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Abstract 

A group of risk-averse members must choose among monetary risks and payoff-sharing rules. Depar- 
ture from the status quo requires unanimous consent. Such groups drill for oil, bail out nations, and 
make hostile takeover bids. Assume agreement on probabilities. As is well known, if all members have 
identically shaped HARA utility functions, efficient group act-choices follow another such function in- 
dependently of payoff sharing. We show that all other groups inevitably have complex efficient 
behavior, accepting gambles among individually unacceptable lotteries in almost every status quo 
position. We also develop proper risk aversion for groups, and treat disagreement on probabilities. 

A consortium of three medium-sized oil companies has an opportunity to 
purchase a major lease. Need they agree on how to divide up drilling expenses and 
revenues before they determine whether to buy the lease? More generally, our cen- 
tral question is this: When will a group's choice among lotteries not depend on the 
weightings applied to its members' welfares? This article describes the answer in 
relation to the nature of syndicate members' utility functions. 

Because squabbling is virtually inevitable among members of an investment 
group--whether its purpose is to bail out debtor nations, operate a privately held 
firm, succeed in a hostile takeover, or build a nuclear plant--and because many 
financial opportunities have a short fuse, this question is of  considerable practical 
importance. It is also important in the many areas of economic theory where risk 
sharing plays a role, especially since its answer shows how readily surprising 
behavior can have normative underpinnings even in the simplest of general deci- 
sion and risk-sharing problems. This is the problem of a syndicate (Christenson, 
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1965; Wilson, 1968), but its implications, especially as it turns out, are far broader 
than the term syndicate might suggest. 

Consider a group of n agents who must agree on a decision among monetery 
risks and on the division of the group payoff among members. To undertake 
action--that  is, to depart from the status quo--requires unanimous consent. Sup- 
pose that each agent i has a strictly risk-averse utility function depending only on 
his total monetary position and, for the moment,  that all agents agree about all 
relevant probabilities. Mutually advantageous bets are thus impossible, as is a 
strategy of making the group effectively risk-neutral by shifting all risk to risk- 
neutral members. Nonmonetary considerations play" no role. Moreover, agents 
cannot influence the outcome by their own efforts. In this context, how does the 
nature of the agents' utility functions affect efficient group choice among risks? We 
make no assertions or assumptions beyond ex ante efficiency, as indicated by 
Pareto comparisons, about how groups do or should bargain internally or make 
external choices. Because of the indeterminacies and complexities of bargaining 
strength, fairness, and so on, group choices can be expected to display properties 
that would be unreasonable for individuals. Indeed, in many group decision prob- 
lems, the need for unanimous  consent by itself makes randomization desirable, 
violating the sure-thing principle or substitution axiom for the group, though the 
reason is more subtle in pure risk sharing than in a couple's choice of where to 
vacation (see note 3). 

An important class of principal-agent relationships has the agent play a major 
role as decision maker. To establish such a relationship, say between the limited 
and general partners in a real estate investment venture, requires unanimous  as- 
sent. Risk sharing is often a significant factor. Thus many principal-agent prob- 
lems have the features of concern here. They usually have the additional com- 
plication of ensuring that the agent adheres to the contingent decisions he would 
promise on behalf of the principals, even though he has relevant private informa- 
tion. Often principals or agents have multiattribute utility functions. Though we 
do not deal with the incentive-compatibility or multiattribute aspects of prin- 
cipal-agent problems, our results are relevant to principal-agent and group deci- 
sion problems broadly, not merely to tightly defined syndicates. 

After laying out the group decision problem (section 1), we contrast the well- 
known, simple, and "reasonable" external behavior of HARA groupswgroups 
whose members all have HARA utility functions of the same shape (section 2)-- 
with the complex patterns of choices of all other groups (section 3). Our major 
theorem proves that every non-HARA group in essentially every possible status quo 
will inevitably be randomization-preferring in some choice problems, i.e., would 
accept gambles all of whose payoffs are unacceptable lotteries. Thus the only 
groups for which no two gambles' Pareto frontiers cross are HARA, and tbr all 
others, crossings are possible almost everywhere. We also explore the group 
analogue of the recently introduced concept of proper risk aversion, namely that 
an undesirable lottery will not be made attractive because another undesirable 
gamble is pressed upon the group (section 4). Our final analytic discussion ad- 
dresses situations in which the group members disagree on probabilities (section 
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5). Section 6 presents conclusions. As will be explained, sections 1-3 and 5 com- 
plete in a strong sense all parts of a program initiated by Wilson (1968). One part 
was completed in a weaker sense by Rosing (1970) and the rest in an unpublished 
thesis by Wallace (1974), but our treatment is independent, self-contained, 
technically stronger, and. we believe, substantially simpler than all earlier work. 

1. The group decision problem 

Suppose that the risk g is to be shared among agents i = 1, 2, . . . ,  n, and agent i has 
risk-averse utility function ui and initial wealth w, As is well known (e.g., Botch, 
1962: Wilson, 1968), efficiency requires that :~ be divided into shares gi so as to max- 
imize ZX~u~(w~ + ez) for some k~ _-> 0, subject to Zz7 i = ~. At the solution, for each g, 
the values o f \u : (w  + L) are the same for all i. Hence the u:(w~ + g,) values maintain 
the same proportions for all outcomes g; that is, u:/uj = Lj/L, independent of  the 
outcome. Varying the proportions, the L's, generates the Pareto frontier. Con- 
tinuity of the possible shares and risk aversion make the frontier continuous and 
the feasible set convex in u_ space: hence extraneous randomization is inefficient. 
Since all u: are strictly decreasing functions, all ~ are strictly increasing functions 
of L but the Zi need not all have the same sign; in particular, they incorporate all in- 
itial payments and side payments among the members of the group. 

I f several risks are accepted, the agents' shares should depend only on the total g, 
ordinarily nonlinearly. I fit is necessary to share the risks linearly or separately, ef- 
ficiency is typically reduced. For example, i fa  group of individuals jointly owns a 
portfolio of  stocks, efficiency may require that individualfs share of the apprecia- 
tion in stock A depend also on the level of appreciation in all other stocks, and that 
his share of the tenth dollar of appreciation differ from his share of the first 
dollar) 

If agents' initial positions g,~ are uncertain, we assume that the sharing of any 
risks accepted by the group depends only on the outcomes thereof, not on the ~,~s, 
which are beyond the purview of the group. Although it would be more efficient to 
share the grand total including Z~,  there are three common reasons why the ~ 
would usually have to be divorced in this manner: agents may disagree about the 
distributions of the ~:s, they may be able to influence the distribution of their own 
~:s, or the values of the ~i's may not be monitorable. For risks that agent i con- 
siders independent of~z, this constraint amounts to replacing the utility u~ by the 
derived utility Ui(x) = Eu,(~i + x) and the initial position by 0. The unconstrained 
case will be dealt with briefly later. 

We shall call a riskX unacceptable at initial wealth position ~ = (~j . . . . .  ~,) if no 
division of)~ exists that all agents would accept; that is, for every division)~ = ,~fi~ 
with each ~i a function of)L some agent i strictly prefers ~ to ~ + ~i. This says that 
the initial position lies beyond the Pareto frontier obtainable by accepting and 
dividing upS. Barring pathologies, which we do, it makes no interesting difference 
whether strict preference is required for one or all agents or for acceptability or un- 
acceptability. Additional randomization would serve no purpose. 
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2. HARA groups 

Everything becomes particularly simple if initial positions are certain and all 
agents have HARA utility functions of the same shape, that is, either all agents 
have constant absolute risk aversion (exponential utility), or else all have the same 
constant proportional risk aversion (power or logarithmic utility) when their 
wealths are measured from suitable base levels, possibly different. 2 Equivalently, 
all agents have constant or hyperbolic absolute risk-aversion functions whose 
reciprocals (risk tolerances) are linear with the same slope b > 0, say -u'i(w)/u~'(w) 
= bw + a~, with w > - a / b  if b > 0. We call such a group a HARA group and b its 
shape parameter. Ifb = 0, the agents have constant absolute risk aversions l/a,. If 
b > 0, all have constant proportional risk aversion l ib when agent i's wealth is 
measured from the origin - a / b ,  and their utilities are power functions with the 
same exponent 1 - l ib or, ifb = 1, logarithms. Thus b determines the shape of the 
u~. As noted by Wilson (1968), in this situation straightforward calculation shows 
that (1) efficiency requires all risks to be shared in the same constant proportions 
after fixed side payments (linear sharing); (2) the Pareto frontiers generated by dif- 
ferent lotteries never cross, so that all risks are Pareto-comparable and choices 
among them should not depend on how they will be shared; and (3) the group's 
decisions should agree with a utility function having risk tolerance bw + ]gai. 
From conclusion (1) it also follows that (4) separate sharing of multiple risks, inde- 
pendent or not, entails no loss of efficiency. 

If some or all of the initial positions ~ are uncertain and excluded from risk 
sharing, then the agents' attitudes toward new, independent risks are governed by 
the derived utilities U~(x) = Eug(Cvi + x) in place of the u, If the U, are HARA of the 
same shape, then conclusions (1) to (4) apply to risks independent of the v~. If the u~ 
are exponential, then so are all the U~, since E{-e-~+xVaq = -k te  -x/ai where k~ = 
E{e-*#ai}, which is a positive constant, and the conclusions above therefore apply to 
all uncertain initial positions. Otherwise, however, ifu~ is HARA, then Ui generally 
is not, and the conclusions above do not apply to uncertain initial positions. 
Similarly, if U,. is HARA for one distribution o f ~ ,  then it is HARA for translations 
~)i "~ a,. but generally not for other distributions of ~.  

If the initial positions ¢0~ are uncertain but there is agreement about their dis- 
tribution, and if, contrary to our earlier assumption, they are included in the risk 
sharing, then the u~ are again relevant, not the U,. If the ui are HARA of the same 
shape, then conclusions (1) to (4) remain valid. 

3. Groups that are not HARA 

The main developments of this section will show that a group's behavior is in- 
evitably complex and quite possibly troubling if the members' utilities ui or 
derived utilities Ui, whichever are relevant, are not all HARA of the same 
shape. 
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One striking anomaly is that a lottery on unacceptable lotteries may be desir- 
able. We shall call this a Horror, since the group Happily Okays Randomized 
Risks Over Rejects, but it may be less unreasonable than it appears. It makes sense 
to divide each risk a group might accept so as to favor the members whose utility 
functions enable them to benefit most from its risk characteristics, and to balance 
matters by randomizing among risks favorable to different members. 3 

The result to which this section leads (theorem 4) implies that for every non- 
HARA group, there exist gambles whose Pareto frontiers cross each other at essen- 
tially all points. Thus which of the two gambles is better for the group depends on 
how the gambles would be divided, randomization between them permits Pareto 
improvement, and the other simplifications of  section 2 do not occur. To our 
knowledge, the existence of frontier crossings for all non-HARA groups has never 
been stated, much less proved, in the published literature, and their ubiquitous- 
ness has never appeared anywhere. The pioneering paper by Wilson (1968) in- 
itiated the problem and made considerable progress, but his assumptions and 
conclusions are subtle, and his results are interesting mainly as historical land- 
marks in view of theorem 4 and its counterpart for groups that disagree on prob- 
abilities (theorem 6, discussed in section 5). Rosing (1970) resolved the central exis- 
tence question in the case of disagreement but reached essentially the same point 
as Wilson in the case of agreement. We know of no further published progress, but 
Wallace (1974), in an unpublished dissertation, obtained the central result in both 
cases by a very long and difficult argument. Our route to somewhat stronger results 
has little obvious overlap with any of the paths carved out by earlier investigators, 
and appears to be much simpler. Three theorems provide milestones on our way. 

We shall see that whether a Pareto-efficient group behaves like a rational in- 
dividual or in a more complicated fashion depends on the linearity or nonlinearity 
of what we shall call the expansion paths, the curves in u-space on which the 
efficiency-determining tradeoffs Lj/~ are constant. (These ratios may be viewed as 
either the group's marginal tradeoffs u[/u] at an efficient point, or the relative 
scalings in the implicit criterion or objective function Zk~u~ maximized.) The 
following example may motivate and clarify our approach. 

Example. Two agents have utility functions u ~(w) = log(w) and u2(w) = - e  -w. If 
total wealth w is fixed, any nonrandom sharing w~, w2 with wl + w2 = w and w~ > 0 
is Pareto-efficient, and the frontier for sharing w is given by ul = Ul(W0 = log(w0, 
u2 = u2(w2) = u2(w - wl) = u2(w - e "l) = - e x p ( - w  + g'0, or equivalently ul = 
log(w + log(-u2)). Pareto frontiers F in u-space for four values o fw are shown in 
figure 1. 

If total wealth is uncertain, Pareto efficiency requires that the shares w~ and w2 
give always the same value of 

U'z(W2) _ w ,e -W2 = - u 2 e  ~, 
u ' , ( w l )  

and hence lie on the same expansion path --U2 eul = ~,1/~,2. VVhere the pareto 
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frontiers for sharing different amounts w cross this path, they all have the same 
slope -kl/2~2. We call k = k,/k2 the tradeoff and - k  the slope corresponding to the 
path. Expansion paths P for four values of k are also shown in figure 1. 

I fa  risk ~, is shared efficiently as V~l, ~'2, the outcomes must lie on a single expan- 
sion path, corresponding to some tradeoff K. At the expected utility point ~1 = 
Eu~(VOl), u2 = Eu2(~,2), the slope of the frontier for sharing a, is -k .  Because the ex- 
pansion paths are strictly concave in this example, the point (~t, if2) lies off the 
path corresponding to K and hence on some other path, corresponding to some 
other tradeoffk'.  The slope of the frontier for sharing a certainty ~ at the point (~, 
u2) is -K'. (The certainty ~ yielding (Ul, fiR) is ~ + W2, where wi is the certainty 
equivalent of ~ given by ui(~,~) = ffl.) Thus the frontiers for sharing v~ and ~ pass 
through (~, if2) with different slopes and hence must cross there. Figure 2 gives an 
example for a 50-50 lottery ~. 

Examples of such crossings can always be constructed unless the expansion 
paths are straight lines. Thus the basic question is what combinations of utility 
functions make all expansion paths linear. We first detail analytical conditions 
equivalent to linearity, next describe its relationship to HARA, and then turn to its 
behavioral implications. 4 
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Fig. 2. Example of crossing frontiers. 

Theorem 1. Given any tradeoffs )~ > 0, the following conditions are 
equivalent on any intervals of the agents' wealths, with ai, bi, and c~ de- 
noting the same constants throughout and bi > 0, i = 1 . . . . .  n. 
(a) The Pareto-efficient shares w~ given by _~ are linearly related, say w, = b,w + 
a~ as w varies. 
(b) The agents" utilities u~ are equivalent after linear transformations 
of  their wealth, say u~(b~w + ai) = b~t(w)/~ + ci. 
(c) The expansion path for _L is linear in u_ space, say u~ = b,t/~ + ci as t 
varies. 

Proof Condit ion (a) is eqivalent to 

~.iu;(biw + ai) d e p e n d s  o n l y  on  w. (1) 

This is obviously equivalent to (b) by integration and differentiation. Conditions 
(a) and  (b) imply (c) directly. Condit ion (c) is equivalent to 

t - 1  kiui(ui (bJ /k i  + ci)) depends only on t. (2) 
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Recalling that u,l'(s) = 1/u[(u;-I(s)) and integrating the reciprocal of (2) gives 

(u;-l(b;t/k; + c;) - ai)/bi depends only on t. (3) 

Denoting this by w and solving for t gives (b). Q.E.D. 

Theorem 2. If in given intervals of its members' wealths a group is 
HARA with shape parameter b (all members have HARA utility func- 
tions with parameter b), then for all k the linearity conditions (a) to (c) 
of theorem 1 hold in these intervals with b; = b. Otherwise, none of 
the linearity conditions of theorem 1 hold, except possibly at isolated values 
o f  _~. 

Proof. The first sentence is easily verified directly; see also section 2. If(a) holds on 
an open set, differentiating (1) with respect to ~ gives 

db; ( da i \  ,, u;(b;w + ai) + k ; ~  w + f f~)u;(b;w + a;) = O. (4) 

For ~_ fixed and W = biw + ai, we see that u~(W)/u~'(W) is linear in W, and hence ui is 
HARA. Since linear transformation of wealth carries a HARA utility into another 
of the same shape, it follows from (b) that all uj are HARA of the same shape. A 
similar proof is possible, provided some value of ~_ at which (a) holds is a limit of 
others. Q.E.D. 

We shall say that Horrors exist at given wealths of the agents or at the corre- 
sponding point u if there exist randomizations between two risks that permit strict 
Pareto improvement over u_ even though u lies strictly beyond the Pareto frontier 
of each risk individually. Any one Horror clearly has a continuum of others 
nearby, since small variations in either the risks or the randomization preserve the 
Horror. The same is true if one of the risks is replaced by a certainty. The proof 
below demonstrates the ubiquity of Horrors with one risk and one certainty; small 
variation then demonstrates it for two risks. 

Theorem 3. If the linearity conditions of theorem 1 fail anywhere on the 
expansion path through a given interior position u_, then Horrors exist 
at u_. 

The main result of this section follows immediately from theorems 2 and 3. 

Theorem 4. If a group is not HARA throughout given intervals of its 
members' wealths, then Horrors exist at all interior values of wealth ex- 
cept possibly on isolated expansion paths. 

Proof of theorem 3. Using the notation u_(x) = [ U l ( X l )  . . . . .  Un(Xn)], suppose that u_(x_) 
and u_(z) lie on the expansion path given by ~, while a convex combination u(w) = 
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pu(x_) + (1 - p)u_~) does not. Then the Pareto frontier for the lottery with probabil- 
i typ a tx  = Exi and  probability 1 - p at z = Ezi passes through u(w) perpendicular 
to ~ while the frontier for sharing the certainty w = Zwi passes through u_(w_) with a 
different normal. Hence some convex combinat ion of the lottery and the certainty 
is strictly Pareto-superior to u(w_). The conclusion follows for u_ = u(w_) since the lot- 
tery and the certainty can be made slightly worse and the certainty slightly uncer- 
tain without losing strict Pareto superiority. It remains only to show that every in- 
terior point on a nonl inear  expansion path is a convex combinat ion of  two points 
on some other expansion path. This is fairly easy to see for two agents but harder 
for more than  two. It is an immediate consequence of the following lemma. Q.E.D. 

We title the lemma to reflect its interpretation. It demonstrates, in effect, that i fa  
filament in a rope is not straight, then every point that is on the filament but not on 
the surface of  the rope is on a chord between two points on some other filament, 
assuming that all filaments run the length of the rope. 

Rope Lemma. Let u_ be a smooth, one-to-one function of (w, _v) = 
(w, v~ . . . . .  v,_ 0 on an open set S, with values in R n. If  (w0, _v0)eS, and if 
u_(w, v_0) does not lie wholly on one line as w varies, then there exist Wl, 
w2, and v_, 4:v0 such that u_(w0, v0) is a convex combinat ion of u_ (w~, _v,) and 
u_(w2,_v ,). 

Proof Let u_0 = u_(w0, v0). Choose wl so that u_(wl, _v.0) is not on the tangent to u_ at u_0. 
Let Vbe a compact  set with v0 in its interior such that (w~, v) e S for _v ~ V. Choose 
e > 0 so small that (1 + e)u_0 - eu_(w ~, _v) is in the image of  u_ for every _v e V and that, 
wheng  and f a r e  defined on Vby u_(g(D,f(y)) = (1 + c)u_0 - eu_(wl, _v),/is a contrac- 
tion and_f (y0) 4: _.v0. By the contraction mapping theorem,_f has a fixed point, say 
v_, = f(y,) ~ _v0. Then u_0 is a convex combination ofu_(w~,_v,) and u(g~,), v,). Q.E.D. 

The proof  requires smooth enough filaments to m a k e / a  contraction. One-to- 
one transformations of u_, w, and v of course have no effect on the essential ques- 
tion since they do not change the filaments, but  they might create (or destroy) 
smoothness. 5 

4. Proper risk aversion for groups 

If  the members of  a group are risk-averse, then the group will be risk-averse as well, 
in the sense that the Pareto frontier for sharing any strict lottery lies inside the 
Pareto frontier derived by sharing its expected value. I f  the members are de- 
creasingly risk-averse, then so is the group-- that  is, an acceptable lottery remains 
acceptable if any  agent's initial wealth is increased. Thus far the situation is as we 
would have hoped. But when we step further in virtually any direction, the 
similarity of  group behavior to the behavioral characteristics of its individual 
members vanishes. We have already seen, for example, that only in very special 
groups are all randomizat ions between unacceptable lotteries unacceptable. We 
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can, however, move beyond decreasing risk aversion at least as far as one natural 
group analogue of proper risk aversion (Pratt and Zeckhauser, 1987). 

An individual finds each of two independent lotteries undesirable. If he is re- 
quired to take one, should he not continue to find the other undesirable? If in all 
such cases he would, he displays a property we callproper risk aversion. We believe 
that proper risk aversion is a desirable property for an individual's utility function, 
and suspect that if it were well understood it would be required by real-world deci- 
sion makers of the functions they employ to guide their decisions. The concept has 
important implications. For instance, insuring against one risk (i.e., rejecting one 
lottery) will make a proper individual readier to accept other independent risks. 
Thus, additional options or futures markets could stimulate, not drain, activity on 
competitor markets. 

To begin our discussion of proper risk aversion, recall that an individual whose 
preferences are determined by the utility function u is called risk-averse if # ~<E~ 
for all #, which is equivalent to concavity of u. Also, one of several trivially 
equivalent, intuitively natural definitions of decreasingly risk-averse is that a certain 
decrease in certain wealth never makes an undesirable gamble desirable, that 
is, 

w + ~  + y ~ w  + y wheneverw + ~ ~,w andy  < 0. (5) 

Several analytical conditions on u have been shown equivalent to (5) and useful 
(Pratt, 1964, 1988; Arrow, 1971), including the condition that the local risk aversion 
r(w) = -u"(w)/u'(w) be decreasing in w. 

Replacingy in (5) by an undesirable gamble 37 independent of~, still holding w 
certain, leads to the following definition: u isfixed-wealth proper if 

w + $ + 3 7 ~ w + ) T w h e n e v e r w + 2 < w a n d w + j T ~ w .  (6) 

In other words, if independent lotteries $ and p are individually unattractive, the 
package lottery offering both together is less attractive than either alone. 

We call u proper if (6) holds for uncertain and independent ~ also, that is, if 

+ ~ + 3 7 ~  + 37 whenever # + ~ ~ anda: + 37 ~ #. (7) 

Obviously, proper implies fixed-wealth proper, and fixed-wealth proper implies 
decreasing risk aversion. 

Here we examine proper risk aversion in the group context. We call a group 
totally proper at w'if$ + 37 is unacceptable whenever~ and3~ are unacceptable andS, 
37, and ~i are independent for all i; some or all #,~ may be nonrandom. Simply proper 
at • means no separate divisions of independent unacceptable gambles $ = ZRi 
and37 = ~37~ exist such that every agent i weakly prefers ~i + ~ + 37~ to ~ .  I fa  group 
is totally proper at all w_" (or all nonrandom w_), we call it totally proper (or totally 
fixed-wealth proper), and similarly with simply in place of totally. Since separate 
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division ofg + P can never increase and may reduce efficiency, totally implies sim- 
ply in each case. Other relations are equally immediate. 

Of course if any member is not proper as an individual, then, except in special 
circumstances that we have not investigated, we would not expect other members' 
preferences to offset his improper choices in such a way that the group is even sim- 
ply proper. We shall see that, if all members are proper, the group is simply proper, 
even though in non-HARA groups, by theorem 4. Pareto noncomparability is 
ubiquitous. 

HARA groups. The simplest case arises when all members of the group have 
HARA utilities of the same shape. Then (i) the group is totally fixed-wealth proper, 
since utilities with linear risk tolerance are proper; and (ii) if:~ and)~ are unaccept- 
able and independent, theng + ¢ is not only unacceptable but also Pareto-inferior 
to either alone. 

If some or all the initial positions rVi are uncertain and excluded from risk shar- 
ing, replace the ui with the derived utilities U~. Then (i) and (ii) apply to risks 
independent of the rV~ with fixed-wealth proper replaced by proper at w" in (i). If 
the ui are exponential, then, as remarked earlier, so are all Ui, the conclusions 
above apply to all uncertain initial positions, and the group is totally proper. 

If the initial positions ~ are uncertain but agreed upon and are included in the 
risk sharing, then the u~ are again relevant, not the U~. Conditions (i) and (ii) need 
reinterpretation, but take a very strong form. Reinterpretation is needed because 
the initial position will ordinarily be Pareto-inferior to a portion of the starting 
frontier, the Pareto frontier achievable through risk sharing on the a:i. Since all 
risks are Pareto-comparable, however, for all ~i we can state the following: if 
neither5 nor9 permits Pareto improvement over the starting frontier, then accept- 
ing either alone is Pareto-inferior to the starting frontier, and accepting both is 
Pareto-inferior to accepting either alone. This says that the group is totally proper, 
even when unacceptable is interpreted as not Pareto-superior to the starting frontier in 
the hypothesis and as Pareto..inferior to the starting frontier in the conclusion. 

Non-HARA groups. In section 3 we found that non-HARA groups encounter 
numerous complications. Nevertheless, if all of the members of a non-HARA 
group are proper, then it will be simply proper, as we demonstrate in theorem 5. 
Before turning to that result, let us mention two of the complications. 

First, if the ~i are included in risk sharing or if the group is forced to accept an 
unacceptable risky, the ambiguity about how the ~, or37 will be shared creates dif- 
ficulty. Suppose, for example, that agent l's share of a small unacceptable lottery.P 
isp/2 + z and agent 2's share is P/2 - z, where z is large. Then acceptingp may well 
make agent 1 sufficiently less risk-averse to desire a previously unacceptable riskg, 
even if agent 2 shares none of this risk. Similar examples apply to the ~i. Such dif- 
ficulties do not arise for individuals, and Pareto comparability bypasses them for 
HARA groups. 

Second, as the example above illustrates, for unacceptable lotteries g and37, even 
i fg  + ~ is unacceptable, it need not be Pareto-comparable to g o r9  alone. One 
might restrict the sharing so that ex ante no agent may gain if another loses. Then 
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whether)? + 37 is always Pareto-inferior to :~ or)7, and even whether)? + 37 is always 
unacceptable for total sharing, are unresolved questions. However, theorem 5 
proves unacceptability of $ + 37 for separate sharing. 

Theorem 5. A group is simply (fixed-wealth) proper if all its members are 
(fixed-wealth) proper. It is simply proper at a, if every member i is proper 
at ~ .  

Proof By considering derived utility functions, we may take v~ = 0 without loss of 
generality. Suppose that)? = ~,,~i, ) 7 = ~_~i, and$i + 37i~ 0. Define ai and bi such that 
~ + a~ ~~ 0 ,,-~ p~ + b~. (Their negatives are selling prices, not certainly equiva- 
lents.) Then 

i proper ~ Y,i + a~ + .9i + bi ~i  0 ~i  Xi "Jr- 37i ~ a~ + b~ < O. (8) 

Therefore, either Za~ < 0, and)? is surely as large as ~($~ + a~) and hence acceptable, 
or Y~b~ < 0 and 37 is unacceptable. 6 Q.E.D. 

5. Heterogeneous beliefs 

We will now discuss briefly the situation when the agents do not have identical 
beliefs (probability distributions). We utilize the same model as Wilson (1968) and 
Rosing (1970). Some of its implicit assumptions are Worth making explicit. 

Each agent's beliefs are supposed to be uninfluenced by anything the other 
agents do or say; perhaps the agents have shared information fully but "agreed to 
disagree," despite Aumann (1976). We allow an arbitrary state variable or event 
and consider group choice among risks ~ determined by ~. It is in the spirit of 
theories of choice that all functions of ~ are considered, although only a few are 
available. Refinement in the definition of ~ can always make all available risks 
functions of t ,  can never shrink the Pareto frontier, and may expand it by enlarg- 
ing the opportunities for implicit betting among the agents. We assume, however, 
that the same event ~ will become public knowledge whatever decisions the agents 
and the group make--that  is, they cannot influence what information will be 
available for side betting. 

If the agents' initial positions w; are certain, efficient sharing of a risk ~ = z(~) 
now maximizes Ek~Eiui(w~ + ~,i) for some ~ _2 0, where Ei denotes agent i's expec- 
tation. 7 At the solution, the u~(wi + zi~(~) maintain the same proportions for all ~, 
where f is the mass function or density function (with respect to an arbitrary 
measure on ~-space) determining Ei. 

Evervthin~ is still simple if each agent has constant risk aversion, say ui(w) = 
- e  -~/a~ (Wallace, 1974; see also Wilson, 1968). Agent i should receive Iz + ~kaklOg 
[f(~)/fk(~)] }ai/~Xkak after fixed side payments. The group's payoffz is always shared 
in the same proportions. The optimal side bets depend only on ~, not the risk 
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chosen or its value. The Pareto frontiers are contours of II,(-ug) ag with all u~ < 0. 
They never cross and are generated solely by varying the side payments. The 
group's decisions should agree with a utility function having constant risk 
tolerance Y.a~ and a density proportional to IIi[f(~)] a~rzk~. A sum of individually 
unacceptable risks is Pareto-inferior to each alone (or any subset). The expansion 
paths are rays through the origin in the negative orthant. If the initial positions ~g 
are uncertain, whether or not they are included in the risk sharing and side betting, 
the analysis given above for the exponential case with agreement on probabilities 
can easily be extended to incorporate them. Even if the initial positions are certain, 
side bets permit Pareto improvement over standing pat, and the situation is 
similar to that described near the end of section 2. 

If agents without identical beliefs do not all have constant risk aversion, then 
crossing Pareto frontiers, and hence randomizations permitting strict Pareto im- 
provement, exist everywhere. Rosing (1970) shows that crossings exist in this case, 
and perhaps his proof can be extended to show that they exist everywhere. His 
analysis is already difficult, however, and adapting and extending our results 
above seems easier (at least to us) and accomplishes the whole task. For simplicity, 
we omit reference to the ranges of wealth over which the agents' risk aversions 
must be constant to avoid crossing frontiers, but note that optimal side bets en- 
large them. 

Two fundamental points are worth making before getting into details. First, if 
agents' beliefs agree in some respects but not others, then in general the optimal 
side bets on matters of disagreement depend on how agreed matters turn out, 
though of course no such dependence occurs when all agents have constant risk 
aversion, as noted above. Second, better contracts may be available ex ante than ex 
post; that is, the side bets to be made should be specified before any results come 
in, provided that the bets are enforceable. 

The counterparts of theorems 1 and 3 will be evident in the proof of our final 
theorem, which may be stated as follows. 

Theorem 6. If the members of a group do not have identical beliefs and do not 
all have constant risk aversion, then Horrors exist at all interior values of 
wealth except possibly those on paths corresponding to isolated tradeoff vec- 
tors k_. 

Proof. As we vary the group payoff function g and hence the value z for fixed ~, the 
Pareto-efficient shares wi given L_ equate Lf.,(~)u~(wi) across i. Hence, for _k and 
fixed, the situation is essentially that of theorem 1 with ~f(~) in place of Li, 
and 

w~ = biw + ai is Pareto optimal, 
¢* ~ ( ~ ) u [ ( b i w  + ai) depends only on w, 

ui(biw + ai) = bit(w)/L.fi(~) + ci, 
¢0 ui = bit/Lf,.(~) + ci is an expansion path. 
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If these linearities hold as k varies, ai and bi depend on _L and ~, but (4) is obtained 
as before with a factorf(~) that can be divided out, and the conclusion foUows as 
before unless the ug are HARA of the same shape. 

We now exploit disagreement, assuming that the group is HARA but not ex- 
ponential, that is, the agents' risk tolerances have common, constant, positive 
slope b. Disagreement implies that, for some i a n d j , f / f j  is not constant. Given any 
risk ~, consider adding A to w(~). In the discrete case, this adds bi(~)v(~) to ~.u~, 
where ui is agent i's expected utility and z(~) = t(w(~) + A) - t(w(~)). It adds the 
same amount to the corresponding integrand in the continuous case. It is easy to 
see that z(~) > 0 for A >0, and to calculate that b,(~)/b~(~) = ~(~)/f(~)]b. Hence b~(~) 
> bj(~) iff(~) >fj (~). Increasing w(~) wheref(~) >f(~) and decreasing it elsewhere 
will therefore increase ~ui - L/uj. The _L-point for the new risk must therefore differ 
from that for ~. However, we can adjust the increases and decreases so that the 
Pareto frontier for the new risk passes through the _L-point for ~. Hence the fron- 
tiers must cross there. Q.E.D. 

6. Conclusion 

The normative theory of individual decision making under uncertainty, although 
well established, remains a subject of lively debate. For group (or syndicate) 
decisions, by contrast, norms for behavior hardly exist; discussion is sparse. Yet if 
decisions are weighted by the number of dollars at stake, group choices probably 
dwarf individual ones~ 

Only HARA groups behave nicely. From all other groups, we must expect such 
unreasonable behavior as accepting a gamble between two lotteries each of which 
by itself would be unacceptable. And when the valuations of members' welfare de- 
pend on personal, disparate probability assessments, all groups falter save those 
whose members have exponential utility functions. Additional criteria for reason- 
able group behavior seem called for. The concept of properness may prove help- 
ful; a group will be simply proper if its members are proper. 

The flurry of research providing new axiomatic approaches to individual deci- 
sion making was stimulated by laboratory and field observations indicating that 
individuals do not adhere to the prescriptions of the Savage Axioms. A disturbing 
reality led theory. (For a recent summary, see Machina (1987), who reviews the em- 
pirical evidence on deviations from the standard theory and reports "on how these 
findings have changed, are likely to change, or ought to change, the way we view 
and model economic behavior under uncertainty" (pages 121-122). See also the 
surveys by Sugden (1986) and Weber and Camerer (1987).) For group decision 
making,, since the time of the Arrow Possibility Theorem, researchers have found 
that the behavior implied by reasonable conditions is often disturbing. Our results 
reinforce that finding. Perhaps laboratory and field results on group decisions 
would be more disturbing still. Then again, the structure of individual preferences 
or group decision procedures may be such that bizarre behaviors rarely arise. 
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Society has produced a rich array of mechanisms for syndicates to employ in 
choosing and dividing risks. Tax laws, rules of subchapter S corporations, and 
regulations on bidding for oil leases, for example, dramatically affect the ways in- 
dividuals or organizations can cooperate through risk selection and sharing. Once 
we are thrust out of the elegant Eden described by the modern theory of finance, 
where all risks are spread and all information captured, we need tools--such as 
the concepts of properness or of HARA and non-HARA groups--to help us ex- 
plain and evaluate decisions taken by individuals acting together. 

Notes 

1. Mutual funds and conglomerates, in theory, could simultaneously offer low-transaction-cost 
diversification and varying sharing percentages by employing multiple classes of stock. Informational 
asymmetries and difficulties of drawing contingent contracts would exacerbate conflicts of interest that 
are well known from the principal-agent literature. See Spence and Zeckhauser (1971). 

2. This case can be described as constant size-of-risk aversion at initial wealth equal to the base 
level, in the terminology of Zeckhauser and Keeler (1970), or similarly as constant partial risk aversion 
in the terminology of Menezes and Hanson (1970). 

3. By way of analogy, consider a couple contemplating the duration and location of a vacation, as in 
the Battle of the Sexes (Luce and Raiffa, 1957, pp. 90-94). The choice is tennis in the Bahamas or shop- 
ping in Paris. The spouse whose passion is tennis dislikes shopping, and vice versa. For each, a vaca- 
tion of any length in the other's preferred location is worse than no trip at all. Thus, neither vacation 
has a duration that is Pareto-superior to staying home. But rather than stay home, both spouses might 
agree to flip a coin to determine whether to go to Paris or to the Bahamas for a one-week trip. A referee 
reminded us that the potentially beneficial role of randomization in social choice is discussed by, 
among others, Fishburn (1972) and Zeckhauser (1969). And Mark Machina reminded us that, even for 
an individual, "We know from Spence and Zeckhauser (1972) that mitigating circumstances such as 
delayed resolution of risks could make it "rational' to violate the independence axiom over 
lotteries." 

4. Similarity as defined by Ross (1974) becomes (b) in the next theorem when his fee schedule is 
linear but not otherwise. 

5. An alternative proof is possible using the Brouwer Fixed-Point Theorem. It may require less 
smoothness and can be elaborated to show that the convex combination can be made a simple average 
(50-50 lottery) except perhaps when all values of u(w, v0) nearer to u_(w0~ v0) than is the nearer endpoint  
lie on a line. We are grateful to Andrew M. Gleason for valuable discussion of the Rope Lemma and 
alternative proofs. 

6. We conjecture that simply can be replaced by totally in this theorem. In a computer-aided search 
we found no counterexample. Moreover, our reflections on the crossing frontiers that are inevitably en- 
countered in non-HARA groups, though superficially promising, did not yield fruit. 

7. It can be argued that differences among beliefs make ex ante efficiency less compelling as a nor- 
mative criterion, and that they can be more appropriately handled by a concept of interim efficiency 
(HolmstrOm and Myerson, 1983), but we do not explore this direction here. 
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