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circular Couette flow 

Abstract Although the stability of supercritical circular Couette 
flow has been studied extensively, results for the velocity field of 
the flow are limited. The azimuthal velocity profiles for the 
Taylor vortex, wavy vortex, and turbulent Taylor vortex flow in 
the annulus between a rotating inner cylinder and a fixed outer 
cylinder with fixed end conditions were measured using laser 
Doppler velocimetry. The azimuthal velocity was measured at 
about 30o points per vortex pair, distributed in both the radial 
and axial directions. This measurement procedure was repeated 
for several Reynolds numbers within each flow regime to 
study both the spatial dependence and the Reynolds number 
dependence of the azimuthal velocity. The experimental results 
for the Taylor vortex flow regime compare well with the Davey 
perturbation expansion of the Navier-Stokes equations about 
the circular Couette flow solution [J. Fluid Mech. 14, 336 (1962) ]. 
The measured azimuthal velocity fields also indicate two 
predominant effects with increasing Reynolds number: the 
magnitude of the radial gradient of azimuthal velocity near both 
cylinders increases and the radial outflow region between pairs 
of vortices becomes increasingly jet-like. 

1 
Introduction 
Supercritical circular Couette flow between concentric rotating 
cylinders has been studied for over a century since Mallock 
(1888) first attempted to measure the viscosity of water 
experimentally. Since then all manner of experimental, 
numerical, and theoretical analyses of the flow have been under- 
taken, with most directed toward the stability of the flow. Few 
researchers have studied the velocity profiles that develop in 
the annulus between concentric cylinders, the inner one rotating 
and the outer one fixed, even though an understanding of the 
velocity field is crucial to engineering applications of the 
flow such as rotating filter separators used for separation of 
blood, oily emulsions, and particulate from combustion gases. 
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The measurements of the velocity field for supercritical 
circular Couette flow described in this paper were focused 
toward two objectives. The first objective was to determine the 
extent of the validity of Davey's (1962) analytical prediction of 
the velocity field for Taylor vortex flow by measuring the 
azimuthal velocity field over the radial and axial extent of 
a vortex pair for several Reynolds numbers. The second objective 
was to examine the development of the azimuthal velocity field 
with Reynolds number in the Taylor vortex, wavy vortex, 
modulated wavy vortex, and turbulent vortex flow regimes. 

Several limited measurements of the velocity field of Taylor 
vortex flow have been made in an attempt to experimentally 
confirm Davey's (1962) perturbation expansion of the Navier- 
Stokes equations about the circular Couette flow solution. 
Heinrichs, et al. (1988) used laser Doppler velocimetry (LDV) to 
measure the axial velocity in Taylor vortex flow at a series of 
points distributed in the axial direction for a fixed radial 
position. They confirmed that the Fourier coefficients of the axial 
velocity grow as Davey predicted. Gollub and Freilich (1976) and 
Berland, et al. (1986) made similar measurements of the radial 
velocity at a fixed radial position and several axial positions 
using LDV. Both groups also found that the Fourier coefficients 
of the radial velocity grow as Dave), predicted. 

While the validity of a single aspect of Davey's perturbation 
expansion for Taylor vortex flow has been confirmed as 
described above, the focus has been on the growth rate of the 
Fourier coefficients of a single component of the velocity field. 
Although this is a crucial part of the Davey expansion, other 
issues have not been addressed. First, although the growth rates 
of the Fourier coefficients have been examined, the magnitude 
of the velocity fields they produce has not. Second, the radial 
dependence of Davey's expansion has not been confirmed by 
experiment. Finally, the velocity field derived from Davey's 
expansion has not been compared to an experimentally 
measured velocity field. 

In this paper, we explore the unresolved issues related to 
Davey's expansion for the velocity field in Taylor vortex flow. 
Toward that end, we calculated the Davey expansion for the 
radius ratio of the experimental apparatus used in this study. 
Then we measured both the radial and axial dependence of 
the azimuthal velocity field spanning a full vortex pair as a func- 
tion of Reynolds number for the configuration with the inner 
cylinder rotating and the outer cylinder fixed, comparing the 
experimentally measured velocity field for Taylor vortex flow 
directly to the velocity field predicted by Davey's expansion. 

Although there have been several numerical simulations of 
wavy vortex flow (Coughlin and Marcus, 1992; Marcus, 1984; 



Moser et al., 1983), only a few experimental measurements of the 
velocity field for higher order supercritical circular Couette flow 
regimes have been made. Taylor (1936) measured the azimuthal 
velocity profile in turbulent Taylor vortex flow using a Pitot tube 
and found that the angular momentum of the azimuthal flow 
was independent of radial position for a large portion of the 
annular gap. Steep velocity gradients appeared near the inner 
and outer walls. Smith and Townsend (1982) used hot wire 
anemometry to measure the radial and axial dependence of the 
azimuthal velocity profile for turbulent Taylor vortex flow. 
They superimposed a small axial flow on the turbulent Taylor 
vortex flow in order to slowly sweep the Taylor cells past the 
hot wire probe. Knowing the axial flow rate, they were able to 
reconstruct the axial dependence of the azimuthal velocity. 
Gollub and Swinney (1975) made extensive measurements 
of the radial velocity at a single location in the annulus 
for a large range of Reynolds numbers using LDV. By comparing 
the power spectra associated with the velocity signals from 
the different flow regimes, they were able to demonstrate 
that the Landau picture of the transition to turbulence is not 
accurate. 

The few measurements of the velocity field for supercritical 
circular Couette flow made by previous researchers have been 
very limited in scope, typically only a small number of spatial 
locations. Here we consider both the radial and axial dependence 
of the velocity field spanning a full vortex pair as a function 
of Reynolds number for the configuration with the inner 
cylinder rotating and the outer cylinder fixed. We present laser 
Doppler velocimetry measurements of the azimuthal velocity 
as a function of radial and axial position as well as Reynolds 
number for all of the major flow regimes encountered in the 
Taylor vortex flow system: Taylor vortex flow, wavy vortex flow, 
and turbulent Taylor vortex flow. These velocity measurements 
are used to examine the change in the strength of the vortices 
with Reynolds number, the effect of the secondary vortex flow 
on the distribution of the azimuthal velocity, and the change in 
the gradient of the velocity near the walls of the annulus with 
Reynolds number. Further, the results for wavy vortex flow are 
compared to the numerical computations of Marcus (1984). 

2 
Davey's expansion for Taylor vortex flow 
The radius ratio and the Reynolds number are important 
dimensionless parameters governing the flow between 
concentric cylinders with the inner cylinder rotating and the 
outer cylinder fixed. The radius ratio is defined as q = ri/ro, 
where ri is the radius of the inner cylinder and ro is the radius of 
the outer cylinder. These are several common means of non- 
dimensionalizing the inner cylinder speed. In this paper we 
use the rotating Reynolds number defined as Re = r~ f2 d~ v, where 
g2 is the angular speed of the inner cylinder, d = r 0 -  ri is the gap 
between the inner cylinder and the outer cylinder, and v is the 
kinematic viscosity. When the Reynolds number exceeds 
a particular critical value, denoted Reo  counter-rotating pairs of 
toroidal vortices appear in the annulus as a result of a centrifugal 
instability. The critical Reynolds number Rec is strongly 
dependent upon the radius ratio r/. 

Taylor (1923) was the first to perform a linear stability analysis 
of the concentric cylinder system against axisymmetric 
perturbations assuming that the annular gap was small 

compared to the radii of the cylinders so that r/approaches 1. His 
calculated value of Rec matched to within 2% the value he 
obtained experimentally. Chandrasekhar (1958) reformulated 
Taylor's work and extended it to the finite gap size case, 
o < r/< 1. Stuart (196o) and Watson (196o) showed that the 
growth of infinitesimal disturbances in the circular Couette flow 
regime is governed by a form of the nonlinear Landau equation. 

Davey combined the work of Chandrasekhar, Stuart, and 
Watson to develop a perturbation expansion for the full field 
velocity profile accurate near the transition from circular 
Couette flow to Taylor vortex flow. He began by expanding the 
disturbance portion of each velocity component in a Fourier 
series. The azimuthal velocity was expanded as 

vo(r, z, t, e) = ~o(r, t, ~) + ~, v.(r, t, ~)cos n2z (1) 
n = l  

where r is the radial position, z is the axial position, t is time, vo is 
the instantaneous azimuthal velocity at a particular position, 17 o 
is the axially averaged velocity, v. is the nth Fourier coefficient, 
8--~ 1--(RecIRe) z is the reduced Reynolds number, and 2 is the 
fundamental wavenumber in the axial direction. The remaining 
velocity components and the pressure were expanded similarly. 
Following Stuart and Watson, Davey expanded the Fourier 
coefficients of the velocity components in a power series. The 
azimuthal component was expanded as 

v,(r, t , e )= ~ A(t,e)"+2mv, m(r), (2) 
r n = 0  

where A is the generalized amplitude coefficient, and V,m are the 
power series coefficients that carry the radial dependence. The 
presence of the vortices disturbs the azimuthal velocity from its 
circular Couette flow value according to 

vo(r, t, e) = 9c(r) + ~ A(t, e)Zmfm(r) (3) 
m = l  

where 9c is the stable circular Couette flow profile and the fro are 
power series coefficients that carry the radial dependence. 

The generalized amplitude coefficient satisfies the time 
dependent Landau equation 

OA(t,e) 
amA(t,e) zm+' (4) 

Ot m=o 

Davey found that the generalized amplitude coefficient for the 
time independent case, called the equilibrium amplitude Ae(~), 
was adequately approximated by only the first two terms of 
Eq. (4), leaving 

(5) 

where a0 is defined to be equal to a, the growth parameter. Davey 
showed that a is proportional to ~, leading to the relation that 

Ae(g.) = k R e c x ~  (6) 

where k is some constant that remains to be determined. 
Davey substituted the above expressions into the full Navier- 

Stokes equations and simplified the result using the required 
independence of the solution with respect to rotation about the 



cylinders' common axis and its independence of time. Collecting 
terms with like powers of Ae, he arrived at a system of linear 
differential equations numerically solvable for the power 
series coefficients Vnm and fro, the critical Reynolds number Rec, 
the axial wavenumber at transition ~-c, and the unknown 
constant k. 

Davey used the results of his perturbation expansion to 
calculate the torque required to keep the inner cylinder spinning 
at a constant rate when Taylor vortices are present. He generated 
numerical results for a wide gap case, ~/= o.5, and the narrow gap 
limit, t/approaching 1. He compared these results to torque 
experiments performed by Taylor (1923) and Donnelly and 
Simon (196o). Davey found that for e < 1, the range of validity of 
his expansion, his narrow gap results agreed quite well with 
experiment. For the wide gap case, his results agreed with 
experimental results over an even larger range. 

Several subsequent researchers have also compared portions 
of Davey's work with experiment. Snyder and Lambert (1966) 
used a thermistor-based shear probe to measure the shear at the 
surface of the outer cylinder for the wide gap case of ~/-- 0.5. 
They found that their data, which had 8~ uncertainty, agreed 
with Davey's expansion for e ~< o.75. They also found the first four 
normal modes present in the disturbed velocity field to be in 
phase with each other, confirming one of Davey's primary 
assumptions. Heinrichs, et al. (1988), Gollub and Freilich (1976), 
and Berland, et al. (1986) all used LDV to measure a single 
velocity component of the disturbed flow at a single radial 
position and several axial locations. Although all three 
experiments were performed for different radius ratios than 
Davey used in his calculations, ~/= o.612, o.598, and o.747, 
respectively, they all affirmed that based on the Fourier 

components Ae should be proportional to x/~ for e ~< 1, by 
showing that the coefficients of the Fourier components of the 
disturbed velocity field grow as Davey predicted. Nevertheless, 
they did not specifically address the growth of Ae with e, the 
radial validity of Davey's expansion, or the validity of the velocity 
field derived from Davey's expansion, all of which are addressed 
here. 

3 
Experimental setup 
The flow cell used for the experiments described here is shown in 
Fig. 1. It consisted of a pair of concentric acrylic cylinders, the 
inner one rotating and the outer one fixed. The flow cell was 
made of clear acrylic to allow both optical access to the flow for 
the LDV and to permit excess laser light to exit the flow cell, 
minimizing both heating effects from laser light absorption and 
background noise from spurious laser light reflections. The 
radius ratio of the flow cell was ~/= o.844___ o.ool. The two 
cylinders were held concentric to within +_ o.0o3 cm by acrylic 
endcaps which also provide the fixed-end boundary conditions 
at the two axial extremes of the annulus. The aspect ratio, the 
ratio of the length of the annulus to the gap width, was F =37.5. 

The inner cylinder was driven by a stepper motor capable 
of microstepping at 25 ooo steps per revolution producing 
a very smooth rotation. The rotational frequency of the inner 
cylinder was read by an optical encoder with a resolution of 
3oo pulses per revolution. A Macintosh II with a MacADIOS data 
acquisition and control board oversaw the operation of both of 
these devices. The rotational speed of the inner cylinder was 
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Fig. ]. Cross-sectional view of the experimental flow cell. All dimensions are 
in centimeters 

controlled to better than 0.1% for the range of speeds used in 
these experiments. 

The working fluid consisted of a mixture of water, glycerol, 
potassium thiocyanate (KSCN), and trace amounts of titanium 
dioxide particles (TiO2). The potassium thiocyanate was used to 
increase the index of refraction of the fluid to match that of 
acrylic so that the laser beam was not refracted at the curved 
fluid-acrylic interface. The o.2 ~tm titanium dioxide particles 
were added as LDV seed particles in a volume concentration of 
2.o x 10-4%. Two different fluid mixtures were used, one with 
a kinematic viscosity of about 2 cSt and one with a kinematic 
viscosity of about 6 cSt. 

One of the most difficult aspects of this work was ensuring 
adequate control of the viscosity of the working fluid because the 
viscosity of aqueous solutions of glycerol are very sensitive to 
temperature changes. Using a water jacket to control the 
temperature of the working fluid was impractical because it 
required the LDV receiving optics to be further from the flow and 
created more optical interfaces between the flow and the LDV, 
degrading signal quality. Instead, flush-mount thermistors were 
installed in the wall of the outer cylinder, so that the temperature 
of the working fluid could be continuously monitored. The 
temperature of the working fluid tracked the room temperature 
which varied by no more than _ 0.25 ~ over the course of an 
experiment. 

The uncertainty in the Reynolds number due to the variation 
in the inner cylinder speed, fluid viscosity, and other factors 
ranged from 1.9% to 2.8%. Estimating the uncertainties present 
in the measured velocity data was difficult. The systematic 
uncertainty in the velocity measurements resided primarily in 
two areas: the ability of seed particles to follow the flow and the 
fringe spacing in the measurement volume. The seed particles 
were assumed to follow the flow accurately because the Stokes 



number for the working fluid flowing over a single particle was 
very much less than o.14, the maximum Stokes number for which 
a particle will accurately follow that flow (Dring, 1982). The 
systematic uncertainty in the fringe spacing was estimated at 
o.5%, based on the uncertainty in the intersection angle of the 
LDV beams. The resulting overall systematic uncertainty was 
0.5%. The random uncertainty of the velocity measurements was 
more difficult to quantify. It was not possible to separate the 
random uncertainty associated with the measurements from the 
natural distribution of flow velocities within the measurement 
volume. Therefore, the standard deviation of the group of 
measurements taken at each measurement point constituted an 
estimate of the maximum random uncertainty, typically 2 to 3% 
of the inner cylinder speed. 

For each Reynolds number at which velocity measurements 
were made, the annulus was filled with fluid, and the inner 
cylinder was run at high speed for a few minutes to thoroughly 
mix the fluid. Then the inner cylinder was stopped and the 
working fluid motion was allowed to decay to quiescence. 
Finally, the inner cylinder speed was ramped linearly to the 
desired speed. The slope of the linear ramp up to each Reynolds 
number was held constant at a relatively slow rate of 0.2 Relsec 
for all Reynolds numbers at which measurements were made 
because of the sensitivity of the Taylor-Couette system to initial 
conditions. The dimensional ramp slope of o.2 Relsec 
corresponds to a dimensionless ramp slope d(Rec)/dt* of about 
80 for the 6 cSt fluid and about 24o for the 2 cSt fluid. Here we 
use the time scaling proposed by Park, et al. (198x), t* = tl(Ldlv), 
where L is the length of the annulus. After the inner cylinder 
reached the desired speed, the flow was allowed to develop at the 
Reynolds number for at least an hour to ensure that the flow 
was fully developed before measurements began. Consecutive 
measurements without changing the inner cylinder speed 
showed that the time allowed for the flow to develop was 
sufficient to generate repeatable results. 

The flow velocities were measured using a TSI, Inc. laser 
Doppler velocimeter set up in an on-axis backscatter mode. A 5W 
Argon-Ion laser was used to generate the collimated coherent 
light for the LDV. The LDV measuring volume was a prolate 
ellipsoid of revolution with its major axis extending in the radial 
direction about 280 tam and a minor axis extending 80 ktm. The 
measurement volume was positioned using a three axis traverse 
with a positioning accuracy of + 0.005 mm. A counter-type 
signal processor converted the bursts of light from particles 
passing through the measurement volume to velocity 
measurements. Typically, either 4 096 or 8192 individual velocity 
measurements were collected at each measurement point. 
Collection of the individual velocity measurements took between 
lO seconds and x minute per measurement point depending on 
the quality of the signal and the number of measurements 
collected. 

4 
Results and discussion 
The azimuthal velocity profiles for the various flow regimes of 
interest were measured at a grid of evenly spaced points dis- 
tributed in both the radial and axial directions. Typically ten 
measurement points were distributed radially across the annulus 
and about 35 to 45 were distributed axially, spanning a single 
pair of vortices. The azimuthal velocity measurements are 

normalized with respect to the azimuthal velocity of the inner 
cylinder. The position variable in the radial direction, 

= ( r -  ri)ld, is normalized with respect to the gap width so that 
it varies from ~ = o at the inner cylinder to ~ = 1 at the outer 
cylinder. The position variable in the axial direction, 
~= ( z - zo ) lh ,  is normalized with resepect to the vortex height 
h so that it varies from ~ = o at the outflow region between a pair 
of vortices to ~ = _+ 1 at the inflow region between neighboring 
pairs of vortices. 

The azimuthal velocity profile was measured for the circular 
Couette flow regime to check the validity of the experimental 
procedure in a flow regime where a simple analytical solution 
exists. The azimuthal velocity was measured at a grid consisting 
of al points in the radial direction and 41 points in the axial 
direction. This grid of points was chosen to completely span the 
area of the flow cell that would be used in all subsequent 
measurements. The agreement between the experimental and 
analytical results was very good. These measurements were 
subsequently used to accurately determine the position of the 
inner and outer cylindrical boundaries with respect to the LDV 
traverse and to determine whether the axis of the flow cell was 
parallel to the axis of the LDV traverse. 

4.1 
Taylor vortex flow 
The azimuthal velocity was measured at a large number of 
spatially-distributed points at a fixed Reynolds number to 
explore with high spatial resolution the radial and axial 
dependence of the velocity profile at a given Reynolds number. 
Because the measured azimuthal velocity is dependent on both 
the radial and axial position, the resulting velocity profiles are 
expressed as velocity contour plots in the ~ - ~  plane. 

These contour plots of normalized azimuthal velocity, shown 
in Figs. za, 2b, represent the extremes of the Taylor vortex flow 
regime. Figure za shows a measurement made at a Reynolds 
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Fig. 2a, b. Contour plot of azimuthal velocity normalized with respect to the 
azimuthal velocity of the inner cylinder for the Taylor vortex flow regime for 
a Re = a.02 Rec and b Re = 1.15 Rec 
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Fig. 3- Normalized azimuthal velocity measurements of the Taylor vortex 
flow regime at a series of Reynolds numbers for a fixed radial position 
(~ = o.4). The velocity decreases monotonically with increasing Reynolds 
number for (=1 and increases monotonically for (=o and (=2 

number slightly greater than that required for the transition to 
Taylor vortex flow, Re = lO8 = 1.o2 R eo  Figure 2b shows 
a measurement made at a Reynolds number slightly less than 
that required for the transition to wavy vortex flow, 
Re = 122 = 1.15Re c = o.98Re~, where Re'c is the Reynolds number 
at which the transition to wavy vortex flow occurs. The contours 
bulge outward in the radial outflow region at ~ = o as high 
azimuthal momentum fluid is carried from near the inner 
cylinder outward by the secondary radial outflow. Similarly, the 
contours bulge radially inward in the inflow region at ( =  + 1 
where low momentum fluid from near the outer wall is carried 
inward by the secondary radial inflow. The contour lines in 
Fig. 2b are more sharply curved than those in Fig. 2a, indicating 
that the vortices strengthen wih increasing Reynolds number. 

To determine the effect of Reynolds number on the velocity 
profile, the azimuthal velocity was measured at a few selected 
radial positions as a function of axial position for a series of 
Reynolds numbers. The number of distinct measurement points 
distributed in axial direction was the same as for the procedure 
used to obtain Figs. za and b. The results for a radial position 
near the center of the gap, ~ = 0.4, where the best LDV signal 
was attained, are shown in Fig. 3. Each curve in the Fig. 3 re- 
presents azimuthal velocity measurements for a different 
Reynolds number. The normalized azimuthal velocity increases 
monotonically with Reynolds number in the radial outflow 
region, ( =  o and ( = 2, and decreases in the radial inflow region, 

= 1. Clearly, the axial average of the azimuthal velocity, 
normalized with respect to the inner cylinder speed, decreases as 
the Reynolds number increases. Since the radial position at 
which the measurements were made, ~ = o.4, is closer to the 
inner cylinder than the outer cylinder, the decreasing velocity 
suggests steeper radial gradients of the azimuthal velocity near 
the inner cylinder. In addition, the amplitude of the waveform 

0.25 

0.20 OIp ~ 
< 

~ 0.15 

E 
~0.10 

0.05 

0"0-005 000 005 0.'10 0'15 020 025 0.30 
reduced Reynolds number,~ 

Fig. 4. Growth rate comparison of experimental and calculated equilibrium 
amplitudes A~. The solid line represents Davey's 1962) calculation while the 
symbols represent three different experimental trials 

increases with increasing Reynolds number, suggesting stronger 
Taylor vortices. 

The Davey (1962) solution for the velocity profile in the Taylor 
vortex flow regime was computed to second order accuracy in 
Ae(e) for the radius ratio r/= 0.844 to match the experimental 
conditions. Then the Davey solution was fit to each set of 
experimental velocity measurements made at a particular 
Reynolds number by iteratively adjusting the equilibrium 
amplitude Ae, the critical Reynolds number Reo  and the 
fundamental wavenumber of the disturbance 2 until the least 
squares difference between the two velocity fields was 
minimized. The least squares difference A~, between the 
experimental velocity field and the second order accurate Davey 
expansion is given by 

LI. = y.  [vo(r, z, ~)oxp- vo(r, z, ~)D.vor] 2 
r , z  

= ~ [ vo(r, z, e)exp-17c(r)--A,(e)V,o(r)cos s  
r , z  

--Ae (8)2 { fl (r) -[- v20 (r) cos 22z} 12 (7) 

The equilibrium amplitudes calculated from the At, procedure 
are compared to Davey's predicted growth rate of Ar given in 
Eq. (6), as a function of reduced Reynolds number e in Fig. 4. 
This figure differs significantly from those in previous works 
(Berland et al., 1986; Gollub and Freilich, 1976; Heinrichs et al., 
1988; Snyder and Lambert, 1966) in that it is a plot of equilibrium 
amplitude Ae, not the relative amplitude of the individual 
Fourier coefficients. The critical Reynolds number Rec for the 
experimental data was determined by iteratively adjusting Rec 

until the least squares difference between the experimental data 
and Davey's predicted curve was minimized. The critical 
Reynolds number for the experimental data was found to be 
somewhat smaller (about 2%) than the value calculated using the 
Davey expansion. Berland, et al. (1986) also found a critical 



Reynolds number somewhat lower than that calculated by linear 
stability. The experimentally determined Ae grows 

approximately as x~,  as Davey predicted, for small e. For 
> o.15, Ae grows somewhat more slowly than predicted. 

One possible explanation for the difference between the 
predicted and experimental growth rates is that the expansion 
parameter e has exceeded the range of validity of the second 
order Davey expansion, e ~ 1. The range of validity of the 
expansion could be extended by increasing the order of the 
expansion. Although Snyder and Lambert (1966) found 
reasonable agreement between a second order expansion and 
experimental results, Edwards, et al. (1991) and Raffai and Laure 
(1993) found a discrepancy similar to that in Fig. 4 between 
a third order expansion and fully nonlinear numerical results, 
indicating that increasing the order of the expansion may 
produce better agreement between experimental and analytical 
results. Another possible explanation for the difference is that 
the speed of the inner cylinder may have been ramped too 
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Fig. 5a, b. Comparison of calculated and experimental azimuthal velocity 
fields in the Taylor vortex flow regime for a Re = 1.o2 Rec (e = 0.04) and 
b Re = 1.15 Rec (e = 0.25). The curves represent Davey's (1962) calculations 
while the symbols represent experimental measurements. The data are 
grouped by radial position. The radial positions for a are evenly spaced 
between ( = o.1o4 (bottom) and ~ = 0.93o (top), while for b they are evenly 
spaced between ~=o.o91 (bottom) and (=o.9o9 (top) 

quickly from rest to the speed at which the measurements were 
made. The procedure used in these experiments was shown to 
generate self-consistent, repeatable results using a ramp rate of 
d(Re)/dt*~8o. Nevertheless, Park, et al. (1981) reported that 
a dimensionless ramp rate of d(Re)/dt*~2o was necessary to 
eliminate hysteresis in the development of Taylor vortices. 
The deviation of the experimentally calculated growth rate 
from Davey's prediction may be related to this hysteresis. 
The parameter k from Eq. (6) was found for the experimental 
data by the same best fit procedure used to find Rec. The value 
of k from the Davey expansion, k=4.55 • lO -3, compares well 
with that for the experimental data, k=4.13 • lO -3 

A comparison between the experimental and calculated 
azimuthal velocity fields is shown in Figs. 5a and b for the two 
Reynolds numbers at the extremes of the Taylor vortex flow 
regime shown in Figs. 2a and b. Figures 5a and b show azimuthal 
velocity measurements made at a grid of radial and axial points. 
Each curve represents measurements made at the same radial 
position, with the curves at lower azimuthal velocities for radial 
positions closer to the outer cylinder. The Davey solution agrees 
quite well with the experimental data. The RMS difference 
between the two velocity fields is 0.59% of the inner cylinder 
speed for the lower Reynolds number, Re = lO8, and 1.15% for the 
higher Reynolds number, Re = 122. The uncertainty in the 
azimuthal velocity measurements, averaged over the entire 
velocity field, is 3.0% of the inner cylinder speed for Fig. 5a 
and 2.6% for Fig. 5b. In other words, the RMS difference 
between the Davey expansion and the measured velocity field 
much smaller than the scatter in the velocity measurements. 
The correlation between theory and experiment is better at 
the lower Reynolds number, since Davey's expansion is most 
valid there. The deviation between theory and experiment at 
the higher Reynolds number is most evident for the curves 
representing the velocity near the walls, perhaps due to 
the difficulty associated with making LDV measurements near 
the walls. 

4.2 

Wavy vortex f low 

Wavy vortex flow consists of toroidal vortices with an 
azimuthally traveling waviness superimposed on the vortices 
(Andereck et al., 1986). The high spatial resolution velocity 
measurement procedure from the previous section was used for 
the wavy vortex flow regime with slight modifications. The 
azimuthally traveling waves cause the velocity measured at 
a fixed point to be time-dependent. Since it is difficult to 
measure a time dependent full-field velocity profile with a single 
measurement point LDV, the velocity at each measurement point 
was averaged in time yielding a time-averaged, full-field velocity 
profile. Averaging out the time dependence of the velocity profile 
required collecting a larger number of individual velocity 
measurements than in the time independent case to generate 
a stationary mean velocity. In general, the duration of the 
velocity measurement at each measurement point was long 
enough to let at least ten traveling waves pass. 

Figures 6a-d shows the development of the time-averaged 
velocity contours with increasing Reynolds number, from 
Re = 1.18 Rec = 1.Ol Re'c to Re = 12.45 Rec. Just above the 
transition to wavy vortex flow the velocity contour plot, 
Fig. 6a, is similar to the Taylor vortex flow plot shown in 
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Fig. 6a-d. Contour plot of normalized azimuthal velocity for the wavy vortex flow regime for a Re=1.18 Reo b Re=3.23 Rec, c Re=8n8 Rec, and 
d Re = t2.45 Rec 

Fig. 2b. The contours are slightly more sharply curved, 
indicating a marginally stronger vortex flow at the higher 
Reynolds number. Between Figs. 6a and b, the velocity contours 
change significantly as the Reynolds number increases from 
1.18 Rec to 3.23 Reo The contours become flattened in the both 
the radial outflow and inflow regions. The radial outflow region 
has a smaller axial extent than the radial inflow region. In 
addition, the azimuthal velocity gradients at the inner and outer 
walls are steeper at the higher Reynolds number. As the Reynolds 
number is increased to 8.18 Rec, in Fig. 6c, the velocity gradients 
at the inner and outer walls become even steeper. In addition, 
the radial outflow region becomes still narrower, suggesting 
a jet-like radial outflow. 

Figure 6d is a contour plot of azimuthal velocity measurements 
made at Re,.~ 12.45 Rec, corresponding to modulated wavy vortex 
flow (Andereck et al., 1986). The velocity gradients at the inner 
and outer cylinder have steepened further. At this Reynolds 
number adverse velocity gradients appear. At the axial position 
( = q- 0.4, the azimuthal velocity no longer monotonically 
decreases from the inner cylinder to the outer cylinder. Near the 
middle of the gap, between ~ = o.4 and ~ = 0.8, there is a region 
in which the azimuthal velocity decreases, increases, then 
decreases again with increasing radial position. Coughlin and 
Marcus (1992) found similar adverse velocity gradients for 

= 0.875 and Re = 8 Rec (also modulated wavy vortex flow) using 
a pseudospectral initial-value code to study the nonlinear 
development of Taylor vortices. Apparently the outflow jet is so 
strong that high azimuthal momentum fluid carried outward by 
the jet encounters the outer wall where it must turn and proceed 
axially, creating the adverse velocity gradient. 

of individual velocity measurements had to be made at each 
measurement point to assure that the mean of the individual 
measurements was stationary. Collecting 40 96o individual 
velocity measurements at each measurement point required 
several minutes per measurement point. In order that the overall 
experiment time not be prohibitively long, the number of spatial 
points at which velocity measurements were made was reduced 
so that the overall experiment time was the same as for the 
preceding flow regimes, about four to six hours. The grid of 
measurement points for the turbulent Taylor vortex flow regime 
consisted of a grid of 4 evenly spaced points in the radial 
direction and about 4o in the axial direction. 

Figure 7 shows the velocity contours for the turbulent Taylor 
vortex velocity measurements at a Reynolds number of 
Re ~ 9 800 ~ 92Rec. At this high Reynolds number, the turbulent 
mixing and fluid transport by the vortices have very effectively 
mixed the fluid in the middle portion of the annulus gap, 
between ~ --- o.2 and ~ = o.8. There remains signs of the radial 
outflow and inflow regions at ( =  o and _+ 1, respectively. There is 
also evidence of high momentum fluid from near the inner 
cylinder being carried outward and then back inward by the 
vortices in the center of the gap as illustrated by the dashed 
contour in Fig. 7. Since the spatial resolution of the 
measurement points in the radial direction is reduced from that 
in the previous plots, the velocity gradients near the inner and 
outer cylindrical boundaries do not appear to be as steep as they 
actually are. With sufficient spatial resolution, the velocity 
gradients near the boundaries would be very steep and the 
region between these boundary layers would have a nearly 
uniform azimuthal velocity. 

4.3 
Turbulent Taylor vortex flow 
The azimuthal velocity in the turbulent Taylor vortex flow 
regime was difficult to measure because a large number (4o 96o) 

4.4 
Dependence of velocity profile on Reynolds number 
Several numerical simulations of the wavy vortex flow regime 
have been reported (Coughlin and Marcus, 1992; Marcus, 1984; 

1.0 



1.0 

0.8" 

0.6 L 

0.4- 

0.2- 

g o.o- 

-0.2- 

-0.4- 

-0.6- 

-0.8- 

-1.0- 
0.0 012 

/ 
/ 

_ / 'J 

/ 
/ 

f ! ! 
014 0.6 0.8 

radial posit ion, 
.0 

Fig. 7. Contour plot of azimuthal velocity for the turbulent Taylor vortex 
flow regime for Re ~ 92 Reo The dashed contour, corresponding to 
a normalized azimuthal velocity of o.47, reveals the transport of high 
momentum fluid by the vortex 

Moser et al., 1983) although the one by Marcus (1984) is the most 
useful for comparison to our experimental results. He used 
a pseudospectral code to calculate axially-averaged angular 
momentum profiles for a series of Reynolds numbers distributed 
throughout both the Taylor vortex and wavy vortex flow regimes. 
Marcus' results for a radius ratio r /= 0.875 are replotted in 
Fig. 8a as axially-averaged azimuthal velocity profiles. Marcus' 
data tends toward a velocity profile that is flat throughout the 
center portion of the gap, and increasingly steep near the 
boundaries as the Reynolds number increases. The same trend is 
evident in the experimental axially-averaged azimuthal velocity 
profiles for the Taylor vortex and wavy vortex flow regimes 
shown in Fig. 8b. Both sets of data tend toward the same 
normalized azimuthal velocity in the center of the gap, about 
4o% of the inner cylinder speed. The turbulent velocity profile 
for Re ~ 92 Rec is also shown in Fig. 8b. It has a noticeably higher 
velocity in the center of the gap, about 45% of the inner cylinder 
speed, probably as a result of turbulent mixing in addition to 
transport by the vortices. 

5 
Conclusions 
Our first goal in this work was to verify the analytical prediction 
made by Davey (1962) for Taylor vortex flow by comparing 
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Fig. 8a, b. Comparison of numerical and experimental axially-averaged 
azimuthal velocity data. The numerical results of Marcus (x984) in a are for 
circular Couette flow (solid), Re = 1.18 Rec (long dashed), Re = 2.o6 Rec 
(medium dashed), Re = 2.95 Rec (dot-dashed), Re = 3.96 Rec (short dashed). 
Experimental measurements are shown in b for Re = 1.o2 Rec (m), 
Re=L7o Rec (O), Re =3.23 Rec (&), Re=4.81Rec (0), Re = 12.45 Rec( x ), 
Re = 92 Rec (V). The dashed curve is the analytic solution for circular 
Couette flow 

it to the experimentally measured azimuthal velocity field. 
Previous experimental work has shown that the amplitude of 
individual Fourier coefficients of the disturbed velocity field 
increase with Reynolds number (Berland et al., 1986; Gollub 
and Freilich, 1976; Heinrichs et al., 1988; Snyder and Lambert, 
1966) suggesting that the strength of vortices for Taylor vortex 
flow increases as predicted by Davey. Nevertheless, the growth 
of the equilibrium amplitude Ae with Reynolds number has not 
been addressed experimentally. Here we have found that for 
small e, the equilibrium amplitude Ae indeed grows nearly as 
Davey predicted, as shown in Fig. 4. While these results are 
not surprising, they are the first full experimental confirm- 
ation of the validity of Davey's analysis. 

What is surprising, though, is how well the experimental 
results compare with Davey's expansion of the velocity field, 
especially at higher e. Davey provided expressions for the 
velocity field in Taylor vortex flow for two particular radius 



ratios. Nevertheless, the researchers who subsequently examined 
the validity of the perturbation expansion did not  rework the 
solution at the radius ratio at which their experimental results 
were obtained, nor  did they compare the full analytical velocity 
field to their experimental results. Here we used the experi- 
mentally determined equil ibrium amplitude Ae in Eqs. (1)-(3) 
to analytically calculate the azimuthal velocity field based 
on Davey's perturbat ion expansion. Not only does the 
analytically determined velocity field match the experimental 
data for small ~ as shown in Fig. 5a, it matches quite well for ~ as 
large as 0.28 as shown in Fig. 5b, except very near the walls of the 
annulus.  Even if Davey's theoretical equil ibrium amplitude, 
shown in Fig. 4, is used to obtain the analytical velocity field, the 
agreement between the analytical prediction and the experi- 
mental  velocity field is quite good. In addition, Fig. 5 confirms 
the radial dependence of Davey's expansion, especially near 

= 0 where the expansion is most accurate. 
Our second goal in this research was to determine the effect of 

the Reynolds number  on the strength of vortices and the 
structure of the azimuthal velocity field for several different flow 
regimes of supercritical circular Couette flow. These results were 
presented as azimuthal velocity contours for different Reynolds 
numbers ,  shown in Figs. 2, 6, and 7. The vortices carry high 
azimuthal m o m e n t u m  fluid from near the inner  wall outward at 
outflow regions between vortices and carry low azimuthal 
m o m e n t u m  fluid from near the outer wall inward at inflow 
regions. For Taylor vortex flow this results in a waviness of the 
azimuthal velocity contours. As the Reynolds number  increases, 
the contours become more sharply curved because of the 
stronger vortices. As the Reynolds number  is increased to wavy 
and modulated wavy vortex flow, the radial transport  of 
azimuthal m o m e n t u m  fluid away from the walls increases as the 
vortices increase in strength. This results in a nearly uniform 
azimuthal velocity across a broad port ion of the annular  gap 
with steep, boundary  layer-like velocity gradients near the walls 
of the annulus  confirming the numerical  s imulation of wavy 
vortex flow (Marcus, 1984). As the Reynolds number  increases, 
the outflow regions become jet-like, although the inflow regions, 
while increasing in strength, are weaker. Finally, as the Reynolds 
number  is increased to turbulent  vortex flow, the turbulent  
mixing and fluid transport  by the vortices mixes the fluid in the 
middle portion of the annular  gap resulting in a region of nearly 
uniform azimuthal velocity with steep boundary  layers near the 
walls. For turbulent  vortex flow, the outflow can be so strong that 
high azimuthal m o m e n t u m  fluid is carried radially outward and 
then axially, resulting in adverse radial velocity gradients. 
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