density (2.3). 
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n 

NA 
~ d  
N~ 
NSE 
P 
ph (sub) 
O~ 
R 
r 

Fo 

S 

si 
T 
U 
b/gas 

grad 

V 
Vdef 

X 
Y 
Y~ 
Y~ 
Z 
Z 

1 (sub) 
o~ 

3' 
d 
zlM(Hpl 
Eec 

En 

0 
0w 
K 

Kv 

A 

&ec 

tx 
•e 
/~e 
/J'i 

O3 

P 
GR 

Pcr 

og 
/)ign 

PNSE 
O- e 
r• 
7"h(Hv) 

polytropic index between pressure and temperature (10.1). 
Avogadro number. 
adiabatic polytropic index. 
number of electrons in unit mass of matter. 
nuclear statistical equilibrium. 
pressure. 
photosphere. 
mass fraction of the envelope exterior of the shell e (2.14). 
stellar radius. 
radial distance of a shell. 
normalization factor to the non-dimensional radius (3.2). 
specific entropy. 
specific entropy of ions. 
temperature. 
homology invariant defined by (2.1). 
specific internal energy of gas. 
energy of the radiation field per volume in which unit mass of gas is contained (6.4). 
homology invariant defined by (2.2). 
velocity of deflagration front (6.10). 
concentration by weight of hydrogen. 
concentration by weight of helium. 
mole number of electrons in one gram of matter (9.7). 
mole number of neutrinos in one gram of matter. 
concentration by weight of the elements other than hydrogen and helium. 
shock strength (6.6). 
usually denotes the core edge (2.13). 
ratio of the mixing length to the scale height of pressure (I/Hp). 
ratio of gas pressure to the total pressure. 
ratio of the specific heats. 
locus of singularity in U-V plane (2.5). 
mass contained within unit scale height of pressure (4.4). 
energy rate by electron captures (9.5). 
nuclear energy generation rate by the nuclear fuel specified by n. 
neutrino loss rate. 
neutrino loss rate excluding the neutrinos from the electron captures (9.4). 
non-dimensional density (3.1). 
P/p, not the non-dimensional temperature (2.7). 
Weinberg's angle (5.8). 
opacity 
neutrino opacity (11.2). 
describes the effect of electron degeneracy in equation of state (2.19). 
rate of electron capture. 
mean molecular weight. 
mean molecular weight of electrons. 
chemical potential of an electron excluding the rest mass (8.1). 
mean molecular weight of ions. 
non-dimensional radius (3.1). 
non-dimensional pressure (3.1). 
matter density. 
critical density above which the general relativistic instability sets in. 
critical density for reimplosion of the core by beta processes (Section 5). 
density at the ignition. 
density above which the deflagrated matter results in NSE composition. 
non-dimensional entropy of electron, per one electron in units of k(9.2). 
timescale of free fall (6.2). 
timescale of heat transport over unit scale height of pressure (4.4). 
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~e 

nuclear timescale for a change in temperature (6.1). 
non-dimensional mass (3.1). 
chemical potential of an electron in units of kT (8.1). 
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