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Ferric reductases  or flavin reductases? 
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Assimilation of iron by microorganisms requires the presence of ferric reductases which participate in the 
mobilization of iron from ferrisiderophores. The common structural and catalytic properties of these enzymes 
are described and shown to be identical to those of flavin reductases. This strongly suggests that, in general, the 
reduction of iron depends on reduced flavins provided by flavin reductases. 
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Introduction 

iron is an essential element for virtually all living 
organisms. It participates in a large number of 
biological processes (e.g. storage and activation of 
molecular oxygen, electron transport, etc.) and is a 
cofactor of enzymes of intermediary metabolism 
(Crichton 1991). In aerobic environments the stable 
form is Fe 3+, which has little solubility in neutral 
aqueous solutions (10 -~7 M at physiological pH). To 
solubilize iron and override the iron limitation, most 
aerobic and facultative anaerobic microorganisms 
excrete in the growth medium highly efficient and 
specific low molecular mass soluble Fe3+-chelating 
agents, named siderophores (Neilands 1981; also 
covered in: Winkelman 1991). Transfer of iron into 
the intracellular compartment is mediated by spec- 
ific membrane receptors and transport systems 
which recognize the iron-siderophore complexes 
(Winkelmann & Huschka 1987, Crichton 1991). 
While an impressive number of studies have genetic- 
ally established the siderophore uptake pathways 
and their regulation (Braun et al. 1987, Crosa 1989), 
less is known about the mechanisms by which iron is 
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released from ferrisiderophores and thus made 
available for biosynthesis of iron proteins within the 
microbial cell. However, there is increasing evidence 
for the intracellular reduction of the ferric complex 
being one of the major pathways during liberation of 
iron. In particular, cytosolic ferrisiderophore reduc- 
tase activities have been detected and studied in a 
large number of bacteria (Crichton 1991). Since 
siderophores have a much lower affinity for Fe z+, 
such a process might allow the transfer of iron to 
iron-requiring enzymes. However, the correspond- 
ing enzymes have generally been incompletely puri- 
fied and characterized. Very recently, two ferri- 
siderophore reductases, isolated from Escherichia 
coli and Pseudomonas aeruginosa, have been identi- 
fied as flavin reductases and shown to utilize reduced 
flavins as mediators for the electron transfer to the 
ferric complex (Hall6 & Meyer 1992a,b, Cov6s & 
Fontecave 1993). In this paper we review the current 
knowledge on flavin reductases and ferric reduc- 
tases, and make the proposition that ferric reduc- 
tases are flavin reductases. 

Fiavin reductases 

NAD(P)H: flavin oxidoreductases (flavin reduc- 
tases) catalyze the reduction of flavins, flavin mono- 
nucleotide (FMN), flavin adenine dinucleotide 
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(FAD) or riboflavin, by reduced pyridine nucleo- 
tides, NADPH or NADH. Flavin reductases have 
been isolated in pure form from the luminous marine 
bacteria Beneckea  harveyi  (Jablonski & DeLuca 
1977, Michaliszyn et al. 1977) and Photobacter ium 
fischeri  (Jablonski & DeLuca 1977), from micro- 
organisms such as E. coli (Fontecave et al. 1987), 
Bacillus subtilis (Hasan & Nester 1978a,b), 
Entameba  histolytica (Lo & Reeves 1980) and P. 
aeruginosa (Hall6 & Meyer 1992a,b), and from 
human erythrocytes (Yubisui et al. 1977, 1979). A 
FMN reductase has been demonstrated in rat liver 
mitochondria (Ulvik & Romslo 1981). 

All purified enzymes have several characteristics 
in common. Most flavin reductases are cytosolic 
enzymes. They all consist of one polypeptide chain 
of a rather small size (in general between 10 and 
40 kDa). The visible spectrum of the protein gives 
no evidence for a chromophore and excludes the 
presence of flavins in the isolated enzyme. When 
added, FMN or FAD does not bind tightly and the 
enzyme thus should not be classified as a flavo- 
protein. Rather, the polypeptide chain displays an 
active site in which both the reduced pyridine 
nucleotide and the flavin can transiently bind, 
allowing a rapid electron transfer to proceed. 

In general, there is no specificity for the flavin 
electron acceptor, although differences are observed 
in terms of the affinity of the enzyme for the various 
flavins, with K m values found between 1 and 40/~M, 
in the case of bacterial enzymes. Flavin reductases 
are divided in three groups: one including enzymes 
specific for NADH, one specific for NADPH, and 
the third one for enzymes accepting both NADPH 
and NADH as electron donors. 

Several reductases may be present in a given 
microorganism. This has been shown in the case of 
B. harveyi  (Watanabe & Hastings 1982). Recently, 
we discovered a second flavin reductase in E. coli, 
purified it and identified it as the sulfite reductase 
(Cov6s et al. 1993a). This large enzyme has the 
capacity to catalyze the reduction of free flavins by 
NADPH, but its affinity for the substrates is rather 
low. Very preliminary results seem to indicate that 
the hemoglobin-like protein (HMP) of E. coli also 
carries a flavin reductase activity (J. Cov6s & 
M. Fontecave, personal communication). 

The only flavin reductase whose gene has been 
cloned, sequenced and mapped is the enzyme from 
E. coIi (Spyrou et al. 1991). This gene has been 
named fre .  The sequence contains the AGGTG 
motif which has previously been suggested to form 
part of a pyridine nucleotide binding site in a 
number of NAD(P)H binding proteins. Moreover, 

we and others found striking sequence homologies 
with l uxG ,  an uncharacterized open-reading frame 
so far found in the lux operons of three different 
species of luminescent bacteria, V. harveyi ,  
V. f ischeri  and Photobacteriurn leiognathi (Swartz- 
man et al. 1990a,b, Lee et al. 1991). This strongly 
suggests that l u x G  encodes the flavin reductase of 
these microorganisms. 

In general, flavin reductases have been found to 
be associated with other biological processes requir- 
ing free reduced flavins. The reductase from human 
erythrocytes was discovered for its activity during 
reduction of the iron center of methemoglobin and 
has thus been also named methemoglobin reductase 
(Yubisui et al. 1977, 1979). This has been at the 
origin of the therapeutic administration of riboflavin 
to patients with hereditary methemoglobinemia, 
whose erythrocytes lack the NADH-cytochrome b5 
reductase, the major methemoglobin reductase. 
Very recently, it has been shown that this flavin 
reductase is identical to the so-called heme-binding 
protein present in erythrocytes and liver (Quandt et 
al. 1991). This protein has a high affinity for 
protohemin and binding of protohemin completely 
inhibits reductase activity (Xu et al. 1992). These 
new results thus bring into question long-held beliefs 
as to the catalytic function of the protein. The 
reductases from B. subtilis and E. coli provide the 
reduced flavins required for the activation of choris- 
mate synthase (Hasan & Nester 1978a,b, Ramjee et 
al. 1991). The enzyme from B. harveyi  and from 
other luminescent bacteria provides reduced flavins 
as substrates of the light emitting luciferase reaction 
(Hastings et al. 1985). Luciferase catalyzes the 
oxidation of reduced FMN by oxygen in the pres- 
ence of a long-chain aldehyde with the emission of 
light. On the basis of the great efficiency of reduced 
flavins during the reduction and mobilization of iron 
from ferritins, the enzyme from B. harveyi  has been 
used as a reducing system to study mechanisms of 
ferritin iron reduction (Sirivech et al. 1974, Jones et 
al. 1978). The flavin reductase from E. coli was 
discovered as a component of a complex multipro- 
tein system that catalyzes the transformation of an 
inactive form of ribonucleotide reductase into an 
active enzyme, containing a radical on Tyr-122 
(Fontecave et al. 1987). The function of the flavin 
reductase is to reduce the non-heme ferric center of 
ribonucleotide reductase (Fontecave et al. 1989). 
The tyrosyl radical is then generated during the 
reaction between the reduced iron center and 
molecular oxygen. In this context it has been 
suggested that the flavin reductase might provide a 
mechanism for regulating ribonucleotide reductase 
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and DNA synthesis. Later, it was found that the 
flavin reductase from E. coli had a more general 
ferric reductase activity (Cov6s & Fontecave 1993). 
It catalyzes the reduction of ferric citrate, ferri- 
siderophores and ferritins during reactions that 
absolutely required the presence of free flavins and 
might provide a mechanism for the release of iron 
from Fe(III)-storage or Fe(III)-carrier systems 
(Figure 1). An extract from an E. coli mutant 
lacking an active fre gene has a greatly diminished 
capacity to reduce ferrichrome (Cov6s & Fontecave 
1993). This result supports the importance of flavin 
reductase for iron reduction under physiological 
conditions. Sulfite reductase also activates ribo- 
nucleotide reductase in the presence of free flavins 
by a similar mechanism and has a ferrisiderophore 
reductase activity (Cov6s et al. 1993a,b). The en- 
zyme from P. aeruginosa was first isolated as a 
ferrisiderophore reductase and later characterized as 
a flavin reductase (Hall6 & Meyer 1989, 1992a,b). It 
should be noted that polyclonal antibodies raised 
against this enzyme did not present cross-reaction 
with the flavin reductase from E. coli (Hall6 & 
Meyer 1992a). 

It is thus striking that the flavin reductases have in 
common the ability to catalyze electron transfers 
from NAD(P)H to biological ferric complexes and 
raise the question whether ferric reductases, in 
general, are in fact flavin reductases. 

Ferric reductases 

In this paper, we define ferric reductases as enzymes 
catalyzing the reduction of non-protein ferric com- 
plexes, such as ferric citrate, ferrisiderophores or 
synthetic complexes such as ferricyanide or 
Fe(EDTA). We thus do not include the various 
enzymes transferring electrons to protein-bound 
iron (cytochromes, transferrin, etc.). 

Both soluble and membrane-bound ferric reduc- 
tases have been detected in a large number of 
bacteria including Mycobacteriurn smegmatis 
(Brown & Ratledge 1975), Bacillus megaterium 
(Arceneaux & Byers 1980), Agrobacterium turne- 
faciens (Lodge et al. 1982), Azotobacter vinelandii 
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(Huyer & Page 1989), Pseudomonas fluorescens 
(Hall6 & Meyer 1989), B. subtilis (Gaines et al. 
1981), Spirillum itersonii (Dailey & Lascelles 1977) 
and Staphylococcus aureus (Lascelles & Burke 
1978). However, only a limited number of enzymes 
have been purified to homogeneity and fully charact- 
erized. This is the case for the three cytosolic 
ferrisiderophore reductase activities of E. coli. The 
two first enzymes have been unambiguously identi- 
fied as flavin reductases. One resides in the product 
of the fre gene, the second in the sulfite reductase 
and the third is the HMP (Andrews et al. 1992, 
Cov6s & Fontecave 1993, Cov6s et al. 1993a). As 
mentioned above the ferric reductase of P. aerugi- 
nosa has been obtained in pure form and shown to 
be a flavin reductase (Hall6 & Meyer 1992a,b). 
Ferric reductases have also been purified in Rhodo- 
pseudomonas sphaeroides (Moody & Dailey 1985) 
and from Neisseria gonorrhoeae (Le Faou & Morse 
1991). They have reported molecular masses of 32 
and 25 kDa, respectively. These values are very 
close to that of the E. coli flavin reductase (26 kDa). 
Both require a flavin for optimal activity. They show 
similar behavior during DEAE chromatography and 
have a strong affinity for phenyl Sepharose. It thus 
appears very likely that these two ferric reductases 
are closely related to or even identical to the flavin 
reductase. Furthermore, the partially purified en- 
zyme from B. subtilis is in all probability identical to 
the flavin reductase independently isolated from the 
same microorganism (Gaines et al. 1981). If one 
excepts the activity from B. megaterium and M. 
smegmatis for which there is not enough good data 
to conclude to a requirement for free flavins, all 
ferric reductases described so far display activity 
only in the presence of a free flavin and all utilize a 
reduced pyridine nucleotide (NADPH or NADH) as 
the electron source. 

One striking property of ferric reductases is the 
total lack of substrate specificity. They usually 
catalyze the reduction of a large variety of iron 
complexes. It is remarkable that a given microorgan- 
ism has the capacity to also reduce ferrisiderophores 
which do not support its own growth. In any case, 
ferric reduction is strongly inhibited by molecular 
oxygen (Figure 1). 

NAD(P)H 

NAD(P) + 

Flavin reductase ( 

flavin ox "~"'x ~ 02. 

e2+.L 

flavin red v 2  

Figure 1. Enzymatically re- 
duced free flavins transfer 
their electrons to ferric com- 
plexes or oxygen. 
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Most enzymes consist of a single polypeptide 
chain and are found to be located within the 
cytoplasm. However,  iron reduction in S. itersonii 

and S. aureus was found to be associated with the 
respiratory chain (Dailey & Lascetles 1978, Lascelles 
& Burke 1978). Membranes of E. coli were shown 
to contain a ferrichrome reductase activity (Fischer 
et al. 1990). 

From several studies it seems that the expression 
of ferric reductases is constitutive. It was similar in 
cells grown under aerobic and anaerobic conditions 
and was not affected by mutations in iron-uptake 
genes or mutations in ferric uptake regulation 
(Fischer et al. 1990). In general, this activity is not 
regulated by iron since equal reduction capacity is 
measured in extracts from iron-enriched or iron- 
deficient cells. 

Finally, very few ferric reductase activities have 
been studied in eukaryotic organisms. One example 
is the plasma membrane-bound ferric reductase 
from the yeast Saccharomyces cerevisiae. The en- 
zyme has been partially purified and shown to be 
specific for N A D P H  and to require FMN or FAD 
for activity (Lesuisse et al. 1990). In that case again 
the enzyme might not be a flavoprotein as previously 
suggested but rather a ravin reductase. Its gene has 
been cloned and sequenced (Dancis et al. 1992). The 
sequence has significant similarity to the sequence of 
the plasma membrane NADPH-binding cytochrome 
b558. The function of the reductase is to reduce 
ferric iron external to the cell, followed by a 
transmembrane movement of ferrous iron to the 
interior of the cell. It was shown that a mutant of S. 
cerevisiae lacking the externally-directed reductase 
activity was deficient in the uptake of ferric iron and 
was extremely sensitive to iron deprivation (Dancis 
et al. 1990). An NADH:sideramine oxidoreductase 
has also been observed in Neurospora crassa (Ernst 
& Winkelmann 1977). 

Plants have the ability to acquire iron from certain 
microbial ferrisiderophores present in the soil 
(Crowley et al. 1987) or from ferriphytosiderophores 
(graminaceous plants). It has been suggested that 
again a reduction of iron can take place at the root 
surface and thus that a ferric reductase is an intimate 
component  of iron assimilation in plants. However,  
no specific ferric reductase has been isolated from 
plants yet. On the other hand, several studies have 
reported that nitrate reductase, the first enzyme of 
the nitrate assimilatory pathway in higher plants, 
could catalyze the reduction of ferric citrate and a 
variety of ferrisiderophores (Castignetti & Smarrelli 
1986). This enzyme is a flavoprotein containing 
FAD as a prosthetic group and does not seem to 

require free flavins for ferric reduction. Much more 
experimentation is needed to determine whether 
nitrate reductase or other ferrisiderophore reduc- 
tases are involved in iron assimilation in plants. 

Conclusions 

Living organisms contain ferric reductases probably 
to allow an adequate supply of essential iron to cells. 
These enzymes have been carefully studied only very 
recently, in particular in bacteria. It appears now 
quite clearly that most ferric reductases are ravin 
reductases, a family of enzymes also poorly charact- 
erized. One exception might be the ferric reductase 
activity carried by the flavoprotein nitrate reductase. 
Reduced free flavins are well-adapted to iron reduc- 
tion probably because (i) they are small molecules 
(when compared with flavoproteins for example), 
(ii) they have very low redox potentials (below 
- 0 . 2  V) and (iii) they are able to transfer their two 
electrons stepwise, due to the relative stability of the 
semiflavin state. That  free flavins play the role of 
electron transfer mediators during reduction of iron 
is consistent with the lack of substrate specificity of 
ferric reductases and the strong inhibition by oxy- 
gen, which competes with ferric iron for electrons. 
The reaction between enzymatically reduced flavins 
and oxygen results in the production of harmful 
superoxide and hydroxyl radicals (P. Gaudu & M. 
Fontecave, personal communication). An important 
question remains whether free flavins and oxygen 
are available within the cell at concentrations which 
allow the expression of such ravin  or ferric reduc- 
tase activities. Flavins have been extensively studied 
but only in the context of flavoproteins. Protein-free 
flavins might have other  unexpected important 
functions. 
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