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Abstract. Many classes of transient solar phenomena, such as flares, flare sprays, and eruptive 
prominences, cause major disruptions in the magnetic geometry of the overlying corona. Typically, the 
results from Skylab indicate that pre-existing closed magnetic loops in the corona are torn open by the 
force of the disruption. We examine here some of the theoretical consequences to be expected during 
the extended relaxation phase which must follow such events. This phase is characterized by a gradual 
reconnection of the outward-distended field lines. In particular, the enhanced coronal expansion which 
occurs on open field lines just before they reconnect appears adequate to supply the large downward 
mass fluxes observed in Ha  loop prominence systems that form during the post-transient relaxation. In 
addition, this enhanced flow may produce nonrecurrent high speed streams in the solar wind after such 
events. Calculations of the relaxation phase for representative field geometries and the resulting flow 
configurations are described. 

1.  Introduction 

Loop prominence systems, usually seen after major flares (Bruzek, 1964), are one 
of the most beautiful and yet least understood phenomena observed on the 
surface of the Sun. Beginning minutes after the onset of the flare, they are seen in 
Ho~ as cool material streaming downward toward the chromosphere on both sides 
of the loop. The loop pattern expands upward at a velocity of 10-20 km s -1 and is 
generally imbedded in a hot coronal condensation, visible in )t5303 and other 
high-temperature coronal emission lines. The visual impression of this expansion 
is that individual magnetic flux tubes remain stationary, and that loops at 
progressively higher levels of the atmosphere become illuminated at different 
times (Bruzek, 1964; Kleczek, 1964). The Ho~ material is already in motion when 
it first becomes visible, descending with approximately the gravitational free-fall 
speed. The typical post-flare loop system lasts about ten hours, and the total mass 
delivered to the chromosphere is 1015-1016 gm (Kleczek, 1964). 

Condensation of prominence material from the hot corona immediately sur- 
rounding the prominence has been suggested by many authors to explain the 
origin of ordinary quiescent prominences (Kiepenheuer, 1951, 1953, 1959; Orrall 
and Zirker, 1961, 1963; Menzel and Doherty, 1963). However, this process is 
clearly inadequate to explain loop prominence systems, in which the total mass 
observed streaming downward considerably exceeds the total mass of the as- 
sociated coronal condensation (Jefferies and Orrall, 1963a,b, 1965; Kleczek, 
1963, 1964). Moreover, considering the high electrical conductivity of the coronal 
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plasma, it is difficult to explain how material from the corona crosses the lines of 
force to enter the prominence. Thermalization of energetic particles emanating 
from the flare region and stored in the corona has also been suggested (Jefferies 
and Orrall, 1964, 1965; Newkirk, 1973). However,  in this case inordinately 
strong magnetic fields are needed in the prominence to contain the required 

number  of particles. 
In this paper we propose an alternative mechanism - namely, that the post-flare 

loop prominence systems are a result of the reconnection of magnetic field lines torn 
open by the flare outburst. The sudden outward distantion of closed field lines 
during solar transient events has been commonly observed during the Skylab 
mission (MacQueen et al., 1974). The mass is supplied to the prominence region by 
the capture of enhanced solar wind outflow which occurs as these field lines are 
transformed, via reconnection, to a closed configuration once again. The apparent 
expansion of the loop system is one manifestation of the reconnection process, 
proceeding upward into the corona and forming new closed loops at successively 
higher levels. In the following sections we will show that both the cool promi- 
nence and hot condensation can be understood in the context of a continuous flow 
process which is inevitably set up to restore the original magnetic configuration 
disrupted by the transient expulsion, and that this process can supply the mass 
required to sustain the prominence system during its lifetime. 

2. Coronal Expansion on Moving Magnetic Flux Tubes 

Figure 1 schematically shows two phases of the loop formation process of interest 
here. We suppose that, prior to the transient, the magnetic configuration of the 
corona overlying the flare site contains many closed loops. The material is of high 
density and the pressure, gravitational, inertial, and magnetic forces are initially in 
balance (Pneuman and Kopp, 1971). Through the sudden release of mass and 

(a) (b) 
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SUBSEQUENT RECONNECTION WITH CAPTURE OF 
MATERIAL ON CLOSED FIELD LINES 

Fig. 1. Post-transient field configuration. (a) Bipolar open field configuration with neutral sheet 
produced by the force of the transient. (b) Rising loop system during reconnection phase following 
the transient. Vs is the solar wind velocity along the open field lines, while Vn denotes the velocity 
of the field lines themselves as they move towards the rising neutral sheet separating fields 

of opposite polarity. 
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energy the flare event then tears open the field lines into a configuration such as in 
Figure l a  - an open bipolar field geometry with a magnetic neutral sheet. A solar 
wind expansion is soon set up and the resulting losses tend to reduce the pressure 
below that which existed in the disruptive phase (Pneuman, 1973). Consequently, 
there arises an inward magnetic force towards the neutral sheet which can no 
longer be balanced by pressure forces. This unbalanced Lorentz force drives field 
lines towards the neutral sheet, and reconnection begins to take place proceeding 
upwards from the coronal base. At any given instant of time during this phase, the 
configuration will appear as in Figure lb  with open lines transforming into closed 
lines at a rising neutral point. The neutral point will continue to rise until the 
original configuration before the flare is restored (assuming no other changes in 
boundary conditions have occurred meanwhile). 

If we consider the changes in any given flux tube during this process, we see 
that its geometry is altered drastically as a function of time. These changes in 
geometry have a profound effect on the flow dynamics within the tube. Beginning 
with approximately radial outflow as in Figure la,  the expansion is affected by 
centrifugal and Coriolis forces and by cross-sectional changes as the tube 'swings' 
over towards the neutral point. This motion, it will be shown, increases the 
outward velocity markedly - especially in the last moments before the tube closes. 
When the flux tube closes, all the material below the neutral point is captured in 
the closed region. In addition, material continues to flow upward into the closed 
region until a sonic disturbance (or shock) travels from the neutral point down to 
the coronal base, causing the expansion to cease.* This shock raises the tempera- 
ture of the coronal gas up to 3-4 x 106 K and forms the condensation. Subsequent 
rapid radiative cooling of this compressed gas produces the H a  prominence, while 
new condensation material is being generated on higher loops. We shall return to 
these points in more detail in Section 4. We now wish to formulate the basic 
equations applicable to coronal expansion on moving flux tubes. 

If we write the component  of the momentum equation along the field, the J x B 
force, of course, does not enter and we have 

OV ] 10P  G M |  
es" ~ + ( V . V ) V  = 00s  r 2 er " es , ( 1 )  

where V is the velocity vector, p the density, P the gas pressure, G the 
gravitational constant, Mo  the solar mass, and r the radial distance from the 
center of the Sun. ~r and ~s are respectively unit vectors in the radial direction and 
in a direction along a field line. In order to illustrate the relevant physics, it will be 
sufficient here to restrict the discussion to meridional field configurations which 

* This process is similar to that which is believed to occur in the earth's mid-latitude magnetic field 
lines following geomagnetic storms. There, material flowing upward supersonically from the topside 
ionsphere to refill flux tubes depleted during the storm is subsequently brought to rest by a downward 
propagating shock wave (Banks et al., 1971). 
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are axisymmetric about  the Sun. Then V can be written in the form 

V = %% + v . ~ . ,  

where V~ is the component  of the fluid velocity along the field line and V, the 
component  perpendicular  to the field. ~, is a unit vector in the meridional plane 
normal  to the field. Noting that the relevant  derivatives of the unit vectors are: 

0~ Oa 0~, Oa 

Ot - ~" at' Ot ~ Ot 

O~s &JR; 0~ ~/R 
Os Os 

--=O~s ~,JR.; 0~,_ ~JR, ,  
On On 

where R is the radius of curvature of the field line, R ,  the radius of curvature of 
the field line normal,  and a the angle between the field line and the radius vector, 
we can now write Equat ion (1) in the form: 

oVs ~ v OVs + ovs 
ot  ~ os v ~  o---n 

10P GM| V aa+ V~V~ V~ 
p Os r ~  COS a + " 0 t  R 4---R, . (2) 

In the above equations, the time derivative O/Ot and the spatial derivatives O/Os 
and O/On refer  to changes as seen by a fixed observer.  It  is convenient  to define 
new derivatives which will denote  changes as seen by an observer  fixed on a given 
field line, i.e., an observer  who moves with the field line normal  to itself (ds = 0). 
These derivatives will be noted by the symbols D/Dt and D/Ds. It  can then easily 
be shown that 

aV~ DV~ 0% 
- -  I V I 

Ot Dt On 

OV~ DV~ 

Os Ds 

and 

Oa Dec Oa 
Ot Dt V"~n"  

Finally, using the geometrical relation 

1 Oa cos 

R~ an r 
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we obtain 

DVs 1 D e  GMo Da+V2, V.Vs 
D V~ ~- V~ - -  - r 2 c~ a + V" Dt r R D---7 Ds O Ds - -  cos a + - -  (3) 

Similar manipulations on the continuity equation yield 

D +D__D_ o V . A  O, (4) 
D--tt (pA) Ds ( p V s A ) -  R = 

where A is the cross-sectional area of the flux tube. The last term in Equation (4) 
represents the dilatation of an infinitesimal length of the flux tube as it moves 
normal to itself. This will always occur if the tube is curved. 

Equations (3) and (4) are normally complemented by an appropriate energy 
equation relating the pressure, P, and density, p. For simplicity, we have assumed 
in the present work that the plasma flow is isothermal and that P and p are 
related by the perfect gas law 

p = pC 2, 

where c 2= kT/m is the isothermal sound speed, k is Boltzmann's constant, and m 
is the mean particle mass (= mJ2 for ionized hydrogen). 

Equations (3) and (4) are especially convenient forms of the fluid equations for 
problems in which the stream tube geometry (here defined by the magnetic field) 
is prescribed as a function of time, for they allow the flow to be determined along 
each flow tube separately. For a known stream-tube geometry, Equations (3) and 
(4) comprise two coupled first-order partial differential equations for P and Vs in 
terms of s and t. It is easily shown that they are a hyperbolic set; thus they may be 
solved numerically by the method of characteristics. 

Consider the application of Equations (3) and (4) to determine the flow Vs(s, t) 
and P(s, t), on specific flux tube, whose motion, as prescribed by V~, a, R, and A, 
is known as a function of time. Combining these relations in the usual manner 
yields the equivalent set of characteristic equations: 

d_~ c+ _ v O l n A  OlnA OMo a + V ,  Oa+V~ 
= - - c o s  - - - -  - - c o s  a ,  ( 5 )  

s OS Ot r2c c Ot cr  

d_~ t _v sOlnA  OlnA GM| V,  Oa V~ = - -  - - / - ~ c o s  a cos a, (6) 
c Os Ot r c c Ot cr 

where ~=  In P+ VJc and ~ = ln  P- Vs / c .  The time derivatives appearing on the 
left-hand sides of these expressions are taken along the positive (C § and negative 
(C-) characteristics, respectively, the directions of which in the s, t-plane are 
given by 

ds 
- - = V ~ + c  a l o n g C  + (7) 
dt 
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and 

d s  
- -  = Vs - c along C-. (8) 
dt 

In carrying out a numerical solution of this system of equations, a network of 
characteristics, along which Equations (5) and (6) apply, evolves with time along 
with the actual solution for ~ and ~/ (or, equivalently, P and Vs). 

Special attention must be given to the specification of boundary conditions in 
problems involving time-dependent flows, to insure that the solution be uniquely 
determined. The necessary and sufficient conditions which must be prescribed at 
the boundaries of our flow region are most readily determined from the theory of 
characteristics: in addition to specifying the initial dynamical state P(s) and Vs(s) 
at t--0, the number of independent relations between P and Vs which must be 
specified at any spatial boundary is 2 -  n, where n is the number of characteristics 
crossing each point of that boundary from the interior of the solution in the 
direction of increasing time. In the case at hand, the flow at the lower boundary 
(coronal base) will be seen to be subsonic at all times; as t increases information 
reaches this boundary from the solution domain ( r> to) only along the negative 
characteristics. That is, the values of ~ at the inner boundary, communicated from 
the interior of the solution to that boundary via Equation (6), constitute a 
time-varying functional constraint, ~/o(t), between the boundary values P(so) and 
V~(so). Only one additional relationship between these quantities can be imposed 
there. For the calculations in this paper, we have chosen to keep the pressure at 
the coronal base, P(so), fixed with time. This condition, combined with the above 
constraint imposed by To(t), determines the run of base velocity, Vs(so), with 
time. 

By placing the outer boundary of the flow far enough from the Sun to insure 
that the expansion is always supersonic there, both positive and negative charac- 
teristics cross that boundary toward increasing time. Thus, both ~ and ~/ are 
determined at the boundary by the evolution of the flow closer to the Sun, and no 
additional constraints can be imposed on the flow there. 

3. A N u m e r i c a l  E x a m p l e  

The previous section described how the time-dependent expansion can be calcu- 
lated in a single moving flux tube. We now wish to expand these results to a 
collection of flux tubes such as might be expected to take part in the reconnection 
process. If rl(t) represents the position of the rising neutral point, then a suitable 
magnetic configuration contains closed loops extending up to rl(t) with open lines 
adjacent to and above the loops. For r < rl(t), a simple field geometry which has 
all the desired characteristics can be constructed by superposing a solar-centered 
dipole field and a uniform field parallel to the Sun's rotation axis, with the 
relative strengths chosen to  make the field become radial at r = rl(t). The radial 



MAGNETIC RECONNECTION IN THE CORONA AND THE LOOP PROMINENCE PHENOMENON 91 

and transverse components  of this field are given by 

L r .I t>co s 

k k r o d J  

ro ~< r ~  < rl(t), (9) 

where ro is some reference level, here chosen to be the coronal base. The field at 

greater  heights is taken to be the radial extension of the field at r~ given by 
Equations (9), i.e., 

1 + 2  [VJ 
Bo = O. 

When rl( t)--ro,  the field is ptirely radial, but as rl increases closed loops are 
formed below the neutral point, giving a picture at some later time such as that 

shown in Figure 2. If we now let rl(t) increase with time from r0 to some 
equilibrium position re, we can effectively model the entire reconnection process, 
beginning with a purely radial open field and ending with a stable helmet s t reamer 
containing closed field below the neutral point and open lines above and outside 
the closed region. For our example we shall take r~ to be of the form 

r l ( t )  = re - ( r e  - ro)e -'~ (11) 

Fig. 2. Typical field configuration calculated from Equations (9) and (10). In this figure, reconnection 
from a purely radial field has proceeded for 3 hours in accordance with Equation (11). 
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where o) -1 corresponds to the time scale of the reconnection phase. Here, we will 
choose ro = Ro and re = 1.5 Ro, consistent with the observed heights of closed 
loops in typical helmet streamers. Also in our model, we identify the observed 
rate of growth of the post-flare loop system with the velocity at which the neutral 
point rises during the reconnection process; i.e., we choose ~o so that the neutral 
point velocity, dr~/dt, is 20 km s -1 at r = ro. This gives o) = 5.7 x 10 -s s -1. 

Equations (5) through (8) are now to be intergrated along individual flux tubes 
subject to a specified boundary condition at the base of each tube. Physically, we 
expect the gas pressure at the base to remain approximately invariant since a 
violation of this condition would seriously affect hydrostatic equilibrium condi- 
tions in the denser underlying layers. Since we are assuming isothermal condi- 
tions, this means that the density at the base will likewise remain fixed. In the 
following, we will fix the density at the base of each flux tube at a value 
independent of latitude. For the calculation, the actual value of the base density is 
irrelevant. In order to integrate Equations (5)-(8), the geometrical quantities 
describing the field and its motion must also be specified. These are easily found 
from the expressions (9) and (10). Letting x = r/ro and Xl(t)= rl(t)/ro we obtain 

[[ xa-x   o] a(x, t )=  tan -1 [ \ ~ ]  tan 

[ 3x~x "~{ x 3 - 1  ~dx l  
V,(x, t) = \ ~ ] \ x ~ _  x 3] --~ ro sin a 

R(x, t) = 

: lc~  (X3xX3) 
[ x3+2x)  - -  ( l + t a n  2 

for x <~ x~(t) and 

c~(x, t) = 0 

x3 -1  ( x )  dxl 
V,(x, t) - 1+ 2x~ \xl] dt ro tan 0 

R(x, t )=~ 

(12) 

(13) 

0 ) ] + ~ }  ro (14) 

(15) 

(16) 

(17) 

for x>~xl(t). The instantaneous cross-sectional area of the flux tube can be 
evaluated directly from Equations (9) and (10), using the expression 

A(x, t)= BoAo/B(x, t), (18) 

where Bo and Ao are, respectively, the field strength aad area at the base of the 
flux tube. In the above equations, Xl(t) and dxl/dt(t) are evaluated from Equation 
(11). 

In order to illustrate the physical properties of the solution, consider the time 
variation of the velocity distribution along a single flux tube as it participates in the 
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reconnection process - keeping in mind that the complete two-dimensional picture 
will be a composite of solutions along neighboring tubes as well. Referring to 
Figure 1, we see that an arbitrarily chosen tube is approximately radial as the 
reconnection begins. As the neutral point rises, the tube bends towards the center 
(the footprint remaining fixed) and forms a closed loop when it meets the arising 
neutral point at the center. Note from Equations (13), (16), and (18), that both Vn 
and A become large without limit just as the tube closes. This is due to the fact 
that the magnetic field vanishes as the neutral point is approached.* This 
characteristic leads to two important physical effects which tend to increase the 
outward velocity along the tube. Firstly, the outward centrifugal force, pV~/R 
becomes large. Secondly, and most importantly, the rapid spreading of the cross 
section just before the tube closes produces a dramatic decrease in the density in 
the vicinity of the neutral point. As a result, the expansion along the tube 'feels' 
an essentially zero pressure at a finite distance rather than at infinity such as 
would be the case for a fixed tube. Thus, the 'effective' outward pressure gradient 
becomes much larger leading to a corresponding increase in the flow velocity. 

The calculated velocity distribution along such a typical flux tube as the neutral 
point rises into the corona is shown in Figure 3. Starting from the bottom of the 
figure and proceeding upward, the curves show the velocity variation with radial 
distance along the tube at. successively later times during the reconnection 
process. This particular tube closes when the neutral point reaches a radial 
distance of 1.2 Ro. Since the tube is initially radial, the bottom curve is just the 
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Fig. 3. Velocity as a function of radial distance along a typical flux tube of Figure 2 during successive 
stages of the reconnection process. The bottom curve represents the initial velocity profile, which is 
simply the Parker isothermal solution for radial flow. Proceeding upward in the figure, the curves show 
how the velocity distribution changes with time as the tube approaches the neutral sheet. The 
enhanced flow at t = 115 min. occurs just before this field line closes, with the spike in the profile 

being produced near the the neutral point at r = 1.2 Ro. 

* It should be noted here that this is a general characteristic only for potential fields containing a 
Y-type neutral point. For a cusp-type neutral point, such as might occur in the MHD case (Pneuman 
and Kopp, 1971), V~ and A increase but remain finite. 
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Fig. 4. Ratio of the particle flux at the coronal base to that for radial flow as a function of time for the 
flux tube described in the caption of Figure 3. Note that, just as the field line closes, the mass flux into.the 

tube is enhanced by a factor of 12 over that predicted for a radial solar wind. 

radial isothermal solar wind solution first derived by Parker  (1958). Proceeding in 

time, the velocity first increases between the base and the neutral point, with the 

increase spreading outward along the tube with the speed Vs + c. A 'spike '  in the 
velocity distribution then begins to appear  at the height where this particular field 

line meets  the neutral point (1.2 Ro).  The top curve shows the velocity just before 
the tube closes. Note that the speed near the neutral point has increased to about 
160 km s - 1 -  about  16 times the Parker  value. The velocity at the base has also 
increased from just a few km s -1 to about  60 km s -1. In addition, a broad high 
velocity region has grown outside the neutral point which extends well out into 
the corona. It  is shown in another  paper  (Pneuman and Kopp,  1976) that this high 
velocity 'tail '  persists long after the reconneetion has ceased (about a day) and 
may extend out to the orbit  of E a r t h - p r o v i d i n g  a possible explanation for the 
non-recurrent  ,~high speed streams often observed following major  solar flares 

(Hundhausen et al., 1970). 
In Figure 4 we have plotted the ratio of the particle flux at the base of this flux 

tube to that for radial flow as a function of time. Note  that, just as the flux tube 
closes, the particle flux has increased by a factor of about  12 over its initial value. 
When the field line closes (after about  2 hours) the material  just below the neutral 
point is immediately brought  to rest, forming a downward propagating shock 

wave. Mass continues to flow into the tube, however,  until this shock reaches the 
coronal base, signaling the entire flow process to cease. Taking Vo = 60 km s -a 
f rom Figure 3, No = 101~ -3 and assuming the shock travels downward at 
approximately the sound speed, the mass per  c m  2 of base area accumulated in the 
tube after closing will be 10 -7 h/c where h is the height of the tube and c is the 
sound speed. Taking the average height of the entire loop system to be 0.2 R o  
with a base area of 1019 c m  2 and a sound speed of 150 km s -1 characteristic of 

coronal temperatures ,  the total mass delivered to the prominence system is 
10 as gm. This estimate is in good agreement  with that observed falling as visible 

H a  material  (Kleczek, 1964). 
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4. Discussion 

Let us now extend the results for a single flux tube discussed in Section 3 to the 

prominence system as a whole. The discussions of this section will center around 
Figure 5, which is a schematic of the entire loop system showing several flux 
tubes, each at a different stage of the reconnection process. As the reconnection 
proceeds upward, each tube passes successively through the three stages as are 
shown on the figure, i.e., all three conditions are present in the corona during the 
entire process but occur always on different flux tubes. We describe each stage in 
some detail in the following paragraphs: 

(1) Coronal condensation. The coronal condensation is maintained on the most 
recently closed flux tubes. Immediate ly  upon closing (within a few collision times), 

a downward propagating shock is set up on these tubes heating and compressing 
the gas behind. The shock Mach number  is given by 

M 2 

where Vt is the velocity of the upward moving unshocked material,  V2 is the 
velocity behind the shock. Our  calculations show that the flow just before the flux 
tube closes is approximately sonic at the neutral point (see Figure 3), hence 
V1 ~ c. Since the flow is assumed to be brought  to rest by the shock, V2 = 0. This 
gives us a Mach number  of about 1.9 for 3/=3 5-. The density and tempera ture  

ratios are then 

N2 ( y + I ) M  2 
N--~ = (7 - 1) M2 + 2 ~ 2.2 

7"2 1-~ 2 (7 -1 - - )7M2+1  
= (y + 1) '  M - - - 7 -  ( M 2 -  1) = 1.8. 

Vs ; Vs 

~/ Intermediate Mass 
\Capture and Coolinq 

Ho, Loop with Infalling 
\Cool Material 

Sho ~\(T= 2x IO"K) 

CONDENSATION AND INFALL OF COOL MATERIAL 

Fig. 5. Schematic of the entire loop prominence system during the reconnection process. Here, each 
closed loop passes successively through three stages: (1) the hot compressed region which forms on the 
most recently closed tubes, here identified with the coronal condensation; (2) intermediate phase in 
which mass continues to cool radiatively and begins to fall; and (3) the Ha phase where the material 
has cooled to temperatures in the range 104-105 K and continues to fall towards the chromosphere. 

The arrows in the figure depict the direction of the flow. 
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Thus, if the unshocked material is at coronal temperatures (1 .5 -2x  10 6 K), the 
temperature of the condensation behind the shock will be 3 - 4 x 1 0 6 K .  This 
compressed gas now begins to cool while new condensation material is being 

formed above it. 

(2) Intermediate. As the reconnection proceeds, the gas continues to accumulate 
on the lower closed lines until the shock reaches the base of the corona. It now 
begins to cool radiatively from the condensation tgmperatures and becomes 
invisible in the green and yellow lines but is still too hot to be observed in Ha .  To 
estimate the radiative cooling time, we assume that the time rate of energy 

decrease due to radiative losses is (Cox and Tucker,  1969) 

dE  - -22  2 - - = 6 x  10 Ne , 
dt 

where E is the energy density of the gas and Ne is the electron density. Taking 
E = 3NCkT, we have crudely 

d E _  d (3NekT) -~ 3NekT= 6 x ]{~-22 )~Q-2 
dt dt tr 

where tr is the radiative relaxation time. Hence tr = 5 x IOalkT/N~ and is about �89 
hour  for a condensation temperature  of 3 x 106 K and density of 109 cm -3. As the 
temperature  falls the scale height is reduced and there is soon (within one 
radiative cooling time) too much material in the loop to be supported against 
gravity by the pressure gradient. The gas then begins to fall along the loop 
towards the chromosphere under the acceleration of gravity. 

(3) H a  loops. If the material is still at coronal heights by the time that it has 
cooled down to temperatures in the range ,104-105 K, it becomes visible in Ha .  It 

is, of course, already falling when this occurs. For this reason, it is difficult to 
estimate the total amount  of mass released by a given loop from H a  observations 
alone. Depending on the density of the captured material, it is even possible that 
certain events may produce no H a  manifestation at all, or that H a  emission will 
be appreciable only near the footpoints of the flux tube (coronal rain), just before 
impact of the material on the chromosphere.  Possible candidates for events of this 
type are the rising loop structures seen only in soft X-rays during the A TM 
mission (Webb et al., 1976). 

5. Summary 

In this paper we have proposed that the rising loop prominence systems often 
seen after major  solar flares and coronal transients are the result of magnetic field 
reconnection in the corona. The reconnection process is visualized as the closing 
of field lines previously torn by the transient event. When the field is opened a 
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solar wind expansion is set up, which subsequently provides mass for the promi- 
nence system as open lines are transformed into closed lines by reconnection. 
Time-dependent  calculations of the expansion as the field lines move during this 
process show that, just before a flux tube closes, the upward mass flow is 
enhanced by as much as a factor of 10 over that predicted for stationary radial 
flow. This material captured on the closed loops, in addition to that which 
continues to flow into the loop for some time after closing, can adequately 
account for the 1015 gm observed in H a  falling towards the chromosphere during 
the lifetime of the prominence. 

The hot coronal condensation associated with the prominence system is formed 
on the most recently closed loops by a downward propagating shock wave, which 
brings the flow to rest and heats the gas to temperatures of 3 - 4 x  10 6 K. The 
material begins to fall along the loop within the first radiative cooling time after 
the field line closes. For sufficiently dense loops radiative cooling is fast enough 
that temperatures as low as 104-105 K are reached before the gas has exited the 
loop to the chromosphere.  For these loops the H a  phase is the final stage of the loop 
promi'nence model developed here. During this process new condensation mater- 
ial is being formed on higher loops. Thus, the loop prominence phenomenon 
should be viewed as a sequential flow process with any given stage (e.g., 
condensation, H a  phase, etc.) occurring on progressively higher field lines. 
According to this picture, the total amount of mass represented by the loop 
prominence system over its lifetime need not be in the corona at one time. Thus, 
the traditional problem of explaining the origin of the prominence material 
disappears. 
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