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Abstract. In crop species, most QTL (quantitative trait 
loci) mapping strategies use segregating populations 
derived from an initial cross between two lines. How- 
ever, schemes including more than two parents could 
also be used. We propose an approach using a high- 
density restriction fragment length polymorphism 
(RFLP) map established on six F 2 populations derived 
from diallel crosses among four inbred lines and the 
phenotypic performances of two types of replicated 
progenies (F 3 and topcross). The QTL is supposed to 
be on the marker locus considered. Three linear model 
tests for the detection of QTL effects (T 1, T 2 and Ts) are 
described and their power studied for the two types of 
progeny. T 1 tests the global genetic effects of the QTL 
(additivity and dominance) and T 2 tests only additive 
effects assuming dominance is absent when it could 
exist. The models of these two tests assume that the 
main effects of QTL alleles are constant in different 
genetic backgrounds. The additive model of test T 3 
considers the six F 2 populations independently, and T 3 
is the equivalent of the classical mean comparison test 
if we neglect dominance; it uses only contrasts between 
the homozygote marker classes. The results show that 
T 2 is much more powerful than T 3. The power of T 1 
and T 2 depends on the relative sizes of the additive and 
dominance effects, and their comparison is not easy to 
establish. Nevertheless, T 2 seems to be the more power- 
ful in most situations, indicating that it is often more 
interesting to ignore dominance when testing for a 
QTL effect. For a given size of genetic effects, the power 
is affected by the total number of individuals 
genotyped in F 2 and the recombination rate between 
the marker locus and the putative QTL. The approach 
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presented in this paper has some drawbacks but could 
be easily generalized to other sizes of diallels and 
different progeny types. 
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Introduction 

Most traits of economic importance in plants show a 
continuous variation in phenotype that is the result of 
the collective action of multiple genetic factors and 
environmental effects. These factors are located at 
different quantitative trait loci (QTLs) and, in general, 
have not been resolved individually. Quantitative gen- 
etic studies have dealt largely with a global characteriz- 
ation of genetic factors by developing powerful biomet- 
rical approaches. 

Sax (1923) was the first to propose the detection of 
specific genes affecting quantitative traits by studying 
their associations with marker genes. Numerous con- 
tributions to the theory and applications of the 
marker-based detection of QTLs have since been made 
(reviewed by Thompson and Thoday 1979), but the 
restricted number of effective markers rapidly limited 
this kind of investigation until the development, in the 
1980s, of a new biomolecular tool: restriction fragment 
length polymorphism (RFLP). This technique pro- 
vides a potentially unlimited number of codominant 
markers dispersed along the length of the genome (see 
Beckmann and Soller 1986 for review). 

In crop species, most QTL mapping strategies start 
with the recognition of two parental genotypes, gen- 



erally inbred lines homozygous for alternative alMes at 
the loci of interest, followed by the generation of hybrid 
F 1 progeny. The classical schemes continue by either 
selfing the F1 or backcrossing it to one of the parental 
lines to generate a segregating F 2 or backcross (BC) 
population. The latter is then genotyped for the 
markers and scored for phenotypic performance in 
order to examine marker-phenotype relationships. 
Several methods have been advanced in the literature 
for the detection of linkage between a marker locus and 
a QTL and their theoretical bases discussed by many 
authors. Individual marker models, aiming at identi- 
fying associations between a single marker locus and a 
QTL by linear model or maximum likelihood analysis, 
have been described for various progeny types 
(Jayakar 1970; Soller et al. 1976; Soller and Genizi 
1978; Weller 1986; Luo and Kearsey 1989, 1991). The 
traditional method uses contrasts among marker geno- 
type means (mean comparison method) or a one-way 
analysis of variance (ANOVA) to test for the presence 
ofa QTL in the vicinity of the marker locus (Soller et al. 
1976; Tanksley et al. 1982; Edwards et al. 1987). It has 
been widely applied in crop species (Edwards et al. 
1987, 1992; Stuber et al. 1987; Weller et al. 1988) and 
extended to other types of progeny (Bechmann and 
Soller 1988; Cowen 1988; Ellis 1986; Simpson 1989; 
Soller and Beckmann 1990). Even if the ANOVA ap- 
proach (contrary to maxiumum likelihood methods) 
provides no information about the recombination be- 
tween markers and putative QTLs, it does provide 
simple tests the powers of which can be easily com- 
pared for various experimental designs (Soller et al. 
1976; Knapp and Bridges 1990). 

Lander and Botstein (1989) proposed a promising 
method (interval mapping) based on maximum likeli- 
hood analysis that examines intervals between neigh- 
bouring markers to provide a confidence interval 
within which the QTL may be found. Statistical details 
of their approach and its advantages relative to the 
ANOVA method in F 2 populations are given by Car- 
bonell et al. (1992) and van Ooijen (1992). Although no 
complete studies of the power of interval mapping have 
been done, many authors state that it has a greater 
power than traditional methods. Whatever the method 
used for QTL detection [ANOVA, interval mapping, 
method of Knapp et al. (1990), etc.], the power of a test 
can be calculated by considering, first, that there is an 
infinite number of markers along the genome. Conse- 
quently, one will calculate the power of a test by 
assuming that the QTL is on the marker and using an 
appropriate threshold which takes into account the 
fact that we will perform this same test all along the 
genome. In the present case we are concerned with an 
ANOVA test. In the discussion we give some indica- 
tions about the exact power of different tests. We can 
say that the loss in power, compared to the case where 
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we have an infinite number of markers, will be ap- 
roximately 10-20% and that the proportion between 
the power of different tests will be conserved. 

The aim of this paper is to compare, by analytical 
calculations, the powers of different linear model tests 
for QTL mapping using two progeny types derived 
from a diallel cross between four inbred lines. 

Modelling 

Assumptions 

We consider a diallel cross between four homozygous 
lines L 1, L2, g3, L4, (without selfings nor reciprocals). 
The six F 2 populations obtained by self-fertilizing F1 
hybrids are genotyped with RFLPs in order to con- 
struct a high-density marker linkage map. F 2 progenies 
are then selfed and crossed to two testers, which are the 
complementary parental lines (the F 2 coming from 
the cross L 1 x L 2 is crossed with L 3 and L 4 as testers). 
The F 3 and topcross progenies are then grown in 
replicate and scored for a quantitative trait. We sup- 
pose that the number of individuals is the same for each 
F 2 population, and we denote by N the total F 2 
population size. The polymorphic marker locus 
studied (M) is supposed to have four alleles, M1, M2, 
M 3, M 4. This assumption is quite restrictive because 
only a limited number of marker loci will have four 
alleles (about 50% of the RFLP markers in maize [Zea 
mays (L.) if the parents are well sampled] but does 
facilitate the statistical treatments. The segregation of 
the markers in each F 2 is supposed to be Mendelian (an 
ffl which ifM~Mj gives a F 2 descendance that is �88 
1M~Mj, �88 We made no assumption about the 
number of QTL alleles. This point will be discussed 
later. 

Genetic and statistical models 

Two models that consider marker-linked effects as 
being independent of the genetic background are de- 
scribed. A more complete model will be discussed later. 

F 3 progenies 

We used a linear model neglecting genotype x envi- 
ronment interactions and assuming no epistasis. So, we 
wrote (1): 

Yijk. (MiMi)  = fllj + 2al d- gijk -t- eijk. 

Yijk. (MIM j) = #i~ + ai + aj + O*j -~- ~]ij'k -]- eijk. 

Yijk.(MjMj) = l~i~ + 2aj + gijk + e~jk. 

where Y~k.(M~Mi) is the phenotypic mean (over all 
replications) value of the F a offsprings of the U h indi- 
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vidual F 2 deriving from the cross L~ • Lj  and having 
the genotype M i M i ;  I ~  is an unknown parameter tra- 
ducing a genetic background-dependent mean; a~ (re- 
spectively a f) is the QTL additive effect linked to 
marker allele M i (respectively M~); 0~. is the linked 
dominance effect between QTL alleles; g~k is the ran- 
dom genetic effect of loci other than the QTL consider- 
ed, of variance o-2; and e~k. is the mean of random 
environmental effects with expectation 0 and variance 

2 ae. g~k and e~jk. are independent variables and could 
be regrouped into a residual of variance, aFa = 

2 + (1/L)a~, where L is the number of replications, O" o 

assumed the same for each progeny. 

Topcross progenies (TC)  

Since we know exactly the marker allele coming from 
the tester, we used the following model (2): 

Yijtk. ( M i M i )  = tlij t + a i + a t d- Oit -}- hijtg d- eijtk" 

Y~.jtk. ( M i M j) = rlijg + �89 i + aj) + a t -k- �89 O it -b O jt ) 

+ hiitk +fijtk. 

Y~jtk. ( M j M j )  = rlij t + aj + a t + Ojt + hijtk --k f i j tg 

The notations are almost the same than those in model 
(1) with t/equivalent to #, h to g a n d f  to e; parameters 
indexed in t are relative to the tester, and the genotype 
between brackets corresponds to the F 2 individual 
crossed to the tester (genotype Mt Mt ) .  Note that 
0~ = 0U4 (0~j is the true domainance effect) because the 
number of heterozygotes for the marker locus is 4 times 
larger in TC than in F 3. In the same way we note 

2 (l/L)@. 0-2C : (7 h ~- 

The six F 2 populations could be also analysed 
independently, so that, for an alMe M~, each effect a~ is 
different according to the cross L i • Lj considered and 
is indexed in (i j). The following model could be used for 
F 3 progenies: model (3) 

r~j~. ( M i m ) -  * 
- I~ij + alti~ ) + aj(,j) + Oi*. + gi*k + ei*k. 

#i~ + 2a~(~j) + gijk -Jr- eijk. Y I j k . ( M j M j ) =  * * * 

with the notations equivalent to those of model (1). 

Parameters  es t imations 

For simplification we will use, in the following para- 
graphs, the same general linear model notation for 
models (1) and (2): 

Y = Z T + r  

where Y is a N x 1 observation vector, Z is the N x p 
design matrix, 7 is the p x 1 vector of parameters and r 
is a N x 1 random vector of residuals with mean 0 and 
variance 0-21 with a 2 being a 2  for model (1) and aZc for 

model (2). Z and 7 could be partitioned as follows: 
Z = [ Z o I Z  x IZ2] and 7' = [7;17i lTbJ where 7o = [#q] 
for (1) and [t/ijt ] for (2), 7'~=[a~]~:i...4, 7~= 
[0~j]~= 1...4;j= 1...**i and x'  designates the transpose of 
matrix or vector x. Since we suppose 011 = 0 and 0~j = 0j~ 
we have 4 parameters % 6 parameters 0~j and 6 par- 
ameters #~; in the F 3 model (1) (16 in all) against 4, 6 and 
12 (rhjt), respectively, in the T C  model (2) (22 in all). In 
order to determine the models we used the classical 
constraints Z~= 1 a /=  0 and 4 Y'i = 10~j = 0 which give five 
independent equations. The transformed Z matrix is 
written as X = [ X o l X I [ X 2 ]  where X o is a N x 6 (re- 
spectively N x 12) matrix in the F 3 model (respectively 
T C  model), X 1 is a N x 3 matrix and X z is a N x 2  
matrix, and 7' as /3'= [fl~, if1, fl~ with /30 = 70,/3'i = 
[al ,  az, a3] and fi~ = [012,013 ]. All these parameters 
are estimable. 

In model (3) there are 6 parameters #*, 12 a,zj) and 6 
0".. Only 6 of the 12 a~(zj) are estimable, and the con- 
straints ai(i2 ) + aj(ij ) = 0 were used. For  the next devel- 
opments, parameters of dominance in this model are 
not considered (0" = 0). 

Hypothesis testing 

To test for the presence of a QTL linked to the marker, 
we chose to test two hypotheses using F 3 or T C  pro- 
genies: 

Ho1:/31=/32=0 (no QTL), the test will be noted 
as 7"1, 

H0z:/31 = 0 under the assumption "/32 = 0", test noted 
a s  r 2. 

The full model: Y = X/3 + r = Xo/3o + X1/31 + X2/32 + 
r (4) is used for test T 1. T 1 tests both additive and 
dominance effects as a whole. For  T 2, a model reduced 
by the hypothesis/32 = 0 is used: Y = Xo/30 + X1/31 + 
r (5). T 2 is then the test of model (6): Y = X0/3 o + r 
against (5) when (4) is true. This means that T 2 tests 
only additive effects supposing that dominance is ab- 
sent when it could be present. 

For each test we considered the likelihood ratio 
statistic which is, in our case, the classical F statistic. 
For T 1, this statistic is (see Graybill 1976): 

Y ' ( X X -  - X o X o ) Y  N - p 
W1 = Y ' ( I  - X X - ) Y  ql 

where X -  = ( X ' X ) -  1X', ql = 5 (number of tested par- 
ameters), p = 11 for F 3 and 17 for T C  (total number of 
estimated parameters) and N, the total number of 
observations equal to the F 2 population size. Under 
the alternative H~I (/31 r va0) �9 Y ' ( I  - X X - ) Y / a  2 is 
distributed as a X z with ( N - p )  degrees of freedom 
(noted d f )  and Y ' ( X X -  - X o X o  ) Y / a  2 as a noncentral 



)~2 with q~ d f  and a noncentral i ty  pa rame te r  

E(Y')  ( X X  - - X o X  o )E(Y) 
")~1-- 

q10. 2 

where E(Y)  = Xfl. These two quadrat ic  forms are sta- 
tistically independent .  W~ is then distr ibuted as a non- 
central  F r a n d o m  variable with ( q x , N - p )  d f  and a 
noncentra l i ty  pa rame te r  21: W 1 ~ F'(q 1 , N -  p,21). 
Under  H o p  W 1 ~ F(q 1, N - p). So, if W 1 > F~(ql, N - p) 
we reject H01 (at least one Q T L  is present  near  the 
marke r  locus), where F~(ql, N -  p) is a critical value 
f rom a central  F distr ibution for a siginificance level a. 

Fo r  T 2, the statistic is 

Y ' (Xo lXo l  -- X o X o ) Y  N - p %= 
Y'(I  - X o l X o l ) Y  q2 

where X01 = [-X 0 IX1] and q2 = 3. Under  the al terna- 
tive H'o2(fl 1 r 0 under  f12 = 0), Y' (Xol  X01 - X o X o  ) Y / 
a 2 ~ ;(2(q z, 22) with 

E(Y')  (X  o i No1 -- X o X o  )E(Y)  
"]'2 = q20. 2 

Y'(I  -- X o l X o l ) Y  could be approx ima ted  by its expec- 
ta t ion when the n u m b e r  of df  is large (N > 300). It  is 
easy to show that  

E 1 _ X o l X o l ) y  1 [V77_p r'(I = 

It  follows that  

0.2 + ~ E(Y  ) ( X X -  - X o l X o l ) E ( Y  ). 

1 
- -  Y '(I  - X o l X o l ) Y  ~- 
N - p  

0.: + N- v E ( r ' ) ( x x -  - XolXo l )E (Y ) .  

/ C \ ,2 ,2 Consequently W 2 - ~ 2 ) , 1 ~  (q2 2)under H{~2, with 

0 .2 
C =  

1 
- -  E ( Y ' ) ( X X -  -- X o l X o l ) E ( Y )  a 2 + ~ _ p  

Under  Ho2 , Y'(I  - Xo ,Xo l )Y /0 .  a ..~ Z~V-p and W 2 
F(q2, N - p). So, we reject H02 at a significance level ~ if 
W z >F~  (qz, N - p ) .  

In  model  (3), assuming 0" .=0,  the tested hypo-  
thesis is: Ho3 :f13 = 0 where fi~ = [(ai(ij))i , j J ,  and the test 
is noted T 3. T 3 has the same propert ies  as T1, and its 
statistic is distr ibuted as a non-centra l  F with 6 and 
(N - p) d f  and a noncentra l i ty  pa rame te r  23 that  could 
be expressed as 21 . However ,  when dominance  is ab- 
sent the heterozygotes  in model  (3) do not  bring any 
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information.  T 3 is then equivalent  to the classical test 
(Soller et al. 1976) using contrasts  between homo-  
zygote marke r  class means  in each F 2 populat ion:  3k = 
gij...(MiMi) -- Yij.. (M jMj)  and 5 k = 2ai(ij ) - 2aj(ij ) with 
i =  1 . . .4 ,  j =  1 . . .  4, j > i  and k = 1 . . .6 .  Ho3 is then 
equivalent  to the hypothesis  "3~ = 5 2 . . . . .  6 6 = 0 "  
and could be writ ten as H o 3 = H l C ~ H z C ~ . . . c ~ H 6  
where Hk: 6 k = O. The test statistic for a single hypoth-  
esis H k is 

%-8k 

v 

where 0 -2 is the within marke r  genotypes classes vari- 
ance (0.~ = o -2) and v, the number  of indivduals in each 
homozygo te  marke r  class (which gives a total  numbe r  
4v for each F 2 population).  Fo r  v > 30, T k is distr ibuted 
as a s tandard  no rma l  distr ibutions N(0, 1). So, for a 
significance level c~ 

T 3 accepts H03 if [r3kl < Z=/12 for every k = 1. . .  6. 

This means  t h a t  we reject /-/o3 (a Q T L  is declared 
present) if at least one H k is false, i.e. if there is at least 
one b k such as I r~l _> Z~/12 where Z~/12 is the critical 
value of a two-sided Normal - t es t  for a level ~/6; to 
ensure an overall  false positive rate of c~ a significance 
level of approx imate ly  ~/6 is required for each single 
test. No te  that  the extact  level for a single test is ra ther  
1 - ( 1 -  ~)1/6 = 0.0085 for ~ = 0.05, which is nearly 
equal to e/6 = 0.00833. 

Power calculations 

The power  of a test is the probabi l i ty  of rejecting the 
null hypothesis  when its al ternative is true. It  is a 
function of the specific values of the parameters .  In  our  
case the power  of T 1 and T 2 is the probabi l i ty  of 
detecting an effect when it exists and is a function of 
the only noncentral i ty  pa rame te r  2. Its expression for 
r 1 is: 

Hl(2i )  = Pr(F'(q 1, N - p, 21) > F~(ql, N - p)) 

f; = F'x(ql, N - p, 2i) dx. 
~(ql,N- p) 

For  T 2 the power  is calculated by 

l-[2(,~2)=Pr(~2"Z'2(q2,)~2)>Fa(q2,N--p) ) 

Since the power  is a direct function of 2, it is impor tan t  
to give an analytical  expression of 2 according to the 
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parameters fi, and /~2'  Using linear algebra calcula- 
tions, we have shown that 

~'1 -~ f l '12X'12(I  - -  X ~ 1 7 6  ) f l 1 2 X 1 2  
qlcr 2 

f l ' leX' ,2(I  -- X o X o  ) f l ,2X12  -- fl '2X2(I -- X o l X o , ) f l 2 X 2  
q20  -2 

0 -2 
C =  

1 
" X '  ~I ' ( 7 2 ~ - N ~ p P 2  2t - -  X o l X o l ) f l 2  

where X12 = [X  1 IX23 and file = [fi'l tfi~]. So, knowing 
X,  21 and 2 2 could be simply expressed in terms ofa~, 0~j 
and a 2. Their expressions are given in Table 1 for both  
the F 3 and T C  models. 

For  the T 3 test, the power of a single test T3k at a 
significance level ~ is 

( I~3k ~--- 1 - flk = 1 -- Pr  - Z~/12 2x/~jv 

where fik is the second-type error. The power of T 3 
could be calculated as follows: the second-type error is 
defined as fl = Pr(a t  least one 6k r 0/61,~2 . . . .  , 6 6 ) =  
1 - -  P r ( ( 5 1  (~2 "'" ~6 O) = 1 6 . . . . .  U k = l P r ( 6  k = 0). 
Pr(,5 k = 0) is the second-type error/?k for a single test 

b and is calculated at the specific level c(6 by yal /  

x / ~ e x p (  -- x2 /2 )dx  where a = - Z ~ / , 2  - 6k/x/2az,/v 

and b = Z ~ / 1 2 -  c S j 2 x ~ / v .  The power of T 3 is then 
6 given by 173 = 1 - fi, where fl = 1 - IIk = ~/?k is the glo- 

bal second-type error, so I13 = 176= 1 fig. When  comput-  
ing the power we supposed that  a~(ij~ = a~ for all ij. Only 
4 parameters  a~ were used. 

For  power computat ions,  we have written a fortran 
F77 p rogram which for any F 2 popula t ion  size and 
each set of parameter  values given by the user calcu- 
lates the power of the five tests: T3 in F >  T, and T2 in 
F 3 and TC.  We calculated these powers for different 
sizes of additive and dominance effects with N = 600. 

R e s u l t s  

In  this section we note by Tf  a (resp. TfC), l = 1, 2, 3 the 
test T~ when it is applied to F 3 (respectively TC) 

2 4 a{)/4 and = ( E l  = 1 0-2 Xp4 0 2 ~ / 3  2 progenies, % = z..j=2 i j J~" O'a 
and 0-~ represent, respectively, the additive and domi- 
nance variances due to the QTL.  Such a Q T L  explains 
100(a~/0- 2 + a 2) Yo of the total pheotypic variance, 

2 2 w h e r e  aq = O" a -}- 0-2 is the total genetic variance due to 
the QTL. For  every Q T L  underlying the trait, one can 

2 is 4 times larger in show that  the additive variance o- a 

F 3 than in TC.  If the number  of replications is large 
2 and under addi- (L > 10) then a2rc ~ a 2 and @~ - % 

2 =  4a2. When  dominance is present and the tivity, % 
number  of replications is small, ~ < 4a2c and aq2 in 
F 3 is less than 4 times larger than in TC. This implies 
that the part  of phenotypic  variance explained by a 
single Q T L  will be nearly the same for both kinds of 
progeny. For  power calculations, we chose av2 = 3a~c 
and a~c = 1. 

Comparison between T 3 and additive T 2 tests 
applied in F 3 

For  ' reasonable '  values of 01~ (relative to the phenotypic  
variance), C will be equal to 1 (Table 1), and then 17 2 is 
a function of only al. For  several values of the a i 
corresponding to different values of 0 .2 , we have cal- 
culated the power of tests T 2 and T 3 applied on F 3 
progeny with two significance levels, ~ - -0 .05  and 

= 0.001. The first level occurs when we test the mar-  

Table 1. Expressions of decentrality coefficients for tests T I and 
T 2 calculated for both F 3 and TC progenies 

For test T1 a 

TC 

F 2 rc= nl 2 4 Z a ~ + 6  02j+ (023-022) 
qlarcL, i=1 j = 2  

q- (012 - -  013) (a  2 - -  a4)/u 
Fa 

2 a~ + 0~j 
ql~F3 4j= 

For test T 2 

TC 
n 4 1 2 ] 

22 rc = _ 2 ~  F4 ~ a~ + g(013 - 0~2) 2 + (012 - 013)(a2 - a4) J q2arc [_ ~=1 
2 

ff TC 
c 

2 Y/1 2 6.1250~4) arc + ~(4.25012 + 7.250~s + 

F3 

22 Fs= q2GF~t122 [ 8 i ~  1 a21 

2 
C : 0"F3 

4 2 ) , y  
aF3 ~- 0 2 "/4 

D/j=2 

a nl and n 2 are the number of individuals in each marker 
genotype class in TC and F 3 progenies, respectively. In this case 
N/n1 = 48 (4nl individuals in each of the 12 marker genotype 
classes) and N/n 2 = 24, so n 2 = 2n 1 
b a4  = _ ( a l  -I- a 2 + a 3) and 014 = - -  (012 -r- 013 ) 
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kers individually, at a precise location in the genome, 
for a 5% false positive rate. To test on the entire genome 
with the same global rate of false positives, we used an 
approximate level of 0.001 at each single marker  (based 
on approximations for a high-density linkage map; see 
Lander and Botstein 1989). 

Figure 1 shows that T~ ~ is always much more 
powerful than T~ ~. With e = 5%, the power of T~ ~ 
rapidly reaches high values ( >  0.9) for effects more 
than 5%, whereas 173 equals 0.9 for an effect of 11%. 
With ~--0.001, the size of detectable effects with a 
given power is considerably reduced (Fig. 1); effects of 
about  9% and 20% are needed to achieve 90% power 
for T~ ~ and T~ ~, respectively. Variation in the mini- 
mum size of detectable genetic effects with a power of 

1.0 

0.8 

0.6 

o 
m 0.4 

0.2 ~ 
~ .  ............... . .............. 0.001 

0 5 10 15 20 25 
Phenotypic variance explained (%) 

Fig. 1. Power  of tests T2 ~ T~ ~ according to the percentage of 
phenotypic  variance explained by the QTL, with two signifi- 
cance level c~ = 0.05, 0.001 and a popula t ion  size N = 600 

35 
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{25 

2O 

>~15 
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o 
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~-.. 
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..... - ...... T3 

. . . . . . . .  0.05 
........... + 0.001 
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�9 . . . ,  " - ' - . . . .  . . . . . . . . .  

. . . .  �9 o . . . .  ' §  
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Fig. 2. Genetic effect sizes (expressed in % of DhenotvNc vari- 
ance det �9 o v~ '~ F;. ~.~ ) ectable with 90% power by r 2 and T3 according to the 
F 2 population size (N), for two significance levels c~ = 0.05, 0.001 

90% according to the number of F 2 individuals, N, is 
represented in Fig. 2. For  a given false positive rate, the 
required progeny size (for 90% power) scales are essen- 
tially conversely correlated with the variance explained 
by the QTL, i.e. the size of the effects detected with a 
given power decreases when the population size in- 
creases. We have calculated that approximately 6300 
F 2 individuals are required to detect a Q T L  having an 
effect of about  1% of the total phenotypic variance 
using Tar% with a significance level e = 5% and a power 
of 90%. This corresponds exactly to the number given 
by Soller et al. (1976) (1050 for a single F 2 population) 
in the case of complete linkage between marker  and 
QTL. The disadvantage of T~ ~ compared to T~ 3 is due 
to the fact that the former uses only the contrasts 
between the homozygote classes and does not exploit 
the repetitions (six populations and four parents) of 
additive effects in the contrasts. 

Comparison between tests T 1 and T 2 applied 
in F 3 and TC 

The decentrality parameters (Table 1) for the F 3 tests 
2 and a~ only because of the ortho- are functions of a a 

gonality of the model contrasts. In the TC case, the 
parameter  spaces are no longer orthogonal, and 2 
varies according to a 2, ad z and non-orthogonality terms 
including products between a~ and 0 u. If an additive 
model (0 u = 0, C = 1) is assumed a direct comparison 
between T a and T 2 is possible (by comparing their 2). In 
fact, for both progenies )ol = ~)~2 and T 2 is better than 
T 1. Even in the case where 21 = 22, T 1 will be less 
powerful than T2 because the test is consummates 
fewer degrees of freedom (only 3). Moreover, 2rc/)fl3 = 

2 2 aF3/4Crrc, which gives, under additivity and large 
number of replications, 2 rc = 2f 3. Generally, @3 is less 
than 4o-2rc, and Tf  ~ would be, in most genetic situ- 
ations, more powerful than Tr~ c. 

Comparison between T 1 and T 2 was achieved by 
trying many sets of parameter  values that cover several 
genetic situations. T2 v~ appears to have the greatest 
power unless dominance values are excessively large 
relative to additive effects (data not shown). With TC 
progenies, T 2 seems better than T 1 for small values of 
dominance relative to additive effects. T 1 becomes 
more powerful than T 2 if the QTL expresses very 
strong dominance effects (cr~ ~4o-~) as shown in 
Figs. 3-5. We also verfied that T 2 is still more powerful 
than T 1 when we use recombinant inbred lines derived 
from the same dialM. We think that the superiority of 
the T 2 test is related to the experimental design used 
and would be observed to be more or less large accord- 
ing to the quality of the estimation of dominance effects 
allowed by the design. This would explain why, in 
f 3 ,  r 2 stays more powerful than T 1 for values of domi- 
nance larger than those in TC. 
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T2 v3 seems to be the most  powerful test in many  
situations but there is not  an absolutely best test. We 
can say that tests for Q T L  detection will be often more  
powerful with F 3 progenies than with TC,  but T C  
would provide more  accurate estimations of domi-  
nance effects. When  the environmental  variance for the 
trait considered is large (low heritability) and the 
number  of replications too small, a23 gets closer to a 2 T C ,  

and the difference in power between the F 3 and T C  
tests will be reduced, especially if dominanceis strong. 
Figure 6 shows the evolution of min imum detectable 
effects required to achieve 90% power according to the 
total individual number  in the F 2 in the case: a~ = a2/2. 
We see that T a is better than T 1 whatever the kind of 
descendance we use and that  T2 e3 is the best test. 

The results of this section suggest that  taking domi-  
nance into account  when testing Q T L  effects cor- 
responds to a loss of power (unless dominance is 
excessively large). So, it is almost  always better to 
consider only additive effects when mapping  QTLs  (at 
least in a first approach) in a diallel cross by using tests 
like T 2. It would be interesting to see if this property (of 
test T2) holds for other designs (such as a single F 2 
populat ion)  and other other types of tests, especially 
for the likelihood ratio test used by Lander  and Bot- 
stein (1989). 

Discussion 

We have considered that the additive effect linked to a 
marker  allele is the same in all the genetic backgrounds.  
However,  if we consider that additive effects are differ- 
ent according to the context, the models become much 
more  complicated. Considering only additivity, one 
can see that the complete model, equivalent to model  
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(3) (each allele M i has three additive linked-effects, one 
for each context), could be reduced to a model with 
interaction if we subdivide the additive effects into a 
constant term (whatever the context is) and a deviation 
term due to the context (interaction). So, for F 3 one 
could write a~(~j), the additive effect linked to allele M~ in 
the genetic context ij as follows: a~(~j) = e~ + d~j where c% 
is the mean additive effect and d~j, the interaction term. 
The results of the previous paragraph show that even 
when dominance is present neglecting it does not 
decrease dramatically the power of test T 2. As we have 
several reasons to think that the interaction term d~j is 
not large relative to % the same kind of results apply. 
Therefore we can consider that the additive effect of an 
allele is the same in different genetic backgrounds 
without risking an appreciable loss in power. 

With the classical approach (Soller et al. 1976), for a 
single F 2 population derived from a cross between two 
inbred lines of genotypes MIM~Q~Q~ and M2M2Q2Q2, 
where M is a marker locus (with two codominant 
alleles M~, m2) and Q a QTL (alleles Q1, Q2), it is easy 
to prove that M 1 M  1 - M 2 M  2 -- (1 - 2r)(#~ - #22) 
where M I M a , M z M  2 are means of marker genotype 
classes M~MI,  M z M z ,  respectively, #11, #22 are means 
of QTL genotypes QzQ1, Q2Q2, respectively, and r, the 
recombination rate between M and Q. This yields a 
confounding between recombination and QTL effects 
that affects the power of the test. Power decreases for 
an effect of fixed size as r increases, and the total 
number of progenies required for the same power is 
increased by a factor 1/(1 - 2r) 2. 

In our statistical models we are confronted with the 
same type of loss in power when using the statistics 
T~, T2 and T 3 at each of the positions of the markers. In 
this case, genetic effects (a i and 0~j.) are multiplied by a 
factor ( 1 -  2r), and the decentrality parameter 2 is 
multiplied by (1 - 2r) 2. For  a recombination rate more 
than 0.15-0.20 the power of the tests decreases con- 
siderably. We have calculated that with r = 0.2, power 
is reduced of about 50~ (data not shown). We believe 
that the use of interval mapping method or flanking 
marker models (Lander and Botstein 1989; Knapp 
et al. 1990) to construct tests similar to T1, T z and T 3 
will limit the loss of power due to recombination 
between markers and QTL. In a backcross, Lander and 
Botstein (1989) showed that power is increased by 
about 20~ when we use interval mapping rather than 
single marker tests for a QTL in the middle of an 
interval between two markers at d = 25 cM (r-~ 0.2 
according to Haldane's mapping function) from each 
other. We think that for such markers and QTL, the 
power of the 'interval mapping version' of tests T1, T 2 
and T 3 will be about 25~o less than that calculated in 
this paper (supposing the QTL on the marker). 

We have also assumed that there are four alleles at 
each marker locus. In reality, most markers would 

have two or three alleles, and the power would conse- 
quently decrease. The strains should be chosen to differ 
in the quantitative trait studied and to carry different 
alleles at a large number of RFLP markers; in particu- 
lar, the choice could be based on classifications of lines 
according to publicly known RFLP markers that are 
now available for many maize inbreds (e.g. Smith et al. 
1990). The power of T 1 and T 2 depends essentially on 
the additive and dominance variances, regardless of the 
number of alleles at the QTL. However, a QTL with 
two alleles wilt segregate in at least three of the six F 2 
populations and would explain a smaller part of the 
total phenotypic variance (depending on the genotypes 
of parent lines). It would therefore be detected with less 
power. With TC progenies, as we can see in Table 1, the 
power depends also on the distribution of marker- 
linked effects (ai, 0ij ) i.e. on the number of QTL alleles. 
The comparison between tests presented above remains 
fairly valid whatever the number of alleles at the QTL. 

In this paper we have presented a preliminary 
approach using linear model tests to detect QTL effects 
in a dialM cross between four inbred lines. We have 
demonstrated that these tests are more powerful than 
the test considering the crosses independently. We 
have also proven that the test assuming the absence of 
dominance effects even when they exists is, in general, 
more powerful than the test of global effects (both 
additive and dominance). This indicates that it is better 
to neglect dominance when testing for the presence of a 
QTL. If this hypothesis is accepted one can then esti- 
mate and test dominance effects. The major advantage 
of diallel schemes (as the one we have described) over 
many independent F 2 populations is that they provide 
more powerful tests. They seem to be rather efficient 
approaches especially when one is interested in detect- 
ing QTLs with consistent effects across populations. 

In spite of its several imperfections, our approach 
has the advantage of being easy to generalize to other 
order dialMs (if we suppose that each parent line has a 
different allele at the marker loci considered, which is 
an acceptable premise for dialMs of sizes fewer than 5) 
and other replicated progenies, such as recombinant 
inbred lines, doubled haploid lines and top-cross pro- 
genies with testers at several stages of the scheme. 
Power computations of different tests will enable the 
best one for a particular scheme to be chosen and the 
efficiency of different experimental strategies to be 
compared. There are several possible refinements to 
the approach of this paper. Particularly, the use of 
flanking marker models would provide estimates of 
putative QTL parameters that are more efficient and 
unbiased by the recombination. In addition, with these 
models, the problem of markers having fewer than four 
alleles could be quite easily solved. At the present time 
we are trying to develop an interval mapping method 
for dialM schemes that would permit the many short- 
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comings of the models proposed in this paper to be 
overcome. 
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