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Abstract. The orientational ordering transition R3m-R3c 
in NaNO3 near 552 K has been investigated using x-ray 
diffraction techniques. NaNO3 is a model system for CaCO3 
and other minerals with orientational disorder of triangular 
molecules in a simple NaCl-type matrix. The temperature 
evolution of the integrated intensities of the superlattice re- 
flection 1-23 and the fundamental reflection 110 are dis- 
cussed in terms of Landau theory of two coupled order 
parameters. It is shown that the known phenomenological 
critical exponent (Poon and Salje 1988) and the anomalous 
thermal expansion at T > T ,  r (Reeder et al. 1988) can be 
understood as the result of a Z point instability which main- 
ly describes the NO~- disorder, and a second order parame- 
ter linked with the spontaneous strain of this phase transi- 
tion. 

1. Introduction 

The phase transition in NaNO3 near 552 K has attracted 
much attention during the last two decades because it is 
generally considered as a prototype of a 2-transition with 
a large excess specific heat anomaly (Reinsborough and 
Wetmore 1957). This phase transition is also structurally 
and thermodynamically closely related to the R3m--RYc 
phase transition in Calcite (Salje and Viswanathan 1976, 
Dove and Powell 1989, Redfern et al. 1989) so that NaNO3 
is a model compound for a large group of structures where 
small triangular molecules order in a NaCMike matrix. The 
first structural interpretation of this phase transition is due 
to Kracek (1931) and Kracek et al. (1931) who determined 
the correct space groups of the high temperature phase (i.e. 
R3m) and of the low temperature phase (i.e. R3c) and noted 
that the reflections hkl with I odd (with respect to the hexag- 
onal setting of the low temperature phase) are superlattice 
reflections and have zero intensity in the disordered phase. 
Further crystallographic work by Stromme (1969), Paul and 
Pryor (1972), Terauchi and Yamada (1972) and Lefebvre 
et al. (1984) lead to a more detailed model of the molecular 
disordering process, the results of other physical experi- 
ments such as N M R  (D'Alessio and Scott 1971), Raman 
Spectroscopy (e.g. Shen et al. 1975; Neumann and Vogt 
1978; Yasaka et al. 1985), infrared spectroscopy (e.g. Brehat 
and Wyncke 1985) and inelastic neutron scattering (e.g. Le- 
febvre et al. 1980) stressed the relationship between the 
structural aspects of the phase transition and the dynamics 

of the NaNO3 lattice. Recent investigations in our laborato- 
ry showed the importance of elastic interactions and the 
developement of spontaneous strain both in NaNO3 and 
CaCO3 (Poon and Salje 1988; Reeder et al. 1988; Dove 
and Powell 1989; Redfern et al. 1989). The studies revealed 
the close correlation between the strong expansion of the 
unit cell along the crystallographic e-axis [O01]h~x (and the 
weak variations in the a, b plane) and the thermodynamic 
properties of the phase transition. Molecular dynamics cal- 
culations by Lynden-Bell et al. (1989) also stress the impor- 
tance of the coupling between the rotational and transla- 
tional degrees of freedom of the NO~ molecules and the 
change of the size of the crystallographic unit cell. Both 
effects and their coupling contribute significantly to the total 
excess Gibbs free energy of this phase transition. 

In this paper we report the results of x-ray diffraction 
experiments between room temperature and ca. 570 K (the 
bulk melting point of NaNO3 is 583 K) in which the temper- 
ature dependence of the intensities of selected reflections 
related to the phase transition were studied in detail. We 
will show that the structural phase transition is driven by 
two mechanisms which combine to break the R3m symme- 
try. The results will be quantified within the framework 
of Landau theory. 

2. Experimental 

NaNO3 single crystals of high quality grown from aqueous 
solutions were kindly provided by Prof. P.J. Herley of the 
State University of New York at Stony Brook. These sam- 
ples were also used for other investigations of NaNO3 in 
our laboratory (Poon and Salje 1988; Reeder et al. 1988; 
Wruck 1987). 

A cleaved regular rhombohedron with 0.5 mm edge-to- 
edge diameter was mounted with ceramic cement (SiOa 
based) on a silica glass fibre cemented into a stainless steel 
rod. The mount was preheated for 2 days at 450 K and 
then fitted on the stainless steel goniometer head of a Philips 
PW1100 4-circle diffractometer, equipped with a Mo x-ray 
fine focus tube and a graphite monochromator. A 0.8 mm 
beam collimator was used along with horizontal and verti- 
cal detector apertures of 2 ~ and 1.5 ~ respectively. A furnace 
rotating with the Z circle was centered around the crystal 
in the Eulerian cradle. The heater design followed Brown 
et al. (1973), with a cylindrical pyrophyflite body (2 cm ~Z~) 
containing the heating elements and conical diffraction ap- 
ertures of 30 ~ covered with capton windows. A Eurotherm 
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Fig. 1. Temperature evolution of the integrated intensity of the 
fundamental reflection 110 and of the superlattice reflection 123 
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controller  was used which allowed a relative temperature  
stabili ty of _+0.25 K as measured using a chromel-alumel 
thermocouple  set 0.5 m m  from the surface of the crystal. 
Diffraction intensities were recorded using continuous 
c o - 2  0 scans covering 2 ~ co with scan speeds between 0.001 ~ 
and 0.02 ~ co/s. The background  scattering was measured 
for half the scan time on either side of the scan. The total  
background  was interpolated and subtracted from the mea- 
sured total  signal. 

F o r  accurate determinat ion of the temperature  depen- 
dence of a single diffraction intensity, the 4~ and X angular  
settings were kept  centred on this reflection during the entire 
measurement  at all temperatures.  All  measurements  were 
repeated several times and reproducibi l i ty  within 1% was 

found only after annealing the cement for 2 days at 550 K 
and five complete temperature  runs between room tempera-  
ture and 560 K, which took  two more  days. The final experi- 
ments were then repeated at least 3 times for each reflection 
over the full temperature  range. The absolute temperature  
cal ibrat ion (based on in situ observat ion of first order  struc- 
tural  t ransformations and melting of various materials,  and 
the extrapola ted To of the power law behaviour  of the long 
range order  parameter ,  see below, known from DSC mea- 
surements of the same material,  Wruck  1987) is believed 
to be correct within 0.5 K near Ttr and ca. 2 K elsewhere. 

3. R e s u l t s  

The temperature  evolution of the integrated intensities of 
the superlatt ice reflection 123 and the fundamental  reflec- 
t ion 110 are shown in Fig. 1. These reflections were chosen 
for the experiments because they have similar sin 0/2 values 
and hence possess similar Debye-Wal ler  factors. The effect 
of the Debye-Waller  factor is seen in Fig. 1 for the 110 
reflection, whereas the [23 reflection shows the strong tem- 
perature dependence of a critical reflection which is fully 
extinct in the high temperature  phase. At  temperatures  close 
to the phase transi t ion point,  s trong diffuse scattering occurs 
at and near to the posi t ion of the i-23 reflection (Fig. 2). 
The Bragg intensity vanished for temperatures  above Ttr 

552.3 K (according to our temperature  calibration). The 
temperature  dependence of the integrated diffuse scattering 
intensity above Ttr is shown in Fig. 3. 

4. D i s c u s s i o n  

4.1. Orientational Order and Critical Scattering 

In the ideal R3c structure the p lanar  NO~ molecules are 
stacked in layers perpendicular  to the hexagonal  c axis such 
that  the molecules in the same (001) layer have identical 
or ientat ion while the molecules in adjacent  layers are rotat-  
ed by 180 ~ with respect to each other (Fig. 4). (Due to the 
molecular  symmetry the 180 ~ rota t ion is equivalent to a 
60 ~ rota t ion and to the inversion opera t ion  actually relating 
the molecular  posi t ions in adjacent  layers in this space 
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Fig. 5. Schematic view of the Brillouin zone of the disordered (R3m) 
phase of NaNO3. The critical long range correlation occurs at 
the point Z =3 c*(R3m) 

group). With increasing temperature, the orientational cor- 
relation decreases continuously, and above the transition 
temperature near 552 K each molecule is found in both 
states + zr with equal probability (as a space average). The 
symmetry of this disordered structure is R3rn with mirror 
planes perpendicular to the directions of the N - O  bonds 
and ch~ (R3m) = �89 Chex (R3c). 

Without reference to the specific nature of the orienta- 
tional correlation functions involved (which include libra- 
tional displacements from the two 'equilibrium' orienta- 
tional states, Paul and Pryor 1972; Lefebvre et al. 1984), 
the order parameter system can be defined by a (electron) 
density correlation function. Let ~00 (x) be the average den- 
sity of the R3m structure at a temperature T >> Tt~. The local 
instantaneous density is 

rp(x) = rpo (x) + A (p(x) (4.1.1) 

where A (#(x) is dominated by the orientational disorder. 
Any orientational correlations with non-vanishing mean 
square amplitude 

(Q(q) Q * ( q ) ) = ~ A  ~o(x) A ~o(x +r)  exp(--iqr)  dvx dr ,  (4.1.2) 

give rise to x-ray scattering with intensity 

I(I-I+q)=~(qgo(x)+ A~o(x))(9o(x +r)+ Aqg(x +r)) 

�9 exp(-- i (H +q) r) dv~ dr ,  (4.1.3) 

=Io(H)  3(q, 0) + IF1 (H + q)t 2 (Q(q) Q*(q)) (4.1.4) 

where Io(H) is the Bragg intensity due to ~0o(X) at the recip- 
rocal lattice vector H of the disordered structure and 

F~ (H+q)=~A 91(x) e x p ( - i ( H  + q) x) dvx (4.1.5) 

is the structure factor for a density modulation with unit 
amplitude Q (q). The critical long range correlation leading 
from the disordered R3rn to the ordered R3c structure oc- 
curs at the point q=Z=~c*(R3m) on the surface of the 
Brillouin zone (Fig. 5) of the disordered phase. The long 
range order parameter Q(Z) breaking the macroscopic sym- 
metry is thus given by 

( Q ( q =  Z)) =~A cp(x) e x p ( - i q x )  dv x (4.1.6) 

and leads to the appearance of superlattice Bragg reflections 
for T <  Ttr at positions H+Z=hkl, l=2n+ 1 between the 
fundamental reflections H, with integer Miller indices hkl 
referring to the hexagonal setting of the ordered (R3c) 
phase 1. The Bragg intensity of the superlattice reflections 
follows the square of the order parameter according to 

I ( H  + Z) = 1/71 (H + Z)I 2 ( Q ( Z ) )  2 (4.1.7) 

and is superimposed on the diffuse scattering as given by 
(4.1.4). The diffuse intensity which has been observed at 
temperatures close to and above Ttr at wavevectors Z + k, 
k ~ 0 ,  is thus due to long-wavelength modulations of the 
Z-point ordering pattern, which most probably result from 
domain boundaries between ordered clusters. As the order- 
ing process is dominated by correlations at the Brillouin 
zone boundary, the fundamental reflections are only affected 
by a Debye-Waller like effect (Paul and Pryor 1972; Le- 
febvre et al. 1984) which is small for low-order reflections. 

4.2. Thermodynamic Modeling 
Extending the previous interpretations of order parameter 
behaviour in NaNO3 which were based on phenomenologic 
power laws for the order parameter (Poon and Salje 1988; 
Reeder et al. 1988), we shall attempt a more quantitative 
understanding of the NaNO3 system within the framework 
of Landau theory. In a first step, the system is discussed 
in terms of a single order parameter, i.e. the Z-point long 
range order parameter Q. It will be shown that this single 
ordering process is not sufficient to explain our experimen- 
tal results. Thus, in a second step, we will couple this order 
parameter Q with a second order parameter P which is 
relevant at temperatures close to Ttr. Only this coupling 
leads to an appropriate description of our experimental 
data. 

4.2.a. The Z-Point Instability. The symmetry breaking pro- 
cess at the Z-point, which characterizes the R3c phase, be- 
longs to the one-dimensional irreducible representation 
Z2(A1,) (Petzelt and Dvorak 1976). 

The magnitude of the long range correlation can thus 
be described by a single-component order parameter Q, and 
the corresponding Landau expression for the free energy 
is 

G = Go + �89 a( T-- T~) Q2 + �88 b' Q4 + ~ cQ6 

+ de3 Q2 +fe~ (4.2.1) 

where e3 is the spontaneous strain along Chex- 

The appropriate transformation between the standard hexagonal 
settings of both lattices is (hkl)aa~ = (h-E2/)R3c and thus the superlat- 
tice reflections have odd indices l with respect to the ordered R3c 
phase. We use the R3c setting throughout this paper 
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Fig. 6. Square of measured superlattice intensity (corresponding 
to Q4) vs. temperature. The solid line represents ideally 'tricritical' 
(fl= 1/4) behaviour for T<460 K 

The well known solutions for equilibrium are 
(using b = (b' - dZ/f)) 

ea = ( -  dZ/f) Q2 (4.2.2) 

and 

Q2 = 1 ( _  b + rb 2 - 4 a (T-- To) el 1/2) (4.2.3) 
2c 

corresponding to a first order transition for b < 0  and a 
continuous transition for b > 0. 

However, a simple power law behaviour 

Q~Qo] T -  Tom p (4.2.4) 

with an effective exponent fl and an effective T~ in a limited 
temperature range may be sufficient to approximate experi- 
mental results. The power law behaviour is exact for b 
= 0, c > 0(fl = �88 Gaussian fix point), the Landau limit with 
b>O, c=O is fl=�89 

The plot of Q4 versus T in Fig. 6 shows that below 
ca. 460 K the thermal behaviour can be described by an 
effectively 'tricritical'  behaviour (b=0) with fl=�88 and T~ 
= 592.5_+ 2 K. At ca. 460 K a crossover occurs to a region 
with an effective critical exponent fl=0.22(1) and T~ 
=552.4 K (Schmahl 1988). Starting from (4.2.1), effective 
exponents fi < �88 are only possible for transitions with a small 
first order step (b <0). As shown in Fig. 7a (curve I) the 
data in the range 460 K-552 K can be fitted with (4.2.3) 
obtaining a negative value for b and thus a small discontin- 
uity at 551.5 K. However, a discontinuity has not been 
found experimentally. These results on effective scaling 
behaviour and a crossover between two thermal regimes 
are identical to those obtained by measurements of excess 
birefringence (Pooh and Salje 1988), spontaneous strain 
(Reeder et al. 1988) and excess heat capacity and excess 
entropy (Wruck 1987). 

Figure 7a (curve 1I) shows the unsatisfactory result ob- 
tained by a fit of (4.2.3) over the whole investigated tempera- 
ture range. This result indicates that the crossover behav- 
iour near 460 K can not be explained as due to two different 
power law approximations to (4.2.3) and that two different 
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diagram 

sets of effective single order parameter Landau polynomials 
are necessary to describe the experimental data. 

A weak temperature dependence of other Landau coeffi- 
cients does not lead to more satisfactory results because 
all these models show a second systematic deficiency: all 
measurements on NaNOa and CaCO a (Poon and Salje 
1988; Reeder et al. 1988; Wruck 1987; Dove and Powell 
1989; D'Alessio and Scott 1971; this study) have revealed 
a pronounced tail of excess property (such as spontaneous 
strain or excess entropy) persisting above T~, well up to 
the melting point. This tail (which has been attributed to 
short range precursor order) is decreasing with increasing 
temperature and requires a second parameter (or several 
parameters) coupling to strain etc. and showing a tempera- 
ture dependence above Tt,. For  the single order parameter 
model, both spontaneous strain and excess entropy are de- 



794 

0.06 

0.05 

z 0.04 

n,- 
i-- u') 

0.03 
O~ 

0 

z 0.02 

C) 
0.. 
o~ 0.01 

0.00 
O. 

, , , , . . . . . .  , . . . .  

/ /  
§ 

§247 
§247 

++ 

U 
i t i i 1 i i i i t i T i i i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

NORMALIZEO TOTAL INTENSITY 

0. 

Fig. 8. Spontaneous strain ('intermediate model' of Reeder et al. 
1988) vs. total intensity at 123, i.e. integrated Bragg and diffuse 
intensity. Note the large excess strain for low values of Z-point 
order 

termined by the square of the long range order parameter 
Q, and thus both quantities must be strictly zero above 
the transition temperature. The observation of strong diffuse 
scattering around the Z-point suggests that these spatial 
fluctuations are responsible for the excess strain above Ttr. 
The appropriate Landau-Ginzburg extension of the single 
order parameter model can easily be written down as 

G = Go + Nqq, a , ,  (Q ,  Qq,) (T-- Tq) + e3 d,,, (Q ,  Qq,) 

+ 2qq,q,,q,,, bqq, q,,q,,, (Qq Qr Qq,, Qq,,,) + . . .  (4.2.5) 

(Bruce and Cowley 1981) where the summations are taken 
over all fluctuation amplitudes at wave vectors q. 

The following observations, however, are in variance 
with the classical Landau-Ginzburg expansion of a single 
order parameter approach for NaNO a : 

i) assuming that the strain coupling constant dqq varies 
only slowly with wave vector in the vicinity of Z0 with the 
contraction of the Chex lattice parameter increasing with in- 
creasing correlation length of the ordered clusters, the dif- 
fuse intensity compared to the Bragg intensity should have 
at least the same magnitude as the strain tail compared 
to the strain below Ttr. Inspection of Fig. 8 shows that the 
magnitude of the Z-point fluctuations appears to be too 
small to account for the tail of spontaneous strain or excess 
entropy. 

ii) The interpretation of the observed phenomenological 
exponents as genuine critical exponents faces another prob- 
lem: strictly the critical exponents are valid only in the 
Ginzburg interval where critical fluctuations, rather than 
the long range order, dominate the thermodynamics of the 
critical behaviour. Numerous investigations of structural 
phase transitions in minerals and related oxide systems indi- 
cate that the Ginzburg interval is generally quite small, in 
particular in the presence of the long range interactions 
characteristic for these systems (Bruce and Cowley 1981; 
Salje 1988). In a recent paper Ginzburg et al'. (1987) estimat- 
ed the size of the interval from the expected interaction 
length for structural ordering as generally less than 1 K. 
This is in marked contrast to the ca. 300 K which would 
have to be assumed for NaNOs.  As discussed by Bruce 

and Cowley (1981), logarithmic corrections have to be ap- 
plied to tricritical behaviour within the Ginzburg interval 
according to 

1 1 

Q~(t)4[log[tn 4, t= T -  To~To (4.2.6) 
1 

For t--, 1, ]log] tn 4--, 0 and thus this model failed to give 
an:appropriate correction over the large temperature inter- 
val in question. With long range interactions present, the 
system should behave according to classical Landau theory 
outside the Ginzburg interval. Here it is important to note 
that Dove and Powell (1989) did not observe any deviation 
from tricritical Landau behaviour in the isotypic system 
CaCO3 (Calcite), although a strain-tail similar to that in 
NaNO3 was observed. 

In summary we find that a quantitative description of 
our experimental results is not possible using a single order 
parameter Landau theory including classical critical fluctua- 
tions. 

4.2.b. Order Parameter Coupling. The shortcomings of the 
single order parameter model strongly suggest that the 
order/disorder transition is controlled by more than one 
type of anharmonic process. However, no direct observation 
of a second ordering or fluctuation process operating in 
NaNO3 at the relevant temperature and pressure conditions 
has been reported so far. In view of the missing detailed 
information about different types of spatial fluctuations and 
parameters controlling their temperature dependence, we 
simply assume that the excess free energy can be expanded 
as a function of the long range order parameter Q character- 
izing the R3c order as in (4.2.1), and the effective macroscop- 
ic root mean square amplitude P of a second anharmonic 
cooperative structural process, dominating above Ttr: 

G=Go+�89 1 ,  4 a 6 +~bQQ +~cQQ +doe3Q 2 

+ �89 ap(T-- Tp) p2 + �88 b'~ p4 + dp e3 p2 

+ 2' Q2 p2 +fe~ (4.2.7) 

As P does not seem to lead to a crystallographic long range 
order in the strict sense in NaNO3, it may represent fluctua- 
tions in competing ordering schemes at wave vectors differ- 
ent from Z and can be closely linked to local cooperative 
structural relaxations occuring at the interfaces between or- 
dered R3c clusters. We consider biquadratic coupling be- 
tween P and Q, while terms explicitely describing spacial 
fluctuations are neglected. No terms higher than p4 are 
considered because the temperature interval where experi- 
mental data were obtained is limited to T ~  Tp. This model 
of two biquadratically coupled order parameters has al- 
ready been discussed by Gufan and Latin (1980) and Salje 
and Devarajan (1986). 

The condition ~e/OQ = 0 = O e/OP for elastic equilibrium 
leads to a renormalization of the quartic terms and the 
coupling parameter 2' 

bo = b'o- d~/f (4.2.8) 

bl, =b'~--d2/f (4.2.9) 

2 = 2' -- dp do j2  f (4.2.10) 

and four different phases (or thermal regimes) correspond- 
ing to solutions for equilibrium (e.g. OG/OQ=O, ~G/6P=O 
etc.) exist (we are using the nomenclature of Salje and De- 
varajan (1986) for the indication of the different phases): 



T a b l e  1. Free energy coefficients for two solutions obtained by 
least squares fits to the superlattice intensities. Parameters given 
without estimated standard deviations were only varied while re- 
maining parameters were fixed. The free energy scale was defined 
by cQ = 1 and be was calculated by normalization of P (see text). 
The transition temperatures given below were calculated from the 
parameter sets 

I II  

ae 0.00246 (9) 
Ta(K ) 651 (1) 
b e 0.52 (4) 
ap 0.000127 
Tp(K) 1750 
2 0.177 (4) 

T~ ........ (K) 468.7 
Tu(K ) 552.3 
Q~ 0.036 
R I 0.144,10 3 

0.0027 (1) 
665 (2) 

0.71 (4) 
0.000360 

1200 
0.286 (5) 

467.9 
552.3 

0.036 
0.145,10 -3 

Q~ is the value of Q2 at the transition temperature Tt~ 
- I 2 2 RI--Z(lob . . . . .  d - -  calculated) /~V(lob . . . . .  d) 

0 :  

I: 

II :  

I t I :  

Q = o ,  P = O  (4.2.11) 

P = 0 ,  
2 1 1 

Q = ~e~c e ( - bo- + [b~ - 4 ao- ( T -  TO-) %] 2) (4.2.12) 

Q =0,  p2 = - ( a e / b ) ( T -  Te) (4.2.13) 

Q 4 = 0 ,  P + O  with i 

Q2 = So-(Bo- + [ B~ + Ao-( T-- T, III)] ~ ' ) o -  (4.2.14) 

where 

So- = (be co-)- t (4.2.15) 

Ao- = be co-(22 a e -  ao- be) (4.2.16) 

Bo- =222 - �89  bo- bp (4.2.17) 

T~ n =be  co-(ao- To- b e - 2 2  ae Tp)/Ao- (4.2.18) 

and 

p2 = Sp(Bp-- ae( T -  Tp) co- be 
2 lII 4- [Bp+ Ae(T-- T~ )] ) (4.2.19) 

with 

Se = (bp 2 c e)-  1 (4.2,20) 

Ae = 22 bp co-(8 2 ap-- aQ be) (4.2,21) 

B e = 2 bQ be-- 4 23 (4.2.22) 

Te m = 22 be co- (8 2 ae Tp -- ao- TO. be)/Ae (4.2.23) 

(Note that the functional form (4.2.14) for Q2 vs. tempera- 
ture is similar to that of equation (4.2.3) for the case of 
a transition involving only one order parameter.) 

This approach offers at least a qualitative understanding 
of the NaNO3 system and a good approximation to the 
thermodynamic behaviour. For  NaNO3 the thermal re- 
gimes 0, I, II, I I I  can be interpreted in the following way: 

I: the R3c phase of NaNO3 below 460 K, i.e. the 'tricriti- 
cal '  region of Poon and Salje (1988), Reeder et al. (1988); 

II :  the R3m phase above 552 K, where the long range 
parameter Q is zero, while the amplitude P is responsible 
for the excess strain and excess entropy observed above 
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and II of Table 10 the curves for Q2 are indistinguishable on the 
scale of the diagram. For better comparison, the values of p2 have 
been renormalized to give identical values at Ttr for both parameter 
sets 

Ttr, which are modelled as linearly dependent on tempera- 
ture. This is the simplLest possible model approximating the 
behaviour above Ttr ; 

I I I :  the region between ca. 460 K and T~r=552 K (the 
regime previously ascribed to critical fluctuations) where 
both mechanisms Q and P are thermodynamically relevant. 

The phase 0 is irrelevant in this context, as P is not  
considered to represent a structural distortion leading itself 
to a phase transition below the melting point at 583 K: 
the linear term ae(T-Tp)  is merely used to approximate 
the temperature dependence of the coefficient of p2 in the 
temperature range under consideration. The required phase 
sequence is valid for Te> To, 2 >  0. The positive coupling 
constant 2 describes a mutually exclusive nature of the two 
order parameters or amplitudes: the strongly increasing 
long range order Q suppresses the amplitude P (possibly 
a competing ordering scheme) until P completely vanishes 
at the transition (crossover) I I I  ~ I. 

For  numerical calculations we took an extrapolated 
value of the intensity at O K (according to the solid line 
in Fig. 6) as scale factor between Q2 and intensity. The free 
energy was measured in units of co-. As the thermodynamic 
process characterized by P is only indirectly represented 
in the superlattice intensity data, the parameters ae and 
Te are not well constrained (be was arbitrarily fixed by the 
normalization p2(II, O K ) =  1 = b e  Te/ae). Only four of the 
free parameters ao-, b e, TO-, ae, Te and 2 could be varied si- 
multaneously in least-squares procedures. After each least 
squares cycle the phase diagram was recalculated on the 
basis of the current parameter values, and in particular no 
constraints on the temperatures of the crossover, the main 
phase transition or the sign of 2 were imposed. A 'tricritical' 
model for phase I (bo- constrained to 0) resulted in generally 
unsatisfactory fits including relatively large first order dis- 
continuities for the transition I I I - I I .  Thus we varied the 
parameter b e along with the other coefficients until signifi- 
cantly better results as shown in Fig. 7b were achieved. 
Two parameter sets giving excellent agreement with the 
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data (Fig. 7 b, both theoretical curves are identical within 
the resolution of the plot) are given in Table 1. (The agree- 
ment between the nominal transition temperatures as calcu- 
lated from the free energy model, 552.3 K, and the observed 
nominal 552.3 K above which the Bragg intensity vanished, 
Fig. 2, must be regarded as coincidence, given the experi- 
mental temperature resulution of ca. _+0.25 K.) It can be 
seen by inspection of Fig. 7 b and Fig. 9 and by comparing 
the two parameter sets given in Table 1 that the details 
of the thermodynamic process characterized by P are hardly 
relevant to model the behaviour of the observed order pa- 
rameter Q. This indicates that the description of the thermo- 
dynamic behaviour for T~ Te does not depend too sensitive- 
ly on the model parameters of the Landau potential in P. 
The two sets in TaMe 1 represent two extreme cases, inter- 
mediate values would lead to essentially the same tempera- 
ture evolution of Q and P at temperatures below the melting 
point. 

Finally we have to adress the question of the predicted 
first order jump near 552 K. A discontinuity has not been 
reported from experiments, but none of the applied methods 
had sufficient resolution to completely rule out a discontin- 
uity of the suggested magnitude (Poon, Wruck, Reeder, pri- 
vate communication). Levanyuk et al. (1978) and Salje 
(1988) give several mechanisms by which phase transitions 
following a 1 st order behaviour may become continuous 
or rounded due to fluctuations in a small Ginzburg interval 
near Ttr. 

The excess free energies of the phase I, II, and III are 
shown in Fig. 10. Outside the temperature interval indicated 
by the two vertical lines a free energy can not be assigned 
to phase III as it no longer corresponds to a minimum in 
p2_ QZ space. The behaviour of p2 (Fig. 9), in particular 
for T< 552 K, resembles the behaviour of a critical fluctua- 
tion amplitude peaked at the transition temperature, how- 
ever, the critical divergence is limited (finite) and spread 
out in temperature. A qualitatively similar theoretical result 
for mean square local fluctuation amplitudes near phase 
transitions is discussed by Meissner and Binder (1975) who 
considered approximations to an integration (Fourier trans- 
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form) over all collective fluctuation amplitudes in q space. 
As discussed above, however, the ordering phenomenon 
characterized by pZ in NaNO3 may be related to spacial 
inhomogeneities, but it is most probably not related to a 
classical Ginzburg interval. Figure 11 demonstrates that the 
model calculation based on classical Landau theory does 
indeed result in a phenomenological critical exponent close 
to 0.22 for temperatures between 460 K and 552 K. The 
temperature bracket of ca. 2 K around Ttr where our model 
seems to fail may indeed represent a genuine Ginzburg in- 
terval in which critically divergent fluctuations have to be 
considered. An explicit consideration of spatial fluctuations 
may also lead to a rounding of the crossover at 468 K. 
We also do not exclude the existence of a very small non- 
zero value of p2 in the real system below the crossover 
temperature due to fluctuations. 

4.3. Structural Implications and Potts Model Behaviour 

So far no direct structural observation of an ordering pro- 
cess corresponding to P has been reported in the literature. 
In a careful analysis of the electron density of NaNO3 at 
room temperature, however, G6ttlicher and Kn6chel (1980) 
found that the maxima of the probability density of the 
oxygen positions are in fact very slightly displaced from 
the diad, with the R3c symmetry due to statistical distribu- 
tion of pyramidal NO3 groups in two equivalent orienta- 
tions. Zone centre long range correlation of this statistical 
variable leads to the R3c symmetry of the ferroelectric phase 
observed at pressures exceeding 45 kbars (Barnett et al. 
1969). Although this feature is very subtle at room tempera- 
ture, we cannot exclude that it also leads to a non-zero 
ordering amplitude at higher temperatures. In fact, Harris 
and Salje (1989) observed the appearance of a second out-of- 
plane bending mode of the NO3 molecule in the tempera- 
ture range in question. The intensity behaviour of this mode 
corresponds to the behaviour of p2, and it may well indicate 
an ordering process involving non-planarity of the NO3 
group. If P is indeed related to simple crystallographic long 
range order (rather than a fluctuation process), the assign- 
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ment of space groups in the various thermal regimes must 
be reviewed. A further increase in symmetry to a supergroup 
of R3m seems to be incompatible with the structure. Hence, 
taking R3m as the symmetry of phase 0, the space group 
of phase II should be a subgroup of R3m. Assuming further 
that the space group assignment R3c for the room tempera- 
ture phase (I) is correct, the symmetry of phase III  must 
be a common subgroup of R3rn and R3c. R3c seems to 
be an unlikely candidate here, as ferroelectricity is not ob- 
served at the relevant pressure conditions. Other possible 
subgroups of R3rn should give rise to superlattice Bragg 
reflections or metric distortions of the lattice, however, none 
of which have been observed experimentally. 

Poon and Salje (1988) and Reeder et al. (1988) discussed 
the observed sets of phenomenological critical exponents 
in terms of a classical 'tricritical' Landau behaviour at tem- 
peratures T < 460 K, sufficiently far from the critical tem- 
perature, and a fluctuation-dominated regime (T>460  K) 
where the validity of Landau theory breaks down due to 
the presence of critical fluctuations and hence a smaller 
critical exponent fl = 0.22 is observed. The critical exponent 

for the excess heat capacity (cp~ 77 T -  T~]-~) is 0.56 (Wruck 
1987). Hence the critical exponent Y of the order parameter 
susceptibility is expected to be close to unity (a + 2fl + 7 = 2), 
which is consistent with the observation that the diffuse 
intensity near Z is inversely proportional to T -  T~ (Fig. 3). 
Pooh and Salje (1988) and Reeder et al. (1988) noted the 
similarity between the observed exponents and those calcu- 
lated from renormalization-group techniques for a 3-state 
Potts model (including the effects of a random field) in three 
dimensions (Burkhardt et al. 1976), i.e. c~--0.55, fl = 0.23 and 
y=0.98. However, three energetically equivalent geometri- 
cal configurations dominating the fluctuations of orienta- 
tional ordering are incompatible with the symmetry of the 
active irreducible representation Zz(Alu) at the Z point. 

In our numerical model, these postulated critical fluctua- 
tions are essentially replaced by the amplitude P. It can 
be argued that the set of phenomenological critical expo- 
nents obtained is devoid of any physical meaning because 
the considered temperature range is too large and the phase 
transition may be slightly of first order as found by our 
analysis. Nevertheless we will present some arguments 
based on our results from order parameter coupling in clas- 
sical Landau theory which indeed can be interpreted in 
favour of a 3-state model: short range correlations at the 
point F on surface of the Brillouin zone, which locally break 
the threefold symmetry, have been observed in molecular 
dynamics simulations by Lynden-Bell et al. (1989). The F- 
point correlations involve rotation - translation coupling, 
which is symmetry-forbidden at the Z-point, but is signifi- 
cantly lowering the energy of domain walls. (We also found 
a corresponding maximum of diffuse scattering experimen- 
tally at the position (1.5, 1.5, 0) predicted by Lynden-Bell 
et al. (1989); this diffuse scattering intensity, however, is 
much weaker than that occuring close to the Z point.) The 
fluctuations or diffuse intensity near the Z point correspond 
to long-wavelength modulations of the Z point ordering 
scheme which represents the equilibrium structure of the 
ordered R3c phase. They can be interpreted as due to anti- 
phase boundaries between ordered R3c clusters, with the 
modulation wavelength corresponding to the size of ordered 
clusters (taking the average, the full width at half maximum 
of the diffuse peak corresponds to the inverse of the correla- 
tion length). The importance of these ordered clusters is 

P 

-r 

-Q 

-Q 

-Q 

Fig. 12. Schematic illustration of the suggested interface structure 
between antiphase domains of Z-point long range order 

highlighted in the observation, that optic phonons which 
are Raman active in the ordered RYe phase, but non-raman 
active for R3m symmetry, still have 50% of their room tem- 
perature intensity well above the transition temperature 
(Poon and Salje 1989). It is most likely that the F-point 
correlations are connected to a local ordering scheme and/ 
or displacement pattern occuring at the interfaces between 
Z-clusters in the sense of an interphase of a wetting phenom- 
enon and correspond to the second ordering amplitude P 
(Fig. 12). Such phenomena have been studied in great detail 
by Monte Carlo simulations (Pesch and Selke 1987), where 
in particular 3-state Potts models have been used. Between 
two blocks of bulk materials of pseudo spin + 1 and - 1, 
respectively, an interphase of pseudo spin 0 occurs. The 
size of the interphase regions usually has its maximum close 
to the transition temperature of the bulk material. As a 
common feature of all models producing similar structures, 
the free energy of the two bulk phases and the interphase 
is approximately (or exactly) degenerate. Figure 10 shows 
that the phase I I I  occurs in a temperature range were the 
excess free energies of ordered clusters (curve I) and the 
excess free energy of the interphase regions (curve II) are 
approximately degenerate. As the degeneracy is lifted at 
temperatures sufficiently far from Ttr = 552 K, the interphase 
regions (P) disappear. Thus the three structural states in 
question may be represented by the i) 'positive' and ii) 
the 'negative' possibilities of Z-point ordering, and iii) the 
interphase structure. 

Finally it becomes clear why the order parameter P can 
not represent crystallographic long range order and has 
not yet been unambiguously identified in experiments: the 
structure corresponding to P can only occur at Z structure 
interfaces (domain boundaries) and thus the volume fraction 
of P structure is very limited. As there is no long-range 
correlation between these interfaces, and positive and nega- 
tive gradients of Z order may appear with equal probability, 
the spatial average of P is zero and only its mean square 
amplitude is of thermodynamic importance. 
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