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PREFERENCE-BASED DEONTIC LOGIC (PDL) 

Abstract. A new possible world semantics for deontic logic is proposed. Its intuitive 
basis is that prohibitive predicates (such as “wrong” and “prohibited”) have the pro- 
perty of negativity, i.e. that what is worse than something wrong is itself wrong. The 
logic of prohibitive predicates is built on this property and on preference logic. Pres- 
criptive predicates are defined in terms of prohibitive predicates, according to the well- 
known formula “ought” = “wrong that not”. In this preference-based deontic logic 
(PDL), those theorems that give rise to the paradoxes of standard deontic logic (SDL) 
are not obtained. (E.g., O(p & q) + Op & Oq and Op + O(p v q)) are theorems of 
SDL but not of PDL.) The more plausible theorems of SDL, however, can be derived 
in PDL. 

1. INTRODUCTION 

Modem deontic logic began with the introduction by von Wright 
(1951) of what is now called “standard deontic logic” (SDL). This 
system provides a logic for a predicate “0” for moral prescription, 
commonly read “it is obligatory that”. The SDL logic for the 0 
predicate is very strong, and much of the efforts devoted to deontic 
logic have been concerned with the paradoxes that arise in SDL and 
related systems. (Cf. Fnrllesdal and Hilpinen 1970, for an overview.) 
This situation seems to depend, to a large degree, on the lack of a 
credible semantical basis for a weaker deontic logic that avoids the 
paradoxes of SDL. The purpose of the present article is to provide 
such a semantical basis. 

2. A SEMANTICAL FRAMEWORK 

2.1 States of Aflairs 

The formal language will be taken to contain expressions for (factual) 
states of affairs. Classical propositional logic and the intersubstitutiv- 
ity of logically equivalent expressions will be assumed. A consequence 
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relation (Cn) will be introduced to represent logical consequence and 
to define consistency. 

Among the expressions for states of affairs are some that represent 
human actions. Normative concepts such as “ought” and “wrong” 
will be assumed to refer exclusively to human actions in the terminol- 
ogy of Oppenheimer (1961, pp. 15-23), i.e. to human will-controlled 
behaviour. (A normative statement that refers to a state of mind can 
be construed as referring to will-controlled behaviour that brings 
about that state of mind.) 

DEFINITION Dl. The factual language L is a set of propositions 
that is closed under the operations of classical propositional logic. 

There is a set I of individuals. Some of the elements of L are action 
statements. Each of them represents an action, i.e. will-controlled 
behaviour, by a specified element or subset of I. 

The consequence operator Cn on L is a function from P(L) to 
Y(L) such that for all subsets S and T of L and elements p and q of L: 

(1) S G Cn(S) (inclusion) 

(2) Cn(S) = Cn(Cn(S)) (iteration) 

(3) If S E T, then Cn(S) G Cn(T) (monotony) 

(4) If p can be derived from S by classical propositional 
logic, then p E Cn(S). 

(5) If (p + q) E Cn(S), then q E Cn(S u {p}) (deduction) 

A set S G L is consistent iff there is no element p E L such that both 
p E Cn(S) and -p E Cn(S). An element p of L is consistent iff {p} is 
consistent. 

The precise logical form of the action statements need not be specified 
for the present purposes. One of the possible forms is Dip, “i brings it 
about that p”. (Kanger 1957). 

2.2 Perspectives and Alternatives 

In answering the question “What should the person i do?“, we see the 
world from the perspective of i. Only such states of affairs that concern 
actions by i can be part of the answer to this question. The rest of the 
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states of affairs are not considered to be variables, since they are 
uncontrollable from the perspective of i. 

A moral perspective may comprise the actions of more than one 
individual. In answering the question “What should i and j do?‘, we 
take those states of affairs into moral consideration that represent 
actions by i and/or j. 

The normative status of an action may very well vary with the 
choice of a moral perspective. Actions by i that are morally required 
from the perspective of i may not necessarily be morally required 
from the perspective of i-and-j. The present article will deal with 
normative statements as seen from a fixed perspective, that may be 
either individual or collective. The relationships between moral pre- 
scriptions from different perspectives will not be treated here. 

DEFINITION D2. Let G be a subset of I. Then a maximal action set 
X for G is a set whose logical closure Cn(X) is a maximal consistent 
set of such action statements in L that represent actions by elements 
or subsets of G. 

Further, an alternative set A for G is a non-empty set of maximal 
action sets for G. 

Let i be an element of Z. Then X is a maximal action set for i iff it 
is a maximal action set for {i}. Further, A is an alternative set for i 
iff it is an alternative set for {i }. 

An alternative set for G may consist of all maximal action sets for G. 
It may also consist of all feasible or practically possible maximal 
action sets for G. (In the former case, practicability may be embedded 
in the consequence relation Cn.) 

In what follows, normative discourse will be assumed to pre- 
suppose an alternative set A. Intuitively speaking, this set consists 
of all the completely described alternatives that are under moral 
consideration. 

2.3 Preferences 

Before introducing normative predicates (such as “ought”, “wrong”, 
etc.), a dyadic value predicate for bettemess (of actions) will be intro- 
duced. The common concept of bettemess refers to single actions, 
rather than to completely specified alternatives. In spite of this, the 
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betterness relation on single actions will be based on a betterness rela- 
tion for completely described alternatives. The reason for this con- 
struction is that it provides a more solid basis for the formal system. 
Preferences between completely described alternatives depend on less 
uncertain intuitions, since the problems connected with comparisons 
of negated and disjunctive states of affairs do not arise. (Hansson 
1989). 

In addition to a relation of “better” (strict preference), a relation 
of “equal in value to” (indifference) will be needed. These are the 
two basic comparative value concepts. (Halldtn 1957, p. 10). How- 
ever, the most economical axiomatic approach is not to introduce 
them both directly. Instead, the pre-ordering “better or equal in 
value to” (weak preference) will be used as a primitive relation in the 
standard manner. (Sen 1970, pp. 7-l 1. Cf. Bengt Hansson 1968, 
pp. 426-427.) 

DEFINITION D3. A weak holistic preference relation on an alter- 
native set A is a reflexive and transitive relation 2 on A, such that if 
Cn(X) = Cn(Y), then X > Y. 

> is a strict preference relation, such that for all elements X and Y 
ofA,X> YiffX> Yandnot Y > X. 

= is an indifference relation, such that for all elements X and Y of 
A,X= YiffX> YandY>X. 

> is read “better than or equal in value to”, > “better than”, and = 
“equal in value to”. 

It should be noted that 2 need not be connected, i.e. the definition 
does not prescribe that X 2 Y v Y > X for all X and Y in A. 

A comparison between two single actions may yield different results 
depending on the rest of the actions performed. Thus, the action p 
may be better than the action q if, for the rest, the actions of the 
maximal action set X, are performed, whereas q is better than p if for 
the rest the actions of X, are performed. The relation R, is intended 
to capture this relative notion of betterness. 

DEFINITION D4. (1) An element Y of A is an X-close representa- 
tion of p iff p E Cn( Y), and there is no Y’ such that p E Cn( Y’) and 
YnXc Y’nX. 



PREFERENCE-BASED DEONTIC LOGIC (PDL) 79 

(2) The ordered pair (Y, Z) is a maximally alike X-close repre- 
sentation of (p, q) iff Y is an X-close representation of p, Z is an 
X-close representation of q and there is no ordered pair (Y’, Z’) 
such that Y’ is an X-close representation of p, Z’ is an X-close repre- 
sentation of q and Y n Z n A’ c Y’ n Z’ n X. 

DEFINITION D5. Let X be an element of A. Then the preference 
relation R, is defined as follows: 

pR,q iff for all Y, Z E A: if (Y, Z) is a maximally alike 
X-close representation of (p, q), then Y > Z. 

pR,q iff pR,q and not qR,p 

PZA ifW’Gq and qR,p. 

pR,q is read “In (the maximal action set) X, p is better than or equal 
in value to q”. pP,q is read “In (the maximal action set) X, p is better 
than q”. pZ,q is read “In (the maximal action set) X, p is equal in 
value to q”. 

According to definition D5, for p to be at least as good as q in X, it 
must be the case that a maximal action set Y is always at least as 
good as a maximal action set Z if (1) Y is the result of a minimal 
change of X to make p true (Y is an X-close representation of p) (2) 
Z is the result of a minimal change of X to make q true (Z is an 
X-close representation of q), and (3) given this, Y and Z are as similar 
as possible (maximally alike). 

This “local” preference relation may be taken as a starting-point 
for developing global preference relations (“in all maximal action sets, 
p is better than 4”). This, however, will not be needed for our present 
purposes. 

As is stated in the following theorem, the relation R, is reflexive. 
For some other logical properties of preference relations of this type, 
see Hansson (1989). 

THEOREM Tl. pR,pfor all p and all X E A. 

The proofs of this and the following theorems are given in the 
appendix. 
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2.4 Normative Predicates 

There are three major classes of normative predicates, namely those 
that are prescriptive (“ought”), prohibitive (“wrong”), and permissive 
(“allowed”). In each of these classes, there may be predicates of dif- 
ferent strengths (as in the prescriptive case: “advisable” - “ought” 
- “must”). 

Let W be a prohibitive predicate, and let p and q be two elements 
of its domain. If W holds for p, and p is better than or equal in 
value to q, then W also holds for p. As an example, what is worse 
than something wrong is also wrong. This property will be 
called negativity (Hansson, 1988). Among the normative predi- 
cates, it will be taken as the defining characteristic of prohibitive 
predicates. 

DEFINITION D6. A monadic predicate W over the alternative 
set A has the property of negativity if and only if: Wq holds for all 
q such that for all X E A there is a p such that Wp and pR,q. 

A normative predicate W over A that has the property of negativity 
is also called a prohibitive predicate over A. 

Prescriptive predicates do not have the corresponding property at the 
opposite end of the value scale. In other words: What is better than 
something morally required is not necessarily morally required. This 
can be seen from many examples of supererogatory actions. Instead, 
however, prescriptive predicates can be introduced as converses of 
prohibitive predicates. E.g., “ought” may be defined as “wrong that 
not”. 

DEFINITION D7. A monadic predicate 0 is prescriptive iff there is a 
negative predicate W such that for all p, Op iff W - p. Then W is the 
converse predicate of 0. 

Similarly, permissive predicates may be defined as negations of the 
converses of prohibitive predicates. Thus, “allowed” may be defined 
as “not wrong that not”. 
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3. THE LOGIC OF PRESCRIPTIONS 

The following theorem holds in general for prescriptive predicates as 
of definition D7. 

THEOREM T2. Let 0 be a prescriptive predicate. Then for all 

PI 

(1) oP&oq-+o(P&qh 

(2) OP & O(P + 4) + O(P & 4). 

(3) oP&oq+o(P v 4). 

Further results can be obtained if it is assumed that, intuitively speak- 
ing, it is an option to do nothing wrong. In the formal language, this 
assumption will be represented by the property of the predicate to be 
obeyable. 

DEFINITION D8. A prohibitive predicate W is obeyable iff there is 
at least one X f A such that - Wp holds for all p E Cn(X). A 
prescriptive predicate is obeyable iff its converse negative predicate is 
obeyable. 

THEOREM T3. Let 0 be a prescriptive predicate. Then: 

(1) - O(p & -p) holds 1% 0 is obeyable. 

(2) If 0 is obeyable, then Op --, - 0 - p holds for all 
P. 

The logic of obeyable prescriptive predicates will be called preference- 
based deontic logic (PDL). 

Stronger logical principles will be obtained if the further assump- 
tion is added that, intuitively speaking, whatever only occurs together 
with something wrong is itself wrong. This will be called the association 
principle. 

DEFINITION D9. Let W be any monadic predicate. Then p is 
W-associated iff for all X E A, if p E Cn(X), then there is a q E Cn(X) 
such that Wq. 
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A prohibitive predicate W follows the association principle ii-Z If p is 
W-associated, then Wp. A prescriptive predicate 0 follows the associ- 
ation principle iff its converse negative predicate follows the association 
principle. 

THEOREM T4. Let 0 be a prescriptive predicate that follows the 
association principle. Then for all p: 

(1) If p + q is true in all elements of A, then Op + Oq. 

(2) If p + q is a theorem, then Op --f Oq. 

(3) O(P & 4) + OP & Oq. 

(4) OP + OCP v 4). 

(5) O(P v -PI. 

THEOREM T5. Let 0 be a prescriptive predicate over a finite alter- 
native set A. Then the association principle holds lJ7it holds that: If 
p + q is true in all elements of A, then Op + Oq. 

Standard deontic logic follows from (1) of theorem T2, (2) of theorem 
T3 as applied to an obeyable predicate, and (3) and (5) of theorem 
T4. (Fsllesdal and Hilpinen 1970, p. 13). Thus, the addition to PDL 
of the principle of association yields a complete SDL. 

Parts (2)-(4) of theorem T4 are all closely connected to the well- 
known paradoxes of standard deontic logic. None of them is deriv- 
able in PDL. 

Part (3) of theorem T4 may be called the principle of division 
of duties. From it follows that an obligation to a whole implies an 
independent obligation to every part of it. The implausibility of this 
principle was indicated in informal philosophy before the advent of 
modern deontic logic, for instance by Menger (1934, quoted by Ross 
1941, p. 68). Weinberger (1970) and others have argued against its 
inclusion in deontic logic. As was pointed out by Stranzinger (1978), 
several of the paradoxes of deontic logic depend on this principle. 
Von Wright, too, has concluded that “in a deontic logic which rejects 
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the implication from left to right in the equivalence O(p & q) = 
Op & Oq while retaining the implication from right to left, the 
‘paradoxes’ would not appear.” (von Wright 1981, p. 7). 

The strong standing of the principle of division in traditional deontic 
logic does not seem to be based on considerations of the logic of 
moral discourse. One source for belief in this principle is the analogy 
with alethic modal logic (where q (A dz B) + q A is accepted for 
good reasons). Another, closely related, source is the fact that the 
principle of division follows from the semantic principle of 
“deontically perfect worlds” that has been taken to be the only 
plausible basis for a possible world semantics for deontic concepts. 

Part (2) of theorem T4 was called by Vermazen (1977) the principle 
of inheritance of obligations. It refers to situations “where the attempt 
to do one thing unavoidably involves one in an attempt to do some- 
thing else, and where consequently an ‘ought’ attached to the first 
action is inherited by the second.” (p. 14) It logically implies the 
principle of division. Even apart from this, it is a highly contro- 
versial deontic principle. “[T’lhe fact that we can’t help but bring 
about the necessary consequences of our action does not mean we 
have an obligation to bring them about.” (Sayre-McCord 1986, 
p. 188). 

Part (4) of theorem T4 may be called the principle of disjunctive 
extension. It gives rise to Alf Ross’s paradox: If I ought to mail a 
letter, then I ought to mail or bum it. (Ross 1941) It is, again, a 
principle whose exclusion from PDL should be welcomed. 

In SDL, norms are assumed to refer exclusively to what obtains in 
the best possible alternatives. As was noted by Dayton (1981, p. 138), 
“[tlhe ideal standard for a given world is an uxiulogicul standard, not 
a deontological one: worlds [in deontic logic] are ideals in the sense of 
being subjunctively best worlds.” In SDL, only what is compatible 
with the best is not wrong. This property will be called perfectionism. 

DEFINITION DlO. A prohibitive predicate W fulfils perfectionism iff: 

Wp iff for all X E A, if p E Cn(X) then there is YE A 
such that Y > X. 
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A prescriptive predicate fulfils perfectionism iff its converse prohibi- 
tive predicate fulfils perfectionism. 

THEOREM T6. Perfectionism implies the association principle. 

Perfectionism, as of definition DlO, does not imply the existence 
of at least one best alternative. This property will be introduced as 
follows: 

DEFINITION Dl 1. The upper limit-assumption is fulfilled in the 
alternative set A iff there is at least one element X E A such that 
Y > X does not hold for any Y E A. 

(Definition Dll yields a weaker condition than that of a “limited value 
structure” according to Lewis (1974, p. 5) or the “limit-assumption” 
of von Kutschera (1975, p. 204). These concepts exclude the existence 
of any infinite sequence of better and better alternatives, whereas defi- 
nition Dl 1 merely states that there is at least one alternative that is 
not an element of such a sequence.) 

THEOREM T7. Let 0 be a prescriptive predicate that fulfils perfec- 
tionism and the upper limit-assumption. Then it is obeyable. 

It follows from theorems T6 and T7 that SDL holds for all pre- 
scriptive predicates that fulfil perfectionism and the upper limit- 
assumption. 

4. CONCLUSION 

Preference-based deontic logic (PDL), is based on plausible semantical 
principles, mainly on the negativity of prohibitive predicates. The 
theorems that can be derived from PDL do not give rise to any of the 
well-known paradoxes of standard deontic logic (SDL). It is 
proposed, therefore, that PDL reflects the structure of ordinary 
deontic discourse better than does SDL. 
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APPENDIX: PROOFS 

Before the proofs of the theorems, two definitions (D12-D13) and four 
lemmas (Ll-L4) will be given. Definitions 012 and 013 and Lemma Ll 
will be used in the rest of the appendix without explicit reference. 

DEFINITION D12. (Alchourron and Makinson 1981). Let X and Y 
be two sets of propositions. Then XI Y is the set of all consistent 
subsets 2 of X such that Y n Cn(Z) = 0 and that there is no con- 
sistent set Z’ such that Z c Z’ E X and Y n Cn(Z’) = 0. 

DEFINITION D 13. Given an alternative set A : 

(1) Cn, is an operation on sets of propositions such that 
p E Cn,(S) iff for all X E A, if S E Cn(X), then 
p E Cn(X). 

(2) A set S is A-consistent iff it is a subset of Cn(X) for 
some element X of A. It is A-inconsistent iff it is not 
A -consistent. 

(3) S I, T is the set of A-consistent subsets V of S such that 
(1) T n Cn,(V) = 0, and (2) there is no A-consistent 
set V’ such that V c I/’ s S and T’ n Cn,( V) = 0. 

LEMMA Ll. Let A be an alternative set. Then Cn, fuljls the following 
properties: 

(1) Ifp E Cn(S), then p E Cn,(S). 

(2) S C Cn,(S) (inclusion). 

(3) Cn,(S) = Cn,(Cn,(S)) (iteration). 

(4) Zf S E T, then Cn,(S) E Cn,(T) (monotony). 

(9 (p + q) E Cn,(S) zf q E Cn,(S u {p}) (deduction). 

It follows from parts (2)-(4) of the lemma that Cn, is a consequence 
operator. 

Proof of Lemma Ll. (1) Suppose that this part of the lemma does 
not hold. Then there are p and S such that p E Cn(S) and p 4 Cn,(S). 
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The latter means that there must be an X E A such that S E X and 
p 4 Cn(X), which is impossible. 

(2) Suppose this does not hold. Then there must be a p such that 
p E S and p $ Cn,(S). From p $ Cn,(S) follows that there is an 
element X of A such that S G X and p # Cn(X), which is not possible. 

(3) Since Cn,(S) E Cn, (Cn,(S)) follows from part 2 of the present 
lemma, it remains to show that Cn,(Cn,(S)) c Cn,(S), i.e. that for 
all p, if p E Cn,(Cn,(S)), then p E Cn,(S). 

Let p be an element of Cn,(Cn,(S)), and let X be an element of A 
such that S G Cn(X). It follows from S E Cn(X) and the definition 
of Cn, that Cn, (S) G Cn(X). Further, sincep E Cn, (Cn, (S)) it follows 
from Cn,(S) E Cn(X) that p E Cn(X). Thus, for all X such that 
S E Cn(X) it follows that p E Cn(X). Then p E Cn,(S). 

(4) Let p be an element of Cn,(S). Then for all X E A, S c Cn(X) 
implies p E Cn(X). Since S z T if follows that for all X E A, 
T E Cn(X) implies p E Cn(X). Thus p E Cn,(T). 

(5) First suppose (p + q) E Cn,(S). Then for all X E A, 
S G Cn(X) implies (p --f q) E Cn(X). Now suppose q is not an 
element of Cn,(S u {p}). Then there is an X E A such that (S u (p}) E 
Cn(X) and q 4 Cn(X). Since Cn(X) is inclusion-maximal, from 
q # Cn(X) follows -q E Cn(X). Thus (p, -4, p + q} E Cn(X), 
making X inconsistent, contrary to the conditions. 

Next, suppose q E Cn, (S u {p}). Let X be any element of A such 
that S E Cn(X). From q E Cn,(S u {p}) and the consistency of X 
follows that (p & -4) 4 Cn(X). Then, since Cn(X) is inclusion- 
maximal, follows -(p & -4) E Cn(X), i.e. p + q E Cn(X). Thus 
P + 4 E CnAS>. 

LEMMA L2. Suppose -p E Cn(X), where X E A, and S E X I, i-p}. 
Then there is an element Z of A such that Cn(Z) = Cn,(S u {p}). 

Proof of Lemma L2. Since -p 4 Cn,(S), S u (p} is A-consistent. 
To prove maximality, let z be an expression such that S u {p, z} is 
A-consistent. We have to prove that z E Cn, (S u {p}). 

Since -p E Cn(X) and Cn(X) is maximally consistent, (p + z) E 
Cn(X). Now suppose that (p + z) $ Cn,(S). Then, since S E 
X 1, i-p}, -P E Cn,(S u {P -+ z}), i.e. ((p + 4 + -p) E Cn,(S), 
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i.e. -(p & z) E Cn,(S), so that S u {p, z} is A-inconsistent, contrary 
to the conditions. Thus it is not the case that (p + z) $ Cn,(S). Thus 
(p + z) e Cn,(S), i.e. z E Cn,(S u {p}). 

LEMMA L3. Y is an X-close representation of p zflp E Cn( Y), Y E A, 
andYnXeXIA{-p}. 

Proof of Lemma L3. Part 1: Suppose that p E Cn( Y), Y E A, and 
Y n X E X I, l-p}. Further suppose Y is not an X-close represen- 
tation of p. Then, by Definition 04, there is an element Y’ of A such 
that p E Cn( Y’) and that Y n X c Y’ n X. Then there is a z such 
thatzEY’nXandz$YnX.SincezEXitfollowsbyYnXE 
X I, {-p} that -p E Cn,(( Y n X) u {z}). Thus (z -+ -p) E 
Cn,(YnX)and,sinceYnXc Y’nX,also(z+ -p)~ 
Cn, (Y’ n X). Thus, since Cn, (Y’ n X) c Cn, (Y’), it follows that 
(z + -p) E Cn,( Y’). Since p E Cn( Y’) and z E Y’ it follows that Y’ 
is inconsistent, contrary to the conditions. 

Part 2: Suppose that Y is an X-close representation of p, and 
that Y n X is not an element of X I, f-p>. Since p E Cn( Y), 
-p $ Cn, (Y n X). Thus there is a set S such that Y n X c S and 
S E X I, {-p}. Let Y’ be an element of A’ such that -p E Cn(Y’) 
and S G Y’ n X. (Cf. Lemma L2). Then Y’ E A, p E Cn(Y’), and 
Y n X c S c Y’ n X, so that Y n X c Y’ n X. Thus Y is not, an 
X-close representation of p. 

LEMMA L4. Zf Y is an X-close representation of p, and Z is an 
X-close representation of q, then ( Y, Z ) is a maximally alike X-close 
representation of (p, q) zj- Y n Z n X E X I, {-p, -4). 

Proof of Lemma L4. In the proof we assume that Y is an X-close 
representation of p and that Z is an X-close representation of q. 

Part I: Suppose Y n Z n X E X I, ( --p, -4). Further suppose 
that (Y, Z) is not a maximally alike X-close representation of 
(p, q). Then, by definition D4, there are Y’ and Z’ such that Y’ is 
an X-close represention of p and Z’ an X-close representation of q, 
and that Y n Z n X c Y’ n Z’ n X. Then there is a z such that 
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z~Y’nZ’nXandz#YnZnX.Sincez~XandYnZnX~ 
X I, {-p, -q}, it follows that either -p or -q is an element of 
Cn, (( Y n Z n X) u {z}). Without loss of generality, we may assume 
that -p E Cn,(( Y n Z n X) u {z}). Then (z + -p) E Cn, (Y n 
Z n X). Further, since Y n Z n X c Y’ n Z’ n X, it follows that 
(z + -p) E Cn,( Y’ n Z’ n X). Then, since Cn,(Y’ n Z’ n X) c 
Cn, (Y’), it follows that (z -+ -p) E Cn, (Y’). Since, however, 
p E Cn( Y’) and z E Y’, this makes Y’ inconsistent, contrary to the 
conditions. 

Part 2: Suppose Y n Z n X is not an element of X I, ( -p, -q}. 
Then, since neither -p nor -q is an element of Cn,( Y n Z n X), 
thereisasetSsuchthat YnZnXc SandSEXIA(-p, -4). 
Since S is a subset of X and -p # Cn,(S), there is a set T, such that 
S G T, and T, E X I, {-p}. Similarly, there is a set T, such that 
S G Tz and T, E X I, ( -4). 

Let Y’ and Z’ be elements of A such that Cn( Y’) = Cn, (T, u (p>) 
and Cn(Z’) = Cn,(T, u (9)). (Cf. Lemma L2.) Then Y’ is an X-close 
representation of p and Z’ an X-close representation of q, and 
YnZnXcSandSs Y’nZ’nX,i.e.YnZnXc Y’n 
Z’ n X. It follows that (Y, Z) is not a maximally alike X-close 
representation of (p, q). 

Proof of Theorem TI. Let (Y, Z) be a maximally alike X-close repre- 
sentation of (p, p). Then Y is an X-close representation of p so that, 
by Lemma L3, Y n X E X I, {-p]. Similarly, Z n X E X I, {-p}. 
Further, by Lemma L4, Y n Z n X E X I, {-p}. It follows, since 
no element of X I, (-pj is a proper subset of another element of 
X I, {-p}, that Y n X = Z n X. Thus there is an element 
S E X I, {-p} such that S G Y and S E Z. Further, p E Cn( Y) 
and p E Cn(Z). Thus Cn,(S u {p}) is both a subset of Cn(Y) and a 
subset of Cn(Z). 

There are now two cases: 

(i> If -p $ Cn(X), then S = X = Y = Z. 

(ii) If --p E Cn(X), then by Lemma L2, Cn(Y) = Cn(Z). 



PREFERENCE-BASED DEONTIC LOGIC (PDL) 89 

In both cases it follows by Definition D3 that Y 2 2. Since this 
holds for all (Y, Z) that are maximally alike X-close representations 
of (p, p), it can be concluded that pR,p. 

Proof of Theorem T2. Part 1: This part of the theorem will be proved 
in its equivalent form that for all negative predicates W, Wp & Wq + 
W(p v q). Suppose Wp and Wq, and let X be any element of A. 

Case (i), p E Cn(X): Let (Y, Z) be a maximally alike X-close 
representation of (p, p v q). Then Cn(Y) = Cn(Z) = Cn(X), so 
that Y 2 Z follows by Definition D3. Thus pR,(p v q). 

Case (ii), q E Cn(X): Let (Y, Z) be a maximally alike X-close 
representation of (q, p v q). Then Cn( Y) = Cn(2) = Cn(X), SO 

that Y >, Z follows by Definition D3. Thus qR,(p v q). 
Case (iii), -p & -q E Cn(X): Let (Y, Z) be a maximally alike 

X-close representation of (p, p v q). 
ByLemmaL3,YnXEXI,{-p}.ByLemmaL4,YnZnXE 

X I, {-p, -p & -4). Then, since X I, {-p, -p & -q} = 
X1,(-p}, YnZnXEXIA{-p}. 

FromYnXEXIA{-p},YnZnXEXIA{-p}, 
Y n Z n X E Y n X and the fact that no element of X I, {-p> 
is a proper subset of another element of X I, {-p} follows that 
YnZnX= YnX. 

Sincep E Cn( Y) it follows that (q + p) E Cn(Y). Since (-p & -4) E 
Cn(X) it follows that (q + p) E Cn(X). Thus (q + p) E Cn(Y n X). 
From this and Y n Z n X = Y n X follows (q + p) E Cn(Z). From 
(p v q) E Cn(2) and (q + p) E Cn(Z) follows p E Cn(Z). From 
p E Cn(Z), p E Cn( Y), and Y n Z n X E X I, {-p} follows, by 
Lemma L2, that Cn(Y) = Cn(Z). Then Y 2 Z follows by Definition 
D3, so that pR,(p v q). 

Thus in all three cases (and for all X E A) there is an r such that 
Wr and rR,(p v q). Thus W(p v q). 

Part 2 follows directly from part 1. 
Part 3: This part of the theorem will be proved in its equivalent 

form that for all negative predicates W, Wp & Wq + W(p & q). 
Suppose that Wp and Wq, and let X be any element of A. The 

proof will be divided into four cases. 
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Case (i): p E Cn(X) and q E Cn(X). Let (Y, Z) be any maximally 
alike X-close representation of (p, p & q). Then Cn( Y) = Cn(Z) = 
Cn(X), and Y 2 Z by Definition D3, so that Wp and pR,(p & q). 

Case (ii): p E Cn(X) and -q E Cn(X). Let (Y, Z) be any maxi- 
mally alike X-close representation of (q, p & q). 

By Lemma L3, Z n X E X I, { -p v -4). Further, by Lemma L4, 
YnZnXeXIA(-q, -p v -q}.SinceXI,{-p v -4) = 
X I, { -4, -p v -q} it follows that both Z n X and Y n Z n X 
are elements of X I, {-p v -4). From this, from Y n Z n X G 
Z n X and from the fact that no element of X I, {-p v -q} is a 
proper subset of another element of X I, { -p v -q} follows that 
YnZnX=ZnX. 

From p E Cn(Z) and p E Cn(X) follows p E Cn(Z n X). Thus 
p E Cn( Y n Z n X), thus p E Cn( Y). 

It follows that p & q is an element of both Cn( Y) and Cn(Z) and 
that Y and Z also have a subset in common, namely Y n Z n X, 
that is an element of X I, {-p v -4). It follows then, by Lemma 
L2, that Cn(Y) = Cn(Z). By Definition D3, Y > Z, so that Wq and 
qRx(P & 9). 

Case (iii): -p E Cn(X) and q E Cn(X). Then, in similar manner as 
in case (ii) it follows that Wp and pR,(p & q). 

Case (iv): -p E Cn(X) and -q E Cn(X). Let (Y, Z) be any maxi- 
mally alike X-close representation of (p, p & q). It follows in the 
same manner as in case (ii) that Z n X = Y n Z n X. Since (p + q) E 
Cn(X) and (p + q) E Cn(Z) it follows that (p + q) E Cn(Z n X), 
and thus (p + q) E Cn( Y n Z n X), thus (p + q) E Cn(Y). From 
this and p E Cn( Y) follows p & q E Cn( Y). It can now be concluded, 
exactly as in case (ii), that Y 2 Z, and that Wp and pR,(p & q). 

Thus in all four cases there is an r such that Wr and rR,(p & q). It 
follows that W(p & q). 

Proof of Theorem T3. Part I: We prove the theorem in its equivalent 
form that for all negative predicates W, - W(p v -p) holds for all p 
iff W is obeyable. 

(i): Suppose W is not obeyable. Let X be any element of A. Then 
there is an element q of Cn(X) such that Wq. Further let (Y, Z) be 
a maximally alike X-close representation of (q, p v -p). Then 
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Cn(Y) = Cn(Z) = Cn(X), so that Y 2 Z follows by Definition D3. 
Thus Wq and qR,(p v -p). Since there is, for all X, such a q, 

W(P v -PI. 
(ii): Suppose W is obeyable. Then there is an X E A such that - Wp 

holds for all p E Cn(X). 
Part 2: We prove the theorem in its equivalent form that if the 

negative predicate W is obeyable, then Wp + - W - p holds for 
all p. 

Suppose W is obeyable. Then there is an X E A such that for all p, 
if p E Cn(X), then - Wp. 

For any p, either p E Cn(X) or -p E Cn(X). In the first case, 
- Wp. In the latter case, - W - p. Thus, in both cases 
-Wp v -W-p,i.e. Wp+ -W-p. 

Proof of Theorem T4. Part I: We prove this part of the theorem in its 
equivalent form that the following schema holds for all negative 
predicates W that follow the association principle: If p -+ q is an 
element of the logical closures of all elements of A, then Wq + Wp. 

Suppose the association principle holds. Further suppose that 
p + q is an element of the logical closures of all elements of A and 
that Wq. Then for all X E A, if p E Cn(X) then q E Cn(X). Thus it 
follows by the association principle that Wp. 

Parts 2, 3 and 4 follow directly from part (1). 
Part 5: Directly from the definition of the association principle. 

Proof of Theorem T5. One direction of the theorem follows from part 
(1) of Theorem T4. For the other direction, we first note that 
Op + Oq can be replaced by Wq + Wp in the theorem. 

Suppose it holds that if p + q is an element of the logical closures 
of all elements of A, then Wq + Wp. Further let p be such that for 
all X, if p E Cn(X), then there is a q E Cn(X) such that Wq. Let 
x,, . . . X, be the set of elements of A that imply p. Then for each X, 
there is an element qk E Cn(&) such that Wq,. 

Now let r be q, v . . . q,,. Then for all X E A, if p E Cn(X) then 
r E Cn(X). Thus p + r is true in all elements of A. By the condition 
assumed, Wr + Wp. 
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By Wq, & Wq, & . . . Wq, follows, by part (1) of Theorem T2, Wr. 
By Wr and Wr + Wp follows Wp. This is sufficient to show that the 
association principle holds. 

Proof of Theorem T6. Let B(A) be the set of logical closures of the 
best elements of A, i.e. Cn(X) E B(A) iff there is no Y such that 
Y > X. Then perfectionism can be expressed by the formula 
Wp t* p # U(B(A)). (I.e., p is wrong iff it is not true in any best 
alternative). 

Suppose p is such that for all X, if p E Cn(X) then there is a 
q E Cn(X) such that Wq. From q E Cn(X) and Wq follows by perfec- 
tionism that Cn(X) # B(A). Thus if p E Cn(X) then Cn(X) $ B(A). 
Thus p $ U(B(A)), from which follows Wp. Thus the association prin- 
ciple holds. 

Proof of Theorem T7. B(A) is defined as in the proof of Theorem T6. 
Let W be the converse prohibitive predicate of 0. Suppose perfection- 
ism and the upper limit-assumption hold. By the latter, there is at 
least one element X of A such that Cn(X) E B(A). Then by perfec- 
tionism (in the form given in the proof of Theorem T6), if p E Cn(X), 
then - Wp. By Dejinition 08, this is sufficient to prove that W, and 
thus 0, is obeyable. 
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