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Abstract. In this paper we make two observations on Rabin's probabilistic 
primality test. The first is a provocative reason why Rabin's test is so good. It 
turned out that a single iteration has a nonnegligible probability of failing only on 
composite numbers that can actually be split in expected polynomial time. There- 
fore, factoring would be easy if Rabin's test systematically failed with a 25% 
probability on each composite integer (which, of course, it does not). The second 
observation is more fundamental because it is not restricted to primality testing: it 
has consequences for the entire field of probabilistic algorithms. The failure prob- 
ability when using a probabilistic algorithm for the purpose of testing some 
property is compared with that when using it for the purpose of obtaining a random 
element hopefully having this property. More specifically, we investigate the ques- 
tion of how reliable Rabin's test is when used to generate a random integer that is 
probably prime, rather than to test a specific integer for primality. 
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1. A Brief Survey of Primality Testing 

How difficult is it to distinguish prime numbers from composite numbers? This is 
perhaps the single most important problem in computational number theory. We 
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do not attempt here an exhaustive review of its long history. Let us only mention 
some of the most outstanding modern steps. It has been known for several years 
that the problem of recognizing prime numbers belongs to P under the Extended 
Riemann Hypothesis [15] and that it belongs to Co-RP [20], [22] and N P  [19] 
without any assumptions. It can also be solved in almost polynomial time by 
a deterministic algorithm that runs for a number of steps in O(m ~176176 ~~ [2], [17], 
[7], where m is the size of the number to be tested, that is the number of bits in 
its binary representation. More recently, it was found to lie in RP [11], [1], and 
therefore in Z P P  [10] as well. In other words, this problem can be solved in 
probabilistic polynomial time by a Las Vegas [3] algorithm: whenever an answer 
is obtained, that answer is correct. 

From a theoretical point of view, the problem of primality of primality testing 
is therefore essentially solved: the only remaining question is to figure out whether 
or not it belongs to P without assumptions. However, the polynomial that gives 
the running time of [11] is of the twelfth degree and [1] only makes things worse 
in practice. Despite Atkin's much more reasonable version of these algorithms, 
Rabin's probabilistic test [20] remains the best approach for very large num- 
bers (several hundreds of decimal digits). Let prob[Rabin(n) = verdict] denote the 
probability that one iteration of this algorithm on input n returns verdict, where 
verdict can either be "prime" or "composite." The basic theorem about Rabin's test 
is that 

whereas 

prob [Rabin(n) = "prime"l n is indeed prime] = 1 

prob[Rabin(n) = "prime"[n is in fact composite] < 1/4. 

One is therefore certain that n is composite whenever any single run of Rabin(n) 
returns "composite." On the other hand, one can never be sure that n is prime no 
matter how many runs of Rabin(n) have returned "prime." This test is usually run 
in a loop as follows: 

function RepeatRabin(n, k) 
{ n is an odd integer to be tested for primality; 

k is a safety parameter discussed below } 
var i: integer; done: Boolean 
i ~ 0  
repeat 

i ~ i +  l 
done ~ (Rabin(n) = "composite") 

until done or i > k 
if done then return "composite" { for sure } 

else return "prime" { probably (?) }. 

There is a tradeoff in the choice of the parameter k above: the bigger it is, the more 
confident we are in the advent of a "prime" answer but the more time it takes to 
build up this confidence. This paper addresses two aspects of the question: just how 
confident in a number's primality can we be after runnin O this test? 
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2. Rabin's Test in Relation to Factoring 

Let n be an odd integer, n > 1, and let v and u be integers such that n - 1 = 2Vu, 
where u is odd. Define 

Z * = { a l l < a < n a n d g c d ( a , n ) =  1} 

and 

Rn = {a ~ 7/*la u = 1 (mod n) or (3j) [0 < j  < v and a 2~u ~_ - 1 (mod n)]}. 

The basic theorem about  Rabin's test states that Rn = Z* whenever n is a prime, 
whereas # Rn < # 7/*/4 otherwise, where # X denotes the number of elements in 
set X. Notice that both 1 and n - 1 always belong to R,. This theorem is normally 
used as follows: 

function Rabin(n) 
{ n is an odd integer, n > 1 } 
a ~- integer randomly and uniformly selected between 2 and n - 2 

if a ~ R~ then return "prime" 
else return "composite." 

Whenever n is composite, the error probability of this procedure is clearly given 
by ( #  R, - 2)/(n - 3), so that elements of R,  others than 1 and n - 1 are known 
as Rabin false witnesses for n. From the basic theorem we know that this error 
probability is always smaller than 25~. However, it is well known to be often 
much smaller. Monier gives an exact formula for this probability [16]; see also 
[14]. As a corollary of Monier 's formula, the error probability never exceeds 
(~o(n)/2 '-1 - 2)/(n - 3), where r is the number of distinct prime factors of n and 
~0(n) = # 7/* denotes Euler's function [12]. Despite this tightening of the bound on 
the error probability (at least when n has more than three distinct prime factors), 
it turns out that the latter is usually still much smaller. In other words, Rabin's test 
performs in practice much better than one might naively expect. 

For  instance, 42,799 ( =  127 x 337) admits only 880 Rabin false witnesses, com- 
pared with ~0(42,799)/4 = 10,584. Even better, Rabin's test never fails on integers of 
the form 3 x 5 x 7 • 11 x ... such as 15,015: these admit no false witnesses at all. 
More impressively, it is enough to test deterministically for each a e {2, 5, 7, 13} 
in order to decide primality without any failures up to 25 x 109 (using {2, 3, 5, 7} 
still leaves one error in this range [181). Although "high risk" numbers exist, 
such as n = 79,003 ( =  199 x 397) or 3,215,031,751 ( =  151 x 751 x 28,351) with 
# Rn = # 7/*/4 and ( #  R. - 2)/(n - 3) ~ 24.8~, these are not the rule. (One can 
nonetheless prove, using Monier 's formula, that every composite number of the 
form (12m + 7)(24m + 13) is such a high-risk number, provided both 12m + 7 and 
24m + 13 are p r i m e - - b u t  the existence of infinitely many such numbers remains 
an open question.) We now show that it is somewhat unfortunate (except for 
cryptographers!) that Rabin's test is so good, because otherwise factoring would 
be easy. 

For  this purpose, consider the set of Fermat false witnesses for n: 

F~ = {a e 7/*In "-1 = 1 (mod n)}. 
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Obviously, R. ~ F, for each odd integer n > 1. Define H,  = F. \R. ,  the set of Fermat 
false witnesses that are however not Rabin false witnesses. Assume for the moment 
that n is not a prime power (i.e., not of the form pm for some prime p and some 
integer m _> 1). Theorem 1 states that each element of H.  is a handle that allows 
easy splitting of n (i.e., finding at least one nontrivial factor of n) and that there are 
at least as many such handles as there are Rabin false witnesses. Our provocative 
interpretation states that it is only possible for even a single iteration of Rabin's test 
to fail (i.e., declare n prime) with a nonnegligible probability if it happens that n is 
easy to split (and hence obviously composite)! This result extends to every composite 
n since even numbers and prime powers are easy to split. In other words, there exists 
a simple probabilistic splitting algorithm whose running time is small on every 
composite number on which Rabin's test is not extremely effective. More precisely, 
for any function t(1), our splitting algorithm succeeds at finding a nontrivial factor 
within expected time in the order of 13t(l) on every/-digit composite integer n such 
that prob[Rabin(n) = "prime"] > 1/t(1). In particular, it runs in expected polynomial 
time on these integers if t(I) is bounded by some fixed polynomial. 

Another consequence of this result is that whenever Fermat's test fails to recognize 
a composite integer as such whereas Rabin's test would not have failed (with the 
same random choices), this means that Fermat's test has just missed a golden 
opportunity to split the given integer! (This phenomenon has already been observed 
by Baillie and Wagstaff [4, p. 1402].) 

Theorem 1. Let n be any odd composite integer that is not a prime power, and let v 
and u be integers such that n - 1 = 2Vu, where u is odd: 

(i) (Va ~ H.) (3j < v) [gcd(n, a 2J" + 1) is a nontrivialfactor of n]. 
(ii) # H.  > # R.. 

Proof. (i) Consider any a e H.. Let i be the smallest integer such that a 2 ' " -  
1 (mod n). We have 0 _< i _< v because a ~ F.. However, i = 0 is not possible since 
a r R,. Le t j  = i - l and x = a 2ju. Clearly, x ~ 1 (mod n) because ofi 's  minimality. 
Moreover, x ~ - 1 (mod n) since otherwise a would belong to R.. Hence, x ~ _+ 1 
(mod n) but x 2 --- 1 (mod n). Therefore, gcd(n, x + 1) is a nontrivial factor of n. 

- -  m l  m 2 . . .  m r  (ii) Let n -  Pl P2 p, be the decomposition of n into prime factors. Let 
p, - 1 = 2V, u, for each i, where u, is odd. Let ~ = min{v, I1 _< i _< r}. Monier has 
proved the following formulae [16]: 

2 "~ - 17 f i  gcd(u, u,). 
# F , = f i g c d ( n - l ,  p i - 1 ) , = l  and # R , - -  I + ~ - T _ l J / =  1 

(The formula for # F, was discovered independently by Baillie and Wagstaff [4].) 
Moreover, r < v [16], hence 

gcd(n - 1, p, - 1) = gcd(2Vu, 2V'ug) = 2 mint"'v~ god(u, ui) > 2' god(u, us). 

Therefore, 

# F, > 2"  I~I gcd(u, ui). 
/ = 1  
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Final ly ,  since z ___ 1 because  n is odd  and  r > 2 because  n is no t  a p r ime  power,  

# F .  2 ~ 2 " - 1  

- -  > ( 2 , ~  = 2 1 _ , , ( 2 , _  1 # R .  - 1 + - 1 ) / ( 2 ' -  1) - 1) + 1 

2 " -  1 2 " -  1 
--- 21- ' (2  ' -1  - 1) + 1 = 2 - 21-------; - 2"-1 - 2. 

This  proves  tha t  # F. >_ 2 x # R. ,  hence # H .  = # F. - # R ,  _ # R. .  
Not ice  tha t  a more  exact  fo rmula  is no t  much  ha rde r  to establish:  

2 "+x-1 < # F . / # R .  < 2:(2" - 1) < 2 '+ ' ,  where x = ~ [min(v, vi) - ~] > 0. 
i=1 

In  par t icu lar ,  17. = R .  when n is a p r ime  power  (r = 1 and  x = 0). [ ]  

There  are  several  ways  in which the no t ion  of a handle  can be generalized.  I t  is 
clear  from pa r t  (i) of  Theorem 1 tha t  any  F e r m a t  false witness tha t  is however  not  
a Rab in  false witness can be used to split  n efficiently, bu t  o ther  numbers  can be 
used as well. Let  us define an  n-splitter to be an  integer  x such tha t  1 < gcd(x,  n) < n. 
Obvious ly ,  knowledge  of  any  n-spli t ter  can be used to compu te  a nont r iv ia l  factor  
of n efficiently (using Eucl id 's  a lgor i thm),  and  there are  exact ly n - r 1 of  them 
between 1 and  n. W h a t  else could  be used as handle? 

As usual,  let n be an odd  compos i t e  integer,  and  let v and  u be integers such tha t  
n - 1 = 2Vu, where  u is odd.  The fol lowing defini t ions for handles  are  na tu ra l  in 
the sense tha t  they mimic  the Rab in  and  F e r m a t  false witnesses, respectively: 

(i) a is a Rabin handle (a ~ R H . )  if 1 < a < n and  
�9 a u - 1 is an  n-spli t ter ,  o r  
�9 a 2ju + 1 is an  n-spl i t ter  for some 0 < j < v. 

(ii) a is a Fermat handle (a ~ F H . )  if 1 < a < n and  
�9 a "-1 - 1 is an  n-splitter.  

W e  know from Theo rem 1 tha t  H .  _ RH. ,  where H .  is the set of handles  
previous ly  discussed (the F e r m a t  false witnesses tha t  are no t  Rab in  false witnesses), 
bu t  how m a n y  add i t i ona l  handles  for spl i t t ing n d id  we miss by  concen t ra t ing  only  
on H .?  The  fol lowing theorem tells us tha t  we missed precisely the F e r m a t  handles,  
and  tha t  there  are  at  least  n - tp(n) - 1 of  them. 

T h e o r e m  2. Let  n be an odd integer, n > 1, and let p~l p~2 . . . p~r be its decomposition 
into prime factors: 

(i) R H ,  = H .  u F H . ,  
(ii) n .  c~ F n .  = ~Z~, 

(iii) # F H .  = n - # F~ - n I],"=1 (1 - gcd(p, - 1, n - 1)/pi) > n - tp(n) - 1, 
and 

(iv) # R H .  = n - # R .  - nl-I~=x (1 - gcd(p i - 1, n - 1)/pi ). 

(Part (iii) holds as well if n is even, provided that the definition o f  F H .  is extended 
in the natural way to even numbers.) 
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In order  to simplify the proof, let us first state some useful facts whose justifications 
are left to the reader: 

(a) In general, for any integers x > 2 and k > 1, x k - 1 is divisible by x - 1; it is 
also divisible by x + 1 provided k is even. In  particular, for any integers a > 2, 
i > j > 0 and u > 1, a 2'u - -  1 is divisible by a 2~u - -  1; it is also divisible by 
a 2Ju + 1 provided j < i. 

(b) For  any integers a > 2, u > 1, and any odd prime p, at most  one member  of  
{a ~ - 1 } u {a 2:~ + l lj  > 0} is divisible by p. Indeed, ifp divides two members  
of this set, then the larger one is a 2ju + 1 for s o m e j  > 0, whereas the product  
of all the smaller members  of  this set is a 2J" - 1. But p must  also divide this 
product ,  hence p = 2 for a contradiction.  

(c) It is obvious that  R. _ F., R.  c~ H.  = ~ ,  F. n F H .  = ~ ,  and R.  c~ F H .  = ~ ;  
it is somewhat  less obvious, but  it follows from fact (b), that  R.  n R H .  = ~ .  

(d) if p is prime, then 

# {al0 < a < p and a "-1 -= 1 (mod p)} = gcd(p - 1, n - 1). 

(e) Consider any real number  c > 1. It follows from elementary calculus that 
max{x + c/xl 1 < x < c} = 1 + c. 

Proof of  Theorem 2. As always, let v and u be integers such that  n - 1 = 2Vu, 
where u is odd. 

(i) Consider any a ~ RH. .  By fact (a), a "-1 - 1 is divisible by a u -  1 and by 
a 2Ju d- 1 for each j < v. Thus, by definition of RH. ,  gcd(a "-1 - 1, n) > 1. If  this 
gcd is equal to n, then a e F, by definition. But a r R. by fact (c). Therefore, 
a ~ F , \ R .  = H. .  O n  the other  hand, if this gcd is strictly between 1 and n then 
a ~ F H ,  by definition. This shows that  R H .  _ H,  w FHn. 

Now,  consider any a e H .  w F H . .  By fact (c), a e R . .  By definition, 
gcd(a "-1 - 1, n) > 1. Let p be a prime factor of this god. Clearly, a "-1 - 1 (mod p), 
which implies (because p is a prime) that either a u - 1 (mod p) or  a 2Ju - - 1 (mod p) 
for some j  < v. Thus either gcd(a" - 1, n) > i or  gcd(a 2J" + 1, n) > 1 for some j  < v. 
But none of these gcd's can be n since a r R.. Thus a e RH. ,  which completes the 
proof  that  H.  w F H ,  ~_ RH. .  

(ii) Immedia te  f rom the facts that  F. n F H .  = ~ and H.  _ F.. 
(iii) Consider  any 0 < a < n. It is clear that  exactly one of  the following three 

possibilities holds: a e F,, a e FH. ,  or  gcd(a "-1 - 1, n) = 1. Therefore, the equality 
in part  (iii) will follow immediately after we show that  

# {alO < a < n and  gcd(a" - l  - l '  n) = l } = n f i  ( 1 -  gcd(p '  - l '  n - 1 )  ) Pi 

To see this, consider any i, 1 < i < r. By fact (d), 

# {al0 < a < p~ and a "-1 = 1 (mod Pi)} = gcd(pi - 1, n - 1). 

Therefore, 

# {a[0 < a < p~' and a n-1 ---- 1 (mod Pl)} = p ~ n , - 1  gcd(p~ - 1, n - 1). 
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We thus conclude that  

# {al0 < a < p~' and a "-1 ~ 1 (mod Pi)} = P~" - p~,,-1 gcd(pi - 1, n - 1). 

F r o m  the Chinese Remainder  Theorem, it follows that  the number  of  a such that  
0 < a < n and a "-1 ~ 1 (mod Pi) for each 1 < i < r is given by 

(p~,, _ p~,,-1 gcd(p, - 1, n - 1)) = n 11 1 - gcd(pi - 1, n - 1) 

Thus the equality in part  (iii) holds since a "-1 ~ 1 (mod Pi) for each 1 < i _< r 
precisely when gcd(a "-1 - 1, n) = 1. 

In order  to show the inequality in part  (iii) of  the theorem, let x, denote 
gcd(pi - 1, n - 1), let e(n) denote 1-I~=~ P,, the largest square-free divisor of  n, and 
let B(n) = ~o(e(n)) denote I-I~=1 (P, - 1). By the above cited formula of  Monier  and 
Baillie-Wagstaff,  # F. = 11,"=1 xi.  Therefore, the equality we just  proved implies 
that  

# F H .  = n  - l:-I x i - - n  [-I (1 - x , /p , )  
i=1 i=1 

= n --  x i --  (p, -- xi). 
,=1 

Consider  now the function E.  in r variables defined by 

r? ~ E . ( Y l ,  Yz . . . . .  Yr) = Yi + (P, - Y,), 
,=1 ~ i=1 

which is defined precisely so that  # F H .  = n - E.(x 1, x2 . . . . .  x,). Because 1 < x ,  < 

p, - 1 for each 1 < i < r, it is clear that  

# F H .  > n - max{E. (y  1, Y2 . . . . .  Yr)l 1 < Y~ < P~ - 1 for each 1 < i < r}. 

In  order  to maximize the function E.,  first notice that it is linear in each variable. 
Therefore, its max imum value occurs at a point  where each Yi is either 1 or  p~ - 1. 
Let S be an arbi t rary subset of  {1, 2, . . . ,  r} and let x denote I - I i~s (p i  - 1). Notice 
that  I - l ies(p ,  - 1) = f l (n) /x  and nfl(n)/~(n) = tp(n). Setting Yi = P, - 1 for i E S and 
y~ = 1 for i r S, we thus have E , ( y ~ ,  Y2 . . . . .  Yr) = x + ~o(n)/x. Using fact (e), since x 
can only take values between 1 and [3(n) < q~(n), we conclude that  the value of  -=. 
in the range of  interest never exceeds 1 + ~o(n). We have thus established that  
# F H ,  > n - ~o(n) - 1, as claimed. 

(iv) Immediate  f rom the first three parts of  this theorem and from the obvious 
fact that  # H.  = # F. - # R.. [ ]  

3. How Good Is Rabin's Test? 

We must  first ask the following question: what  is Rabin's  test good  for? At least two 
answers come to mind: to decide ifa given number  is probably  prime and to generate 
one or  several r a n d o m  integers that  are probably  prime. We consider these two 
settings in turn, starting with the second. 
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3.1. How To Generate Random Numbers That Are Probably Prime 

The generation of large primes drawn with a uniform distribution from the set of 
all primes of a given size is of crucial importance in cryptography [21]. Although 
it is possible to generate such primes with certainty using the algorithms of [2], [1], 
their running time is currently too high to be used in practice. It is also possible to 
generate large certified primes efficiently by a variation on Pratt 's nondeterministic 
algorithm [19] (generate the NP  certificate and the resulting prime hand in hand) 
or by more sophisticated techniques [8], but the resulting distribution would not 
be uniform. Again, the most attractive solution in practice is to use Rabin's test 
as follows: 

funetiofi GenPrime(l, k) 
{ I is the size of the prime to be produced; 

k is a safety parameter discussed below } 
repeat 

n ~ randomly selected/-digit odd integer 
until Repeat Rabin(n, k) = "prime" 
return n. 

The resulting output is a probabilistic prime in the sense that we are not assured 
that it is indeed prime using the above algorithm, no matter how large we choose k. 
We can nonetheless increase our confidence in the number's primality by increasing 
the safety parameter k. (What a shame that Rabin's algorithm can certify those 
cryptographically useless composite numbers whereas it can only give probabilistic 
information on the useful primes!--which is precisely why the algorithms in [11] 
and [1] are of such (as yet theoretical) interest.) 

In order to use GenPrime for cryptographic purposes, it is important that its 
probability of returning a composite integer be estimated. The popular belief is that 

prob[GenPrime(l, k) is composite] < 4 -k 

because each of the k rounds of RepeatRabin has a probability smaller than 1/4 of 
failing on any given composite number. If we repeatedly use GenPrime to produce 
m distinct "primes," we therefore expect on the average that at most m x 4 -k of 
them will turn out to be composite. For  instance, Knuth writes [13, p. 379]: 

If we certified a billion different primes with such a procedure, 4 the 
expected number of mistakes would be less than 1/1,000,000. 

This assertion is true, but its proof is not so obvious. In particular, the reasoning 
given above is fallacious. Indeed, it is only true because prob[Rabin(n) = "prime"] 
is much smaller than 1/4 on most composite numbers. Should the error probability 
of Rabin's test be exactly 1/4 on each and every composite odd integer, the 

4 Knuth does not explicitly say how he would use Rabin's test to certify those billion primes, except 
that he would run it "25-times-in-a-row" on each of them. It is our interpretation that he meant something 
along the lines of RepeatRabin(', 25). Of course, Knuth's assertion is vacuously true if taken literally: 
if the integers thus certified are indeed "one billion primes", no mistakes are possible at all! 
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number of expected errors in Knuth's quote could be sionificantly laroer than 
109 X 4 -25 ,~ 10 - 6  . 

Let X stand for "n is composite" and Yk for "RepeatRabin(n, k) returned "prime"." 
The basic theorem about Rabin's test obviously implies that prob[YklX] _< 4 -k. 
However, this is not the probability relevant to the procedure GenPrime: rather, 
we are interested in prob[X] Yk]. This latter probability cannot be estimated (or 
even bounded away from 1) without specification of the probability distribution 
over n. For the moment, let S be any set of odd integers and let n be chosen 
randomly and uniformly in S. Let p stand for the probability that n be prime 
(i.e., p = #{n e Sin is prime}/ # S), and let us assume that 0 < p < 1. Elementary 
probability theory yields: 

prob [X] x prob [ Y~]X] 
prob[X[ Yk] = 

prob[Yk] 

prob[X] x prob[YklX] 

prob[X] x prob[YklX] + prob[not X] x prob[Yklnot X] 

prob[YklX] 

prob[not X] x prob[Yklnot X] 
prob[YklX] + 

prob[X] 

prob[YklX] 

-- prob[YklX] +/0/(1 - p) 

< p-1 x prob[YklX]. 

In particular, if prob[YklX] << p << 1, we get that prob[XI Irk] is almost equal to 
p-1 x prob[YklX]. On the other hand, ifp << prob[YklX], then the above calcula- 
tion shows that prob[X[ Yk] is very close to 1, which means that n is almost certainly 
composite whenever Rabin's test finds it probably prime k times in a row! It is thus 
clear that prob[X[ Yk] < 4-k cannot be a direct consequence of the mere fact that 
prob[Yk]X] < 4 -k. Worse still, prob[X] Yk] < 4 -k might even be false. This line of 
thought is carried out to the extreme in [5] and unduly pessimistic consequences are 
drawn. Nonetheless, the more detailed analysis below shows that the precautions 
advocated in [5] are not necessary. In particular, the probability of GenPrime(1, k) 
returning a composite integer actually decreases as the value of I increases (for any 
fixed value of k). 

In order to bound prob[X[ Irk] more precisely, a tighter bound on prob[YklX] 
is needed. Thus, we must study the average behavior of Rabin's test, rather than its 
much simpler worst case. This question was raised and solved to a large degree by 
Erd6s and Pomerance [9], but only for the case of a single iteration of Rabin's test, 
corresponding to k = 1: the average number of false witnesses for integers up to n 
does not exceed niL(n) r where L(n) is defined as n lnlnlnn/Inlnn and ~: N --, R is 
a function such that lira,_.| ~(n) = 1 (this holds even for the Fermat congruence). 
One may assume without loss of generality that L(n) ~(") is monotone increasing. 

However, successive runs of Rabin's test on a given randomly chosen odd integer 
n are not independent in the sense that ifa first run finds that al 6 R,, this increases 
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very significantly the likelihood that the next run will also find that a 2 ~ R,, where 
a I and a 2 are randomly, uniformly, and independently chosen between 2 and n - 2. 
(Let us disregard here the fact that the second run would not even take place should 
the first run find that a~ ~ R,.) Consult [18] for numerical evidence about this. This 
lack of independence prevents us from asserting that prob [ YkIX] = (prob [ Y1 I X])k. 
Nonetheless, the basic fact that prob[a  2 E R,]  < 1/4 remains true as long as n is 
composite, and this applies equally well to each and every run, independently of 
what happens in the other runs. Therefore, 

prob[-Y~ IX] 
prob[YklX] < 4k-1 

Let us now be more specific about the set S of odd integers among which n 
is randomly and uniformly drawn, so that our study corresponds to a call on 
GenPrime(l, k) for positive integers I and k. Let S be the set of/-digit odd integers. 
The prime number theorem [12] tells us that 

p = prob [n is prime ln e S] ~ fl/l, 

where fl = logto e 2 ~ 0.87 (see Lemma 1 in [5]). Moreover, the study in [9] tells 
us that 

prob[YllX ] < 1/P(10t-1), 

where P(n) stands for L(n) ~"). Hence, 

prob[GenPrime(l, k) is composite] = prob[-X[ Irk] 

_< p-1 x prob[Yk[X] _< 
4 1 4 -k. 
fl P(10 t-l) 

But clearly l im~/ /P(101-1)  = 0, thus prob[GenPrime(l, k) is composite] < 4 -k for 
all sufficiently large l, which proves Knuth's previously quoted claim (at least if the 
numbers considered are sufficiently large). 

Let us stress again that, although one's confidence in the primality of the output 
of GenPrime(l, k) increases with the value of k,//POO H )  is already so small for large 
values of I that an arbitrarily low error probability can be obtained with a mere call 
on GenPrime(l, 1) if large enough primes are sought. In fact, this remains true even 
if the simpler Fermat congruence is used instead of Rabin's test, but one should 
resist the temptation of doing this because Fermat's congruence is only simpler 
conceptually but never faster (and often slower) to compute. 

3.2. How To Decide on the Primality of a Given Integer 

Suppose some odd integer n is given to you. You are to decide whether you think 
it is prime or not. You therefore run Rabin's test for some number k of rounds, 
and it never finds n to be composite. What can you tell from this? 

One obviously wrong answer is: "this number is prime with probability 1 - 4-k. '' 
This makes no sense because any given integer is either prime or not. 

The classic answer is: "I believe this number to be prime, and my error probability 
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is at most 4 -k (in the sense that I expect to be wrong at most once every 4 k such 
statements if you quiz me long enough)." This is wrong as well because no estimate 
on the error probability of"I  believe this number to be prime" can be made without 
an a priori estimate on the probability that the number is prime. If you know that 
n was chosen randomly and uniformly among the odd integers of some given size, 
Section 3.1 is relevant. However, if you do not know where the number comes from, 
you are at a complete loss. 

Still, there is one thing you can say: "I believe this number to be prime, and if 
I am wrong I have observed a natural phenomenon whose probability of occurrence 
was bounded by 4-k. '' This appears to be the strongest statement one can infer in 
general from running Rabin's test k times on a given integer that is not thus found 
to be composite. 

As mentioned in the abstract, this observation is not restricted to primality 
testing. Whenever one runs any probabilistic algorithm that is not Las Vegas, care 
must be taken as to how to interpret the outcome. This general issue is discussed 
in [6]. 

4. Open Problems 

It would be interesting to analyse the average and normal behavior of # FHn and 
# RHn, much like the analyses of # F~ and # R, found in [9]. It would also be 
interesting to analyse more tightly the probability that RepeatRabin(n, k) = "prime" 
when n is a composite integer randomly and uniformly chosen among all/-digit 
composite integers; in particular, where does it lie between pk and P/4 k-l, where P 
stands for the probability corresponding to k = 1? (We conjecture that it is much 
closer to P/4 k-1 than to pk, i.e., that our analysis was not too pessimistic.) Finally, 
a more precise analysis of how and how fast the function r converges to 1 (a 
question left unresolved in [9]) would be crucial in establishing from which values 
of I it is true that, for every integer k > 1, prob[GenPrime(1, k) is composite] < 4 -k. 
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