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Summary. This paper is based on the results of Primate 
chromosome studies obtained using high resolution tech- 
niques in our and other laboratories. We discuss the ori- 
gin and the evolution of the chromosomes in the human 
karyotype and the time in evolution of the Simiiformes 
when they acquired their present morphology. Our 
results indicate that the chromosomes that underwent a 
higher number of reorganizations during the evolution 
of the Simiiformes coincide with the chromosomes most 
often implicated in human chromosome pathology. We 
describe the main reorganizations that took place during 
Primate evolution. Centromere activation and inactiva- 
tion and heterochromatin changes are discussed as 
mechanisms of chromosome evolution. 

Introduction 

In the early 70s, de Grouchy et al. (1972), Dutrillaux et 
al. (1973), and Egozcue et al. (1973a, b) demonstrated 
that the chromosomes of man show a high degree of 
homeology with those of other primate species, such as 
the chimpanzee and the gorilla. Since then, many au- 
thors have carried out studies comparing the chromo- 
somes of different genera from the same family (Lejeune 
et al. 1973; Dutrillaux et al. 1975, 1978, 1979a, b, 1980a, 
1986a; Garcia et al. 1976; Estop et al. 1978a; Finaz et al. 
1978; Caballfn et al. 1980; Ponsg et al. 1980, 1981; Ponsg 
and Egozcue 1981; Dutrillaux and Couturier 1981, 1986; 
Yunis and Prakash 1982; Stanyon et al. 1983, 1986; 
Viegas-P6quignot et al. 1985; Seu~inez 1987; Muleris et 
al. 1986; Sineo et al. 1986), or even different families 
among them (Dutrillaux 1979a; Dutrillaux and Rumpler 
1980; Dutrillaux et al. 1980b, 1982a, 1986b; Estop et al. 

Offprint requests to: M. Pons~, Institut de Biologia Fonamental 
"Vicent Villar Palasf', Universitat Aut6noma de Barcelona, 
E-08193 Bellaterra, Spain 

1983; Pons~ et al. 1983, 1986; Mir6 et al. 1986; Clemente 
et al. 1987, 1990; de Grouchy 1987). Although banding 
methods are still less precise than desired, the data ob- 
tained so far have allowed a hypothesis to be established 
on the chromosomal changes that have taken place dur- 
ing primate evolution. 

The study of primate evolution is based not only on 
cytogenetic techniques, but also on molecular studies 
such as gene mapping (Cronin and Sarich 1976; Groves 
1978; Estop et al. 1978b; Garver et al. 1978; Pearson et 
al. 1978, 1979, 1982; Creau-Golberg et al. 1980, 1981; 
Cochet et al. 1982; Ma et al. 1982; Ma 1983; Ma and 
Kurnit 1984; Lalley et al. 1987), DNA hybridization 
(Templeton 1983a, b, 1985; Sibley and Ahlquist 1984), 
mitochondrial DNA analyses (Ferris et al. 1981; Brown 
et al. 1982), and nucleotide or amino acid sequencing 
(Hewett-Emmett et al. 1976; Lucotte 1979; Lucotte and 
Jouventin 1980; Lucotte and Lefebvre 1980a, b; Good- 
man et al. 1982a, b, 1983; Goodman 1986; Koop et al. 
1986). 

According to Seu~inez (1987), the cytogenetic and 
molecular evolutionary events may have been indepen- 
dent. So far, the cytogenetic homeologies confirmed by 
gene mapping affect only structural genes, but other 
mutations may have taken place that are not detected by 
cytogenetic techniques. Cytogenetic studies have allowed 
the banding patterns of human chromosomes, the differ- 
ent types of polymorphisms existing in human popula- 
tions, and the reorganizations found in different types of 
human pathology to be characterized with considerable 
precision (Paris Conference 1971, 1975; JSCN 1978; 
Kaiser 1984; Berger et al. 1985a, b; Fryns et al. 1986). 
The results obtained so far indicate that for reasons still 
unknown, some human chromosomes are more prone 
than others to undergo pathological reorganizations. 

In this paper, we describe the parsimonious phylo- 
genetic tree of human chromosomes using the out-group 
method (Watrous and Wheeler 1981; Maddison et al. 
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1984) for each and every one of the chromosome pairs 
now present in the human karyotype, taking into account 
gene-mapping data (Pearson et al. 1979, 1982; Lalley et 
al. 1987) in those cases in which more than one possibil- 
ity exists; however, gene mapping has not always been 
useful to resolve these questions. Finally, we try to deter- 
mine whether a correlation exists between stable chro- 
mosomes in the human karyotype and stable chromo- 
somes in primate evolution. 

Material and methods  

Data on the following species are included in this study: 

�9 Family Cebidae: Cebus apella (CAP), Cebus albifrons (CAL), 
Lagothrix lagothricha (LLA) (Clemente et al. 1987) 

�9 Family Cercopithecidae: Papio sphynx (PSP), Erythrocebus 
patas (EPA), Miopithecus talapoin (MTA), Cercopithecus nigro- 
viridis (CNI), Cercopithecus mona campbelli (CMC), Cerco- 
pithecus petaurista (CPE), Cercopithecus cephus (CCE) (Clemente 
et al. 1990); Cercopithecus aethiops (CAE), Cercopithecus cyno- 
surus (CYN), Cercopithecus sabaeus (CSA) (Sineo et al. 1986); 
Macaca mulatta (MMU) (Small et al. 1985) 

�9 Family Hominidae: Pan troglodytes (PTR), Gorilla gorilla 
(GGO), Pongo pygmaeus (PPY) (Yunis and Prakash 1982); Pan 
paniscus (PPA), Pan troglodytes (PTR) (Stanyon et al. 1986); 
Homo sapiens (HSA) (from our laboratory and Yunis and Prakash 
1982) 

Chromosome preparations were obtained using equivalent high 
resolution techniques (Yunis 1976; Viegas-P6quignot and Dutril- 
laux 1978; Camargo and Cervenka 1980; Small et al. 1985; Antich 
and Gean, unpublished). In the latter method, cells were cultured 
as described in Clemente et al. (1987). G- (Gallimore and 
Richardson 1973), C- (Sumner 1972), and NOR- (Bloom and 
Goodpasture 1976) banded karyotypes were used in this study. 

Results 

H S A  1 

In the Cebidae, human chromosome 1 corresponds to 
two chromosomes with different morphologies and dif- 
ferent patterns of heterochromatin depending on the 
species studied (Clemente et al. 1987). In the Cer- 
copithecidae, HSA 1 may correspond to two chromo- 
somes or to a single chromosome that differs from that 
present in Pan, Gorilla, and Pongo by a pericentric in- 
version, by the presence of terminal heterochromatin in 
the Pongidae, and also by a small paracentric inversion 
in the long arms of chromosome 1 of Gorilla. Yunis and 
Prakash (1982) have established that chromosome 1 of 
PTR and PPY corresponds to the ancestral form for the 
Hominidae and that HSA 1 would have originated by 
means of a pericentric inversion and the addition of 
juxtacentromeric heterochromatin,  giving rise to the 
secondary constriction now present in HSA 1. 

According to these data, it is possible that in the com- 
mon ancestor of the Cercopithecidae and the Hominidae, 
the chromosome that originated HSA 1 would have been 
produced by centric fusion of two acrocentrics with a 

morphology corresponding to the equivalent chromo- 
somes now found in CAP, which would also correspond 
to the ancestral chromosomes for all the Platyrrhini. 
According to Dutrillaux (1979b), this chromosome 
would be similar to that found now in PSP, CNI, and 
EPA. Later on in the evolution of the Cercopithecini, 
it would have undergone a fission, affecting the same 
region where the previous fusion had taken place. While 
the characteristics of H S A l p  are very similar in all 
species studied, HSA lq  has probably undergone several 
reorganizations (Fig. 1 a, b). 

H S A  2 

Human chromosome 2 is the result of telomeric fusion of 
two chromosomes present in all species studied in the 
Cebidae, Cercopithecidae, and Hominidae. The evolu- 
tion of the short (HSA2p)  and long (HSA2q)  arms of 
chromosome 2 will be analyzed separately. 

H S A  2p 

According to Yunis and Prakash (1982) the ancestral 
morphology of the short arms of human chromsome 2 
corresponds to that found in PPY and GGO.  P T R 2 p  
would have originated by pericentric inversion of the 
ancestral chromosome. 

A homeologue to HSA 2p is found in all Cebidae and 
Cercopithecidae species studied, although with different 
morphologies. In the Cercopithecidae, this chromosome 
has the same morphology observed in PTR, while in the 
Cebidae it has the same morphology now found in PPY 
and G G O ,  showing heterochromatic regions not present 
in H S A 2  (Fig. 2a, b). According to these data, the 
ancestral chromosome of the Simiiformes would have 
the same morphology as that in PPY and CAP (Watrous 
and Wheeler 1981; Maddison et al. 1984); it would have 
fused with another chromosome in the branch that origi- 
nated the Platyrrhini and would have been maintained 
without changes in the Catarrhini. Later on, and during 
the evolution of the Hominidae,  it would have under- 
gone a pericentric inversion in the ancestor of Pan and 
Homo.  The same pericentric inversion can be observed 
in the Cercopithecidae (Fig. 2a, b). 

H S A 2 q  

According to Yunis and Prakash (1982) the ancestral 
morphology of this chromosome would correspond to 
that found now in PTR and GGO.  The corresponding 
homeologue found in PPY would have originated by 
pericentric inversion of the ancestral chromosome. In 
the Cercopithecidae, this chromosome shows the same 
morphology as in PTR and GGO,  while in the Cebidae 
it is comparable to the chromosome of PPY, following in 
both families the same pattern described for HSA2p .  
Our results seem to indicate that the ancestral chromo- 
some for the Simiiformes would be the acrocentric type 
now found in the Cebidae and in PPY, which would have 
undergone an evolutionary process similar to that de- 
scribed for HSA 2p (Fig. 2b, c). 
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Fig.1. a Evolution of H S A 1  in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
H S A  1 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA).  f Centric fusion, i inversion, h heterochromatin 

Fig.2. a Evolution of HSA 2p in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 2 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA).  --~ Breakpoint, f centric fusion, c Evolution of H S A  2q in 
the Simiiformes. The main reorganizations that took place are in- 
dicated in the phylogenetic tree 

HSA3 

In the Platyrrhini, HSA3 corresponds to at least two 
different chromosomes that have undergone complex re- 
organizations. As a result, clear homeologies cannot be 
established (Dutrillaux 1979a, b). In the Cercopithecidae, 
HSA 3 corresponds to two chromosomes in the Cerco- 
pithecini and to a single chromosome in the Papionini. 
In the Hominidae, HSA 3 shows the same morphology 
in Homo, Pan, and Gorilla. According to Yunis and 
Prakash (1982) this morphology differs by two pericen- 
tric inversions from that found in the Sumatran orang- 
utan (Pongo pygmaeus abelii). Seu~inez (1979) proposed 
that the acrocentric morphology observed in the orang- 

utan from Borneo (Pongo pygmaeus pygmaeus) would 
be the ancestral form for the Hominidae. A pericentric 
inversion would have produced the chromosome now 
found in the Sumatran orangutan, and another inversion 
would have given rise to the morphology now present in 
Homo, Pan, and Gorilla. 

According to our results, chromosome 3 of the orang- 
utan from Borneo only differs by pericentric inversion 
from that found in the Papionini. Thus, in the common 
ancestor of the Catarrhini, the homeology to human 
chromosome 3 would have been produced by the fusion 
of at least two chromosomes that would also be present 
in the Platyrrhini; the chromosome would have been 
maintained unchanged in the Papionini and would have 
undergone a centric fission in the Cercopithecini. In the 
Hominidae, this chromosome would have suffered the 
pericentric inversions indicated above (Fig. 3). 

HSA 4 

In this chromosome, several pericentric inversions have 
been detected in the different species of the family 
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Fig. 3. Evolution of HSA 3 in Simiiformes. The main reorganiza- 
tions that took place are indicated in the phylogenetic tree 
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Fig. 4. a Evolution of HSA 4 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 4 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA). c Centromere 

Fig. 5. a Evolution of HSA 5 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 5 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA). ---+ Breakpoint 

Hominidae.  According to Yunis and Prakash (1982) and 
Dutrillaux and Couturier  (1986) the morphology of 
H S A  4 would correspond to the ancestral form for these 
four genera (Homo, Pan, Gorilla, and Pongo). In the 
Cebidae and the Cercopithecidae,  the G-banding pat- 
tern of the corresponding chromosome is maintained, 
although with different locations of the centromere.  
These differences do not seem to be due to pericentric 
inversion mechanisms,  but to activation/inactivation of 
centromeres.  These data are in agreement  with the 
hypothesis of Yunis and Prakash (1982) and Dutrillaux 
and Couturier  (1986) according to which HSA 4 would 
be the most  primitive chromosome in the Hominidae 
f rom a morphological  point of view. 

Our  results support  the interpretation of Dutrillaux 
et al. (1982b) using high resolution R bands, but not 
those of Estop et al. (1978a, b) and Ponsh et al. (1986). 
Gene-mapping  data (Lalley et al. 1987) are also contra- 
dictory, so that the homeologies of HSA 4 cannot be es- 
tablished. During its evolution, H S A 4  also shows 
changes in the amount  of  terminal,  centromeric,  and jux- 
tacentromeric heterochromat in  (Fig. 4a, b). 

HSA 5 

This chromosome shows homeology with the correspond- 
ing chromosomes in the Cebidae,  although complex re- 

organizations are required to explain its present mor- 
phology in man. In the Cercopithecidae, some species 
show a chromosome identical to HSA 5, while others re- 
quire reorganizations. According to Dutrillaux (1979b), 
H S A 5 q  would have been present as early as in the an- 
cestral karyotype of the Simiiformes and would have 
acquired its present morphology in the ancestor to the 
Catarrhini. 

According to our results, the homeologue to HSA 5q 
in the ancestral karyotype of the Simiiformes (Cebidae) 
shows an extra G ( + )  and an extra G ( - )  band in its dis- 
tal end when compared with H S A  5 (Fig. 5 a, b). Further- 
more,  changes in the amount  and location of constitutive 
heterochromatin can be observed in the evolution of this 
chromosome.  In CPE it shows juxtacentromeric hetero- 
chromatin,  and in G G O ,  terminal heterochromatin 
(Fig. 5 a, b). 

HSA 6 

Our results indicate that H S A  6 maintained a very con- 
servative banding pat tern during the evolution of the 
Simiiformes. A chromosome in the Cebidae shows the 
same banding patterns as H S A  6, although with a differ- 
ent location of the centromere.  Dutrillaux (1979a, b) 
has explained this difference by a pericentric inversion, 
but it might be due to the activation/inactivation of 
different centromeres.  In the Papionini and in some 
Cercopithecini species, this chromosome is identical to 
H S A  6, while in other Cercopithecini species the chro- 
mosome shows different reorganizations. 

This would indicate that H S A 6  maintained a con- 
stant banding pattern ever since the ancestral karyotype 
of the Simiiformes. Later  on, and in the common ances- 
tor to the Catarrhini, this chromosome would have un- 
dergone a displacement of its active centromere.  It  is 
also possible to detect changes in the presence or ab- 
sence and in the localization of heterochromatic  regions 
during the evolution of this chromosome.  These would 
correspond to the observation of telomeric hetero- 
chromatin in CAP,  CAL,  LLA,  PTR,  and G G O  and of 
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Fig. 6. a Evolution of HSA 6 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 6 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA). c Centromere, h heterochromatin 

Fig.7. Evolution of HSA 7 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic tree 

Fig. 8. a Evolution of HSA 8 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 8 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA). fFusion, h heterochromatin 

juxtacentromeric heterochromat in  in PSP, E P A ,  CPE, 
and CCE (Fig. 6a, b). 

HSA 7 

H u m a n  chromosome 7 shows homeologies  within the 
three Cebidae species studied. However ,  these homeo-  
logies require complex structural reorganizations (Du- 
trillaux and Couturier  1981; Clemente  et al. 1987). In 
the Cercopithecidae,  no homeologies for this chromo- 
some have been observed (Pons~ et al. 1986; Clemente  
et al. 1990), although Dutrillaux et al. (1980b) have de- 
scribed a single homeology that requires extremely com- 
plex reorganizations. 

Our  results also suggest that many  reorganizations 
took place during the evolution of H S A  7. According to 
other authors (Yunis and Prakash 1982; Dutrillaux et al. 

1982b; Dutrillaux 1985) the present  morphology of this 
chromosome originated after the Cercopithecidae and 
the Hominidae  diverged, and as indicated by Yunis and 
Prakash (1982), probably in the common ancestor to the 
genera Pan and Homo (Fig. 7). 

H S A 8  

Some of the published data indicate that human chromo- 
some 8 occurred with its present  morphology in the com- 
mon ancestor of the Hominidae  (Seufinez 1979; Yunis 
and Prakash 1982; Dutrillaux 1985), while others suggest 
that it would have occurred even earlier, in the ances- 
tor of  the Catarrhini (Pons~ et al. 1986; Clemente et 
al. 1990), because this chromosome,  with some small 
changes in the amount  of its juxtacentromeric hetero-  
chromatin,  can be found in all Cercopithecidae species 
studied so far. Dutrillaux et al. (1980b) believe that this 
chromosome would have undergone a fission process in 
some Cercopithecini species. In the Cebidae,  H S A 8  
maintains a constant morphology,  except perhaps  for 
the distal regions of H S A  8p (Clemente  et al. 1987) (Fig. 
8a, b). 
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HSA 9 

This chromosome shows homeologies with all Cebidae 
species studied, and its morphology is equivalent to that 
found in Pongo, which according to Yunis and Prakash 
(1982) and Dutrillaux (1985) would correspond to that 
present in the ancestor of the Hominidae. Thus, this 
chromosome would have been present in the common 
ancestor of the Platyrrhini. No homeologies for HSA 9 
have been found in the Cercopithecidae (Ponsh et at. 
1986; Clemente et al. 1990), although some authors 
have suggested the existence of homeologies through 
extremely complex reorganizations (Dutrillaux 1979a; 
Dutrillaux et al. 1980a). The morphology of HSA 9 as 
such is only found in Homo sapiens (Fig. 9). 

HSA 10 

To find homeologies to HSA 10 in the Cebidae, different 
reorganizations such as pericentric inversions or centro- 
mere displacements are required. According to Dutrillaux 
(1979a, b) the long arm of the corresponding chromo- 
some in the genus Cebus would be equivalent to that 
present in the ancestral karyotype of the Simiiformes, 
because it shows the same morphology as that observed 
in Pongo, a genus with a chromosome 10 differing from 
HSA 10 only by a pericentric inversion. 

In our opinion, the equivalent long arms of the chro- 
mosomes of Cebus and Pongo do not show the same 
banding pattern, and if CAP 5q shows a paracentric in- 
version, it would be different from that present in PPY 
and would give rise to a banding pattern quite similar to 
that now found in HSA 10. According to Dutrillaux 
(1979a), Estop et al. (1978b; 1983), and Ponsh et al. 
(1986), in the Cercopithecidae this chromosome would 
show the same morphology as in Pongo, which as sug- 
gested by Yunis and Prakash (1982) and Dutrillaux 
(1985), would correspond to the ancestral morphology 
of that of the Hominidae. Thus, the present morphology 
of HSA 10 would have originated after the divergence of 
the orangutan. During its evolution, this chromosome 
would have undergone changes in the amount and locali- 
zation of its terminal (LLA, PTR, GGO), interstitial 
(CAP, CAL), and juxtacentromeric heterochromatin 
(CPE and CCE) (Fig. 10a, b). 

HSA 11 

HSA 11 is found in all species of the family Cercopi- 
thecidae studied so far, with the single exception of 
CCE. This homeology, in agreement with that proposed 
by Ponsta et al. (1986), requires a pericentric inversion 
(Fig. l l a ,  b). Yunis and Prakash (1982) have suggested 
that the metacentric type found in the Cercopithecidae 
would correspond to the morphology present in the com- 
mon ancestor of the Cercopithecidae and the Homi- 
nidae. Our results are in agreement with this hypothesis 
and also indicate that later on a pericentric inversion 
would have produced the submetacentric type now 
found in the Hominidae. 

The homeologues to HSA11 found in the Cebidae 
require specific reorganizations. The ancestral morphol- 
ogy in the Cebidae corresponds to an acrocentric chro- 
mosome, which would have originated the metacentric 
type found in the Cercopithecidae by a displacement 
of the centromere. The present morphology of HSA 11 
would have originated before the divergence of the 
orangutan, as proposed by Yunis and Prakash (1982). 
Other than these structural changes, other changes 
would also have taken place affecting the presence or 
absence and the location of heterochromatin, because 
CAP and LLA show an interstitial heterochromatic re- 
gion, while PTR and GGO have terminal heterochroma- 
tic bands. 

HSA 12 

HSA 12 is found in all Cercopithecidae species studied 
so far. According to Dutrillaux et al. (1980a, 1982b), 
Dutrillaux (1985), and Pons~ et al. (1986), this chromo- 
some would have occurred with its present morphology 
in the common ancestor of the Catarrhini. Later on, 
pericentric inversions would have taken place in Pan and 
Gorilla (Yunis and Prakash 1982) (Fig. 12a, b). In the 
Cebidae, this chromosome corresponds to an acrocentric 
or to a submetacentric depending on the species studied. 
The results of Dutrillaux and Couturier (1981) indicate 
that the acrocentric type found in the genus Cebus is also 
present in the prosimian Microcebus murinus (MIM). 
This acrocentric chromosome probably corresponds to 
the type that occurred in the common ancestor to all 
Primates, while in the common ancestor to the Simii- 
formes it would have probably acquired a submetacen- 
tric morphology (Fig. 12a, b). Later on, different re- 
organizations would have taken place, as well as changes 
in the amount and localization of interstitial (CAP, CAL) 
juxtacentromeric (EPA, CCE), or terminal heterochro- 
matin (PTR, GGO). 

HSA 13 

This chromosome is found in some Cebidae and Cerco- 
pithecidae species, indicating that it was probably pre- 
sent in the common ancestor to the Simiiformes. Ac- 
cording to Dutrillaux and Couturier (1981, 1983) and 
Dutrillaux (1985), the morphology of HSA 13 is also 
identifiable in other'mammalian species. 

HSA 14 

This chromosome is found in some Cebidae and Cerco- 
pithecidae species (CAP, CAL, PSP, CNI) as the long 
arm of a submetacentric chromosome. In other species 
of these two groups, the short arm of this submetacen- 
tric shows some differences that may be due to deletions 
or reciprocal translocations. According to Dutrillaux 
(1979a), HSA 14 as an independent acrocentric chromo- 
some would have originated by centric fission in the 
common ancestor to the Hominidae, and later on it 
would have undergone a pericentric inversion in Gorilla 
(Yunis and Prakash 1982) (Fig. 13a, b). 
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Fig. 10. a Evolution of HSA 10 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 10 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA). --* Breakpoint, i inversion, h heterochromatin 

Fig. l l .  a Evolution of HSA 11 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 11 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA). c Centromere, -* breakpoint, i inversion 

Fig.12. a Evolution of HSA 12 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 12 from the common ancestor of Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA) 

Fig. 13. a Evolution of HSA 14 in the Simiiformes. The main re- 
organizations that took place are indicated in the phylogenetic 
tree. b Reorganizations that took place during the evolution of 
HSA 14 from the common ancestor of the Cebidae (ACb) and the 
Cercopithecidae (ACr) to its present morphology in Homo sapiens 
(HSA). -~ Breakpoint, fi fission 

l ISA 15 

N o  h o m e o l o g i e s  for this c h r o m o s o m e  have  been  found 
in the Cebidae  species  s tudied so far. In the Cercopi -  
thec idae ,  it can be  identi f ied as an acrocentric  in s o m e  
Cercopi thec in i ,  and as the long arm of  the m a r k e d  
( N O R )  c h r o m o s o m e  in the Papionini .  This  c h r o m o s o m e  
probably  originated in the c o m m o n  ancestor  to the 
Catarrhini and later on  underwent  different reorganiza-  
t ions.  

l ISA 16 

This c h r o m o s o m e  has probably  suffered many  different 
reorganizat ions  during the evo lu t ion  of  the S imi i formes .  
N o  h o m e o l o g i e s  for H S A  16 have  b e e n  observed  in the 
Cebidae  or in the Cercopi thec idae .  In the H o m i n i d a e ,  
this c h r o m o s o m e  shows  reorganizat ions  in the four gen- 
era o f  the family.  Resul ts  re lat ive  to the p r o p o s e d  an- 
cestral form for the H o m i n i d a e  are confl ict ive.  S e u ~ n e z  
(1979) p r o p o s e d  that the ancestral  m o r p h o l o g y  would  be  
the one  n o w  found in Pan, while  Yunis  and Prakash 
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(1982), Dutrillaux (1985), and Dutrillaux and Couturier 
(1986) considered that it would correspond to the type 
observed in Pongo and Homo. 

HSA 17 

No homeologies to this chromosome have been found in 
the Cebidae. In the Cercopithecidae, a chromosome is 
found that only differs from that now present in the 
orangutan by a pericentric inversion. According to 
Yunis and Prakash (1982) the ancestral chromosome of 
the Catarrhini would be of the type now found in the 
Cercopithecidae. This chromosome, by means of a peri- 
centric inversion, would have produced the correspond- 
ing chromosome of the orangutan, and by means of a 
paracentric inversion, the morphology now found in 
Homo. In the remaining species of the F. Hominidae,  
other  types of reorganization would be involved (Yunis 
and Prakash 1982) (Fig. 14). 

HSA 18 

HSA 18 shows homeologies within all Cebidae species 
studied, in which it is part of a longer chromosome. Al- 
though Dutrillaux et al. (1980a) and Pons~ et al. (1986) 
have described homeologies for this chromosome in the 
Cercopithecidae, we have not been able to confirm their 
results. With its present morphology, HSA 18 is found 
only in Homo sapiens. According to Dutrillaux and 
Couturier (1986), this type would correspond to the 
ancestral chromosome of the Hominidae. However,  
Seu~nez (1979) and Yunis and Prakash (1982) believe 
that HSA 18 originated from the type now found in Pan, 
Gorilla, and Pongo (Fig. 15). 

HSA19 

This chromosome is found in all Cebidae and Cercopi- 
thecidae species studied. As indicated by other authors 
(Dutrillaux e t a l .  1982), it would have remained un- 
changed since the ancestral karyotype of the Simii- 
formes, except for the addition of terminal hetero- 
chromatin in PTR and G G O  (Fig. 16). 

HSA 20 

This chromosome is found with the same morphology in 
most Cebidae species and with a pericentric inversion in 
LLA.  In the Cercopithecidae, no homeologies for this 
chromosome have been observed. Probably HSA 20 was 
present in the ancestral karyotype of the Simiiformes, 
underwent complex reorganizations in the Cercopi- 
thecidae, and was maintained unchanged in Homo, Pan, 
and Gorilla. 

HSA21 

In the Cebidae species studied, this chromosome shows 
interstitial (LLA) or terminal (CAP and CAL) hetero- 
chromatic regions. No homeologies for this chromosome 
have been found in the Cercopithecidae. According to 
other authors (Seu~inez 1979; Yunis and Prakash 1982; 
Dutrillaux 1985), this chromosome would have been 
found unchanged in the ancestral karyotype of the 
Simiiformes and would have undergone complex reor- 
ganizations in the Cercopithecidae and changes in the 
amount and localization of heterochromatin in the 
Hominidae,  with terminal heterochromatic regions in 
PTR and GGO.  

HSA22 

Unlike Dutrillaux (1979a), we have not found any 
homeologies for this chromosome in the Cebidae. In the 
Cercopithecidae it would correspond to the short arms 
of the marked chromosome found in the Papionini and 
to the long arm of the marked chromosome of the Cer- 
copithecini. This chromosome was probably present in 
the ancestral karyotype of the Catarrhini, and would 
have been maintained unchanged in the evolutionary 
line that gave rise to the Hominidae,  while in the Cerco- 
pithecidae it would have undergone fusions with other 
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Fig. 16. Homeologies observed during the 
evolution of HSA 19 from the common ancestor 
of the Cebidae (ACb) and the Cercopithecidae 
(ACr) to its present morphology in Homo 
sapiens (HSA) 

Fig. 17. Evolution of HSA 22 in the Simiiformes. 
The main reorganizations that took place are 
indicated in the phylogenetic tree 

Fig. 18. Homeologies observed during the 
evolution of HSA X from the common ancestor 
of the Cebidae (ACb) and the Cercopithecidae 
(ACr) to its present morphology in Homo 
sapiens (HSA) 

chromosomes, which are different in the Papionini and 
the Cercopithecini (Fig. 17). 

HSA X 

Although it has undergone some intrachromosomal re- 
arrangements in all Cebidae and Cercopithecidae spe- 
cies studied, the X chromosome has been maintained 
unchanged (with respect to its G-banding pattern). Ac- 
cording to some authors (Estop et al. 1983; Dutrillaux et 
al. 1982a; Dutrillaux 1985; Ponsb et al. 1986), this chro- 
mosome would have been present in the ancestral karyo- 
type of the Simiiformes and later on would have under- 
gone changes in the amount and localization of hetero- 
chromatin (Fig. 18). 

Discussion 

When our results are compared with those previous- 
ly published (Dutrillaux 1979b, 1985; Dutrillaux et al. 
1982a, b; Dutrillaux and Couturier 1986; Seufinez 1987), 
three types of homeologies become evident: 

1. Homeologies that coincide in all papers published so 
far, for both the chromosomes identified and the type(s) 
of reorganization(s) described. For instance, HSA X is a 
chromosome that has been "protected" from changes 
during the evolution of the Simiiformes, except for some 
simple intrachromosomal reorganizations (Garcfa et al. 
1978; Freitas 1982). Thus, no differences exist in the in- 
terpretation of the evolution of HSA X in the studies 
published so far. 

2. Homeologies that coincide in the assignment of the 
chromosomes involved, but not regarding the reorgani- 
zation(s) that have taken place and that are needed to 
establish a correspondence between the banding pat- 
terns present in different species. For instance, the 
homeology proposed in this paper between HSA 6 and 
CAP3 coincides with that proposed by Dutrillaux 
(1979a) for CCA3. However, the differences in the 
location of the centromeres in these chromosomes are 

interpreted by Dutrillaux (1979a, b) as resulting from a 
pericentric inversion while we consider that they are the 
result of a displacement due to a centromere activation/ 
inactivation phenomenon. 

3. Homeologies in which the chromosome assignments, 
of the different authors do not coincide, or others in 
which some authors find homeologies, while others do 
not. Thus, Estop et al. (1978a, b) and Pons~ et al. (1986) 
consider that HSA4 corresponds to MMU6, while 
Dutrillaux et al. (1982a) and ourselves, having used high 
resolution banding techniques, believe that HSA 4 really 
corresponds to MMU 4 (PSP 4). Gene-mapping studies 
(Pearson et al. 1982; Lalley et al. 1987) have not helped 
to solve the problem in this case. 

During the evolution of the Simiiformes, some chromo- 
somes seem to have been protected from structural rear- 
rangements and are extremely similar morphologically 
in all species studied (HSA 19 and HSA X; Fig. 19) while 

HSA 
, s A  
HSA18 

HSA 7" 
MSA 9 

HSA 3'  
HSA 10" 
HSA 17 ~ 

HSA &" 
HSA 11" 
HSA 1~ 

HSA 
HSA B' 
HSA 
HSA 15 

ECebidoe ' ~  
Pl.oty rrh ini 

HSA l Z  
HSA 1; 
HSA 19' 
HSA 
HSA ~ ~  Prossimii ~ 

Homo 

Pongo 

..~ ~..~copith ecini 

Papionini 

FCercopithecidoe 

Cotorrhini 

Siimiformes 

Fig. 19. Phylogeny of human chromosomes. The time in evolution 
where the present morphology was acquired is indicated. �9 Changes 
in the amount and/or location of heteroehromatin 
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others have undergone multiple and variable rearrange- 
ments. Our results indicate that HSA 1, 3, and 7 would 
be among the chromosomes that have suffered relative- 
ly many reorganizations during the evolution of the 
Simiiformes. These three chromosomes would have ac- 
quired their present morphology in a later stage of 
evolution: HSA3 would have originated after diver- 
gence of the orangutan; HSA7, after divergence of the 
Gorilla; and HSA 1, during the process of speciation that 
gave rise to Homo sapiens. Furthermore, these chromo- 
somes have also undergone many reorganizations during 
the evolution of the Cebidae and the Cercopithecidae 
(Fig. 19). Dutrillaux et al. (1980a) have indicated that in 
the evolution of the Cercopithecini, four-fifths of the 
chromosomal reorganizations affect just seven of the 
chromosomes, which by decreasing order of frequency 
correspond to HSA 1, 7, 3, 6, 4, 14, and 20. 

On the other hand, it is interesting to note that the 
chromosomes that have undergone more rearrange- 
ments in the evolution of the Simiiformes coincide with 
those that are also more affected by rearrangements in 
human pathology. Thus, HSA 1, 3, and 7 are the ones 
that more frequently show pericentric inversions (Fryns 
et al. 1986) while paracentric inversions affect mainly 
chromosomes HSA 1, 3, and 6 (Kaiser 1984). In cancer 
patients who have undergone radio and/or chemothera- 
py the chromosomes most frequently affected by reor- 
ganizations are HSA 1, 3 and 7 (Barrios 1987; Bauchinger 
and Gotz 1979; Lee and Kamra 1981; Berger et al. 
1985a, Kano and Little 1986), while the chromosomes 
less frequently affected in this type of patients seem to 
be HSA 13, 15, 21, and 22 (Barrios 1987). The phylo- 
genetic study of human chromosomes also indicates 
that these are among the more stable chromosomes in 
the evolution of the Simiiformes. As shown in Fig. 19, 
chomosomes 13 and 21 would have acquired their pre- 
sent morphology in the common ancestor to the Simii- 
formes, and according to Dutrillaux et al. (1982b) the 
same morphology can also be found in other mammalian 
species. HSA 15 and 22 (Fig. 19) would have adopted its 
present morphology after divergence of the Cebidae. 
Furthermore, these chromosomes show few reorganiza- 
tions in the different Primate families studied so far. 

The most frequent of the different types of reorgani- 
zation detected in the evolution of the Simiiformes 
are inversions (especially pericentric), changes in the 
amount and localization of heterochromatin, fusions and 
fissions, and changes in the location of centromeres due 
to activation/inactivation mechanisms. Much less fre- 
quent are reciprocal translocations, deletions, and inser- 
tions. The reasons for and consequences of the different 
"classic" types of reorganizations, such as inversions, 
fissions, etc., have been discussed by others (Chiarelli 
and Egozcue 1967; White 1973, 1978; deGrouchy 1978; 
Lande 1979; Bengston 1980; Marks 1983; Coyne 1984; 
Dutrillaux 1986; King 1986; Baker et al. 1987). However 
in our opinion, two types of reorganization, i.e., the 
changes in the amount and location of heterochromatin 
and the changes in the location of the centromere due 
to activation/inactivation mechanisms, deserve special 
attention. 

The biological role of constitutive heterochromatin is 
controversial. To some authors, changes in the amount 
and location of heterochromatin would have no effect on 
the individual or the species and would be maintained as 
polymorphisms in the general population (McKenzie 
and Lubs 1975; Arrighi et al. 1976; Baimai 1977; Dutril- 
laux 1979b; Dutrillaux et al. 1981; Seu~inez et al. 1983, 
1986; King 1986). To others, such changes could have a 
selective effect, and their study would be extremely im- 
portant from a phylogenetic point of view (White 1978; 
Stanyon and Chiarelli 1982; Garcfa et al. 1983). Our 
results indicate that such changes in the amount and 
location of heterochromatin have been extremely fre- 
quent in the evolution of the Simiiformes and that they 
are probably involved in the evolution of the species, 
although their role is still unknown. 

Heterochromatin is generally believed to correspond 
to inactive regions of the chromosomes (Sieger et al. 
1970), although some authors have described low levels 
of genetic activity in these regions (Sadamory and 
Sandberg 1983). On the other hand, constitutive hetero- 
chromatin has been related to gene regulation (Britten 
and Davidson 1971; Hsu 1975; Brown 1981) and its vari- 
ations have been associated with different pathological 
conditions such as mental retardation and embryo- 
pathies (Lubs et al. 1977; Matsaura et al. 1978; Tharapel 
and Summit 1978; Funderburg et al. 1980; Podugol- 
nikova and Blumina 1983), spontaneous abortion (de 
Grouchy et al. 1964; Hamerton et al. 1965, 1972; de la 
Chapelle et al. 1974; Patil and Lubs 1977; Hommings 
and Burns 1979; Verp et al. 1983) and cancer (Atkin and 
Picktall 1977; Atkin and Baker 1977; Berger et al. 1979, 
1985b; Le Coniat et al. 1981; Rajasekariah and Garson 
1981; Shabtai et al. 1985). 

The evolutionary studies carried out so far seem to 
indicate that the euchromatic regions of the chromo- 
somes in the different species analyzed are quite similar 
(Dutrillaux 1979b; Dutrillaux et al. 1981; Mir6 et al. 
1986, 1987; Clemente et al. 1987). The main differences 
in these species are due to the different amounts and 
localization of heterochromatin. In our work on the 
Simiiformes, we have observed that some chromosomes 
preferentially show changes in the amount and location 
of heterochromatin. These data are in agreement with 
those of Dutrillaux et al. (1981) according to which 
heterochromatin is not distributed at random in the 
chromosomes, but is usually found in the same regions, 
depending on the species or genera studied. This sug- 
gests the existence of specific chromosomal regions with 
a potential to develop increased amounts of hetero- 
chromatin, maybe through a mechanism of DNA am- 
plification. 

Furthermore, the limits of the regions where hetero- 
chromatin is found in some Primate species are very 
frequently involved in chromosome rearrangements ob- 
served in their homeologues in other species. For in- 
stance, band HSA 2q13 corresponds to the region where 
the fusion that originated HSA 2 took place, and in the 
acrocentric chromosomes of the Cebidae, Cercopithec- 
idae, and Hominidae it also shows terminal hetero- 
chromatin in PTR and GGO and interstitial hetero- 
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c h r o m a t i n  in L L A .  A n d  it is one  of  the  bands  imp l i c a t e d  
in the  pe r i cen t r i c  invers ion  n e e d e d  to  es tabl i sh  the  
h o m e o l o g y  b e t w e e n  the  c o r r e s p o n d i n g  ac rocen t r i c  chro-  
m o s o m e s  found  in the  o r a n g u t a n  and  d i f fe ren t  C e b i d a e  
spec ies  wi th  the  c h r o m o s o m e  p r e s e n t  in P T R ,  G G O ,  
and  d i f fe ren t  species  of  the  fami ly  C e r c o p i t h e c i d a e  (un- 
pub l i shed  da ta ) .  These  d a t a  a re  in a g r e e m e n t  wi th  previ -  
ous  pub l i ca t ions  (Mi r6  1981; G a r c i a  et  al.  1983; Mi r6  et  
al. 1986, 1987; C l e m e n t e  et  al. 1987) ind ica t ing  tha t  the  
l imits  of  h e t e r o c h r o m a t i c  reg ions  w o u l d  be  m o r e  p r o n e  
to b r e a k a g e  and  r eun ion  mechan i sms  and ,  as a resul t ,  
w o u l d  be  invo lved  in mos t  r eo rgan i za t i ons  p r o d u c e d  
dur ing  c h r o m o s o m e  evo lu t ion .  

T h e  p r o p o s e d  changes  of  l oca t ion  of  c e n t r o m e r e s  
have  b e e n  desc r ibed  as f r equen t  r eo rgan i za t i ons  in the  
evo lu t ion  of  the  C e r c o p i t h e c i d a e  (Du t r i l l aux  et  al. 
1982a),  the  P la ty r rh in i  (V iegas -P6qu igno t  et al. 1985; 
C l e m e n t e  et  al.  1987), and  the  P ros imians  ( R u m p l e r  et  
al. 1983). T h e s e  d i f fe rences  in the  loca l iza t ion  of  the  
c e n t r o m e r e s  might  resul t  f rom a s imple  inac t iva t ion/ac t i -  
va t ion  m e c h a n i s m  if l a ten t ,  in te rs t i t i a l  c e n t r o m e r e s  a re  
p r e s en t  in the  c h r o m o s o m e .  The  ex is tence  of  l a t en t  cen-  
t r o m e r e s  has  b e e n  p r o p o s e d  by  severa l  au thor s  ( R a o u l  
1970; Du t r i l l aux  1975, 1979b; H o l m q u i s t  and  Danc i s  
1980; Mi r6  et  al. 1986, 1987; C l e m e n t e  et  al. 1987), and  
R a o u l  (1970) and  H o l m q u i s t  and  Danc i s  (1980) have  
d e m o n s t r a t e d  tha t  at  leas t  some  r eo rgan i za t i ons  imply  
the  ac t iva t ion  o f  a l a t en t  c e n t r o m e r e  and  the  inac t iva t ion  
of  the  p rev ious  one .  Since the  d i s p l a c e m e n t  o f  a cen t ro -  
m e r e  in he te rozygos i s  can  give rise to a b n o r m a l  me io t i c  
segrega t ions ,  this m a y  have  had  as i m p o r t a n t  a ro le  in 
c ladogenes i s  as any o t h e r  type  of  c h r o m o s o m e  reo rgan i -  
za t ion .  
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