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Abstract. Although sex chromosome aberrations are fre- 
quently associated with statural changes, the underlying 
factors have not been clarified. To define the factors lead- 
ing to the statural changes, we took the following three 
steps: (1) determination of the mean adult height in non- 
mosaic Caucasian patients with sex chromosome aber- 
rations reported in the literature (assessment of genetic 
height potential); (2) assessment of the validity of factors 
that could influence stature; and (3) correlation of the 
mean adult height with the effects of specific growth- 
related factors. The results indicate that the adult height in 
patients with sex chromosome aberrations may primarily 
be defined by the dosage effect of pseudoautosornal and 
Y-specific growth genes, together with the degree of growth 
disadvantage caused by alteration of the quantity of eu- 
chromatic or non-inactivated region. 

Introduction 

Sex chromosome aberrations are frequently associated 
with statural changes. Monosomy for the X chromosome 
invariably results in severe short stature (Ranke et al. 
1983), and the presence of an extra X or Y chromosome 
usually leads to moderate tall stature (Court Brown 1968; 
Ratcliffe et al. 1982; Linden et al. 1988). In addition to the 
numerical abnormalities, structural abnormalities of the X 
and the Y chromosomes are also often manifested by 
short stature (Simpson 1975; Buhler 1980; Therman and 
Susman 1990). However, the pertinent factors leading to 
the statural changes have not been determined. 

The methods to clarify the factors responsible for the 
statural changes can be broken down into three steps. The 
first step is to determine the mean adult height in patients 
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with sex chromosome aberrations. This will allow an as- 
sessment of genetic height potential in various sex chro- 
mosome aberrations. The second step is to assess the va- 
lidity of factors that could influence statural growth in sex 
chromosome aberrations. The last step is to correlate the 
mean adult height with the effects of specific growth-re- 
lated factors. If the distribution of the mean adult height is 
explained by the effects of specific growth-related factors, 
it can be said that such factors contribute to the statural 
changes in sex chromosome aberrations. 

In this paper, we take each of the above steps and pro- 
pose principal factors involved in determining adult height 
in patients with sex chromosome aberrations. In addition, 
several remarks inherent in this study are discussed. 

Step h Determination of the mean adult height 

Selection o f  pat ients  

All the height data of patients with sex chromosome aber- 
rations were taken from the literature using the following 
selection criteria: (1) description of karyotype; (2) ab- 
sence of demonstrable mosaicism; (3) height recorded be- 
tween 20 and 50 years of age, or confirmation of growth 
cessation; (4) apparent Caucasian patients of various na- 
tionalities; (5) no selection for height in the ascertainment 
of patients; (6) no therapeutic intervention that may cause 
statural alteration; and (7) lack of other associated disor- 
ders that may affect stature. Although several patients 
have been reported in multiple publications, only a single 
height record was used for each patient. 

Data analysis  

The mean adult height was determined for karyotypes in 
which more than five patients were ascertained. When 
possible, the population-specific mean adult height was 
also obtained, to allow for intra-Caucasian height varia- 
tion (reviewed in Prader et al. 1989). The results are ex- 
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T a b l e  1. The  m e a n  adult  he igh t  in pat ients  with sex c h r o m o s o m e  aberra t ions  

Karyo type  Pheno type  Adul t  he ight  (cm) Reference  (Appendix)  

[A] 4 7 , X Y Y  Male  185.4 _+ 8.5 (n = 40) 1-18 

[B] 47 ,XXY Male  178.3 _+ 7.2 (n = 85) 1, 4, 13, 19 -22  

[C] 4 7 , X X X  Female  167.9 _+ 7.7 (n = 19) 1, 20, 2 3 - 2 9  

[D] 45 ,X  Female  143.3 _+ 6.4 (n = 130) 1, 3 0 - 4 9  

[E] 46 ,X ,de l (X) (p22 .32)  Fema le  154.1 _+ 4.9 (n = 131 50 

[F] 4 6 , X , d e l ( X ) ( p l  1) Fema le  147.3 _+ 5.9 (n = 16) 30, 54, 5 6 - 6 5  

[G] 46 ,X ,de l (X) (q13  21) F ema le  153.5 _+ 7.6 (n = 10) 6 6 - 7 2  

[H] 46 ,X ,de l (X) (q26)  F ema le  164.7 _+ 7.1 (n = 6) 8 0 - 8 2  

[I] 46 ,X , i (Xq)  Fema le  140.2 _+ 4.6 (n = 141 1, 30, 32, 36, 8 9 - 9 3  

[J] 4 6 , X , t ( X ; a u t o s o m e )  ~ Fema le  162.4 _+ 7.8 (n =- 211 9 3 - 1 1 0  

[K] 4 6 , X , X p +  = Y(+)  XX male  b Male  166.2 _+ 5.8 (n = 14) 111-114  

[L] 46 ,X,de l (Y)(d i s ta l  ql  1.2) c Male  173.6 _+ 7.9 (n = 12) 131-137  

46 ,XY (the Brit ish s tandard)  174.7 _+ 6.7 152 

46 ,XX (the Brit ish s tandard)  162.2 + 6.0 152 

~' The  mean  adul t  he igh t  is 161.6 +_ 7.6 cm in 17 females  with 
4 6 , X , t ( X m u t o s o m e )  accompan i ed  by n o n - r a n d o m  inact ivat ion of  
the normal  X c h r o m o s o m e  [93 -96 ,  98, 100-103 ,  105-110]  

b The  mean  adul t  he igh t  in 33 XX males  with no ev idence  for ab- 
normal  X;Y in terchange  is 166.4 +_ 7.4 cm [1, 112, 115-130]  

c The  posi t ion o f  the breakpoints  in the 12 pat ients  has  been based 
on normal  fertility [131], cy togenet ic  f indings  [132 136], and 
molecu la r  analys is  [1371. A l though  an addit ional  9 pat ients  have  
been reported to have  non- f luorescen t  Yq dele t ions  [137 144], the 
posi t ions  o f  the breakpoints  are apparent ly  at more  proximal  por- 
t ions in 4 cases  [137, 141, 142] and  indist inct  in 5 cases  [138-140 ,  
143, 144]; the  he igh t  of  the 9 pat ients  ranged  f rom 152 to 176 cm 
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Fig. 1. A diagram showing the correlation 
between stature and breakpoint in Cauca- 
sian adult female patients with X chromo- 
some terminal deletions (References, Ap- 
pendix 30, 50-82) .  The horizontal bat rep- 
resents the height range (mean _+ SD) of 13 
adult females with 46,X,del(X)(p22.32) 
[50]. Although it is uncertain whether all of  
the 13 adult female carriers meet the age 
criterion, they have been included in the 
present study as the sole exceptions. The 
patient reported to have 46,X,del(X)(ql  I) 
[83] has been excluded from the figure: this 
case may be an XY female, since an Xq 
deletion involving the inactivation centre at 
Xq l3  (Brown et al. 1991) is believed to be 
incompatible with life. Besides the patients 
shown in the figure, 8 patients with break- 
points apparently in the proximal part of Xq 
have been reported [24, 76, 84-88] ,  having 
heights between 142 and 165 cm (mean 
152.8 cm) 

T a b l e  2. Statistical analysis .  Height  data  are s h o w n  in Table  1. NS, not  s igni f icant  

46,XX 46,XY [L] [K] [J] [I] [HI [G] IFI IEI IDI ICl IB] 

[A] 47,XYY P<I0 6 P<I0  3 P<I0  6 

[B] 47,XXY P<10 4 P<0.05 P<10 6 

[C] 47,XXX P<10 2 

[D] 45,X P<10 (~ 

[E] 46,X,del(X)(p22.32) P<I0  4 

[F] 46,X,del(X)(pl 1) P<10 (' 

[G] 46,X,del(X)(q13-21) P<10 2 

[H] 46,X,del(X)(q26) NS 
[I] 46,X,i(Xq) P<10 6 

IJI 46,X,t(X;autosome) NS 

[K] 4 6 , X , X p + = Y ( + ) X X m a l e  P<0.05 P<10 3 P<0.05 

ILl 46,X,del(Y)(distal ql 1.2) NS 

P<0.05 P<10 6 NS P<10 4 P<10 6 P<10 5 P<I0  ~' 

P<I0  6 P<0.05 P<10 6 P<I0  5 P<0.05 P<10 ~' 

P<10 2 P<10 6 P<I0  ? NS P<I0 2 

P<10 6 P<10 ~ P<10 4 P<0.05 

P<I0  2 P<I0  4 P<0.05 

NS P<10 6 

P< 10 6 

P<I() 6 P<10 5 

P< 10 s 
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Fig. 2. The distribution of mean adult 
heights in Caucasian patients with vari- 
ous sex chromosome aberrations. The 
numbers 1-4 represent the major factors 
responsible for the adult height differ- 
ences. Number 1 denotes the dosage ef- 
fect of the pseudoautosomal growth 
gene(s), number 2 the dosage effect of 
the Y-specific growth gene(s), number 3 
the growth disadvantage caused by alter- 
ation of the quantity of euchromatic or 
non-inactivated region, and number 4 the 
sex dimorphism in gonadal steroid. The 
British height standards are used as con- 
trols. The height differences designated 
by arrwos are statistically significant, 
whereas no significant difference is 
found for the height differences indicated 
by dotted lines 

Table 3. Population-specific mean adult height in patients with sex chromosome aberrations 

Karyotype Population Adult height (cm) Difference" Reference (Appendix) 

47,XYY British 181.5 _+ 5.7 (n = 20) + 6.8 1-10 
American 188.6 _+ 7.6 (n = 14) + 12.1 11-13 

47,XXY British 177.7 + 7.0 (n = 52) + 3.0 l, 4, 19, 20 
Dutch 182.3 _+ 4.6 (n = 17) + 4.3 21 

47,XXX British 167.5 _+ 8.6 (n = 14) + 5.3 1, 20, 23-26 

45,X British 140.1 _+ 6.5 (n = 18) -22.1 1, 30 
American 143.5 _+ 6.1 (n = 54) -20.1 31-38 

Swiss 143.3 + 4.8 (n = 14) -21.3 44 

46,X, del(X)(p22.32) American 154.1 _+ 4.9 (n = 13) - 9.5 50 

46,X, del(X)(q13-21) American 153.7_+ 8.5 (n = 6) - 9.9 66-68 

46,X,i(Xq) American 140.4 _+ 5.1 ( n  = 8) -23.2 32, 36, 89, 90 

46,X,t(X;autosome) American 164.1 + 7.9 (n = 7) + 0.5 94-99 

46,X, Xp+ = Y(+) XX male British 167.2 + 5.8 (n = 11) - 7.5 111, 112 

a Difference from the following population-specific adult height standards (same sex): British, male 174.7 + 6.7, female 162.2 + 6.0 
[Appendix 152]; American, male 176.5 + 7.0, female 163.6 + 7.0 [153]; Dutch, male 178.0 _ 6.4 [21]; and Swiss, female 164.6 + 5.9 [156] 

pressed as mean  _+ SD (cm). Statistical significance was 
determined by the two-tailed t-test. 

Mean adult height 

The mean  adult height was determined for 12 abnormal  
karyotypes. The results are shown in Table 1, together 
with the British height standards, which occupy a roughly 
med ium height posit ion among Caucasian populat ions 
(reviewed in Prader et al. 1989). For X chromosome ter- 
minal  deletions, the mean  adult height was obtained for 

patients with small deletions (breakpoints at p22.32 and 
q26) and for those with large deletions (breakpoints at p l  1 
and q13 - 21 )  (Fig. 1). The statistical data are summarized 
in Table 2. The distribution of the mean adult heights and 
the British height standards is shown in Fig. 2. 

Population-specific mean adult height 

In 9 of the 12 abnormal  karyotypes given in Table 1, more 
than five patients were identified in the same country 
where the height standard is available.  The results are 
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shown in Table 3, together with the height differences 
from the population standards. The statistical results ob- 
tained for the height differences between patients and nor- 
mal individuals and between patients of different kary- 
otypes in the same population were consistent with the 
data shown in Table 2, except for the lack of significant 
height difference between the American females with 
45,X and those with 46,X,i(Xq) (however, the signifi- 
cance level differed in most cases, data not shown). 

Step Ih Assessment of the validity 
of factors that could influence stature 

Pseudoautosomal growth gene(s) 

The presence of a pseudoautosomal growth gene(s) [P- 
growth gene(s)] has been supported by the following find- 
ings: (l) karyotype-phenotype analysis in X chromosome 
rearrangements consistent with a growth gene(s) at the tip 
of Xp (Simpson 1975; Curry et al. 1984; Therman and 
Susman 1990); (2) similar analysis in Y chromosome re- 
arrangements indicative of a growth gene(s) at the tip of 
Yp (Simpson 1975; Buhler 1980) distal to the sex deter- 
mining Y gene (SRY), which is located only 5 kb from the 
pseudoautosomal boundary (Sinclair et al. 1990); and (3) 
association between unequivocal short stature and termi- 
nal deletions within the pseudoautosomal region (PAR) 
(Ballabio et al. 1989; Henke et al. 1991; Ogata et al. 
1992a). Furthermore, Ogata et al. (1992b) have localised 
the P-growth gene(s) to the region between DXYS20 and 
DXYSI5 in the distal part of the PAR, on the basis of 
genotype-phenotype correlation in patients with partial 
monosomy of the PAR. Normal height in sex reversed 
girls with 46,X,Yp- (Rosenfeld et al. 1979; Magenis et al. 
1984; Disteche et al. 1986) does not contradict the pres- 
ence of the P-growth gene(s). Since the Yp- chromosomes 
are usually generated by abnormal X; Y interchange be- 
tween sex-specific regions (Affara et al. 1987; Levilliers 
et al. 1989), the P-growth gene(s) is expected to be pre- 
sent in two copies in the 46,X,Yp- girls. 

X-specific growth gene(s) 

An X-specific growth gene(s) IX-growth gene(s)] escap- 
ing X-inactivation could affect stature in individuals with 
X chromosome aberrations because of the dosage effect. 
In this context, although a growth gene(s) postulated at the 
tip of Xp appears to be localised to the PAR, the height 
differences between patients with small and large X ter- 
minal deletions could support the presence of an X- 
growth gene(s) escaping inactivation on both Xp and Xq 
(Table 1). However, height comparisons between patients 
with 45,X, 46,X,del(X)(pl 1), and 46,X,i(Xq) argue that 
an X-growth gene(s) escaping inactivation is absent from 
Xq (Table 1). This indicates that the height difference be- 
tween small and large Xq terminal deletions may be 
caused by some factor(s) relevant to loss of gross chro- 
mosomal material rather than by the dosage effect of an 
X-growth gene(s), and it is possible that the same fac- 

tot(s) may also contribute to the height difference be- 
tween small and large Xp terminal deletions. However, 
there is no direct evidence that an X-growth gene(s) es- 
caping inactivation is absent from Xp, so that such an X- 
growth gene(s) might be present on Xp. 

Y-spec(fic growth gene(s) 

Karyotype-phenotype analysis in Y chromosome abnor- 
malities has postulated a Y-specific growth gene(s) [Y- 
growth gene(s)] in the Yqll region, proximal to the 
gene(s) for spermatogenesis (Buhler 1980). This assign- 
ment has been supported by recent molecular studies 
(Bardoni et al. 1991). Further evidence for a Y-growth 
gene(s) has come from adult height differences between 
patients with pure XX gonadal dysgenesis (XXGD) and 
XY gonadal dysgenesis (XYGD) and between patients 
with testicular feminization syndrome (TFS) and normal 
females (Table 4). The results suggest the presence of a Y- 
growth gene(s) that augments the adult height indepen- 
dently of the effects of gonadal sex steroids. 

Euchromatic quantity 

It has been proposed that chromosome imbalance may 
cause global developmental disruption, leading to growth 
failure. For example, Shapiro (1983) has argued that an- 
euploidy may decrease the buffering effect against genet- 
ic and environmental forces, resulting in a disruption of 
developmental homeostasis. A similar argument has also 
been stated by Gilbert and Opitz (1982). In addition, 
Mittwoch (1971) and Daniel (1979) have suggested that 
aneuploidy may impair cell proliferation, leading to 
growth and developmental retardation, although in vitro 
cell growth studies are still not conclusive (reviewed in 
Verp et al. 1988). These hypotheses may explain why sev- 
eral non-specific features such as "growth failure", matu- 
rational delay, mental retardation, and multiple anomalies 
are shared by most aneuploidies, irrespective of the origin 
of aneuploidy and of the type of alteration (monosomy or 
trisomy) (Smith 1982). [Characteristic features in each 
aneuploidy are believed to be due to the dosage effects of 
specific genes (Shapiro 1983).] Since the amount of hete- 
rochromatin often varies among normal individuals (Vo- 
gel and Motulsky 1986), it appears that alteration of eu- 
chromatic quantity is mainly, if not totally, responsible for 
the global developmental disruption. 

One may argue that X chromosome abnormalities do 
not cause alteration of euchromatic quantity, since pa- 
tients with X chromosome aberrations usually have a sin- 
gle normal active X chromosome, with the remaining X 
chromosome(s) being inactivated to form heterochro- 
matin. However, the condensed X chromosome is not 
composed entirely of heterochromatin (Schempp and 
Meet 1983; Therman and Susman 1990), and several loci 
escaping inactivation have been isolated from various 
parts of the X chromosome (reviewed in Ballabio and 
Willard 1992). Quantitative alteration of the non-inacti- 
vated region would have deleterious effects similar to that 
of the euchromatic region. 
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Table 4. The mean adult height in Caucasian patients with pure XX and XY gonadal dysgenesis (XXGD and XYGD) and those with com- 
plete testicular feminization syndrome (TFS) 

Karyotype Gonadal Adult height Reference 
steroids (cm) 

XXGD a 46,XX None 164.3 _+ 7.7 (n = 22) Ogata and Matsuo (1992) 
XYGD a 46,XY None 172.0 _+ 7.0 (n = 24) Ogata and Matsuo (1992) 
TFSb 46,XY Oestrogens 172.2 _+ 6.5 (n = 23) Appendix 1, 145-151 

Normal male 46, XY Androgens 173.8 - 178.0 c Appendix 152-156 
Normale female 46,XX Oestrogens 160.8-164.6 c Appendix 152-156 

a Selection criteria for XXGD and XYGD patients include: (1) 
height recorded between 20 and 50 years of age, and (2) no de- 
scription of steroid therapy before 20 years of age 
b Selection criteria for TFS patients include: (1) height recorded 
between 20 and 50 years of age, or conformation of growth cessa- 
tion, and (2) no gonadectomy before attaining the adult height 

c The adult height of normal individuals represents the range of the 
mean adult heights in various Caucasian populations 

Heterochromatic quantity 

Goldman et al. (1982) have suggested that stature could 
be positively correlated to the amount of facultative X-het- 
erochromatin, on the basis of height analysis of  patients 
with X chromosome deletions. However, the hypothesis 
does not explain why severe short stature is common to 
45,X with no X-heterochromatin and 46,X,i(Xq) with a 
large amount of  X-heterochromatin (Tables 1, 3). Further- 
more, the possibility that quantitative alteration of the 
facultative X-heterochromatin may contribute to global 
developmental disruption is also unlikely because of the 
apparently normal phenotype of the XO mouse (Catta- 
nach 1962). [The phenotypic difference between human 
and mouse XO females may lie in species difference in 
the completeness of  X-inactivation. In the condensed 
mouse X chromosome, the non-inactivated region is ap- 
parently scanty (Lyon 1966) and genes escaping inactiva- 
tion have not been identified, with the probable exception 
of Sts (reviewed in Ballabio and Willard 1992).] 

For the constitutive Y-heterochromatin, Yamada et al. 
(1981) have reported a weak positive correlation (r = 
0.17) between stature and Yql2 length in 142 normal 
Japanese males, with the regression equation being Y = 
0.00475X + 0.115 (Y, Yql2 length; X, height). However, 
the regression equation gives a negative height value for 
short Yql2. In addition, normal stature in patients with 
46,X,del(Y)(distal q l l . 2 )  argues against the notion (Ta- 
ble 1). Furthermore, the apparently normal phenotype 
in such patients (appendix 131-137), except for impaired 
spermatogenesis resulting from a deletion of a specific 
gene(s) (Ma et a1.1992), is consistent with the notion that 
quantitative alteration of the Y-heterochromatin does not 
cause global developmental disruption. 

Non-random X-inactivation 

Gartler and Sparkes (1963) put forward the cell selection 
hypothesis to account for the association between growth 
failure and preferential inactivation of rearranged X chro- 
mosomes. According to this hypothesis, the normal and 

the abnormal X chromosomes are originally inactivated at 
random, and then less viable cells with a gross imbalance 
of genetic expression are gradually lost, resulting in ap- 
parent non-random inactivation. Such a selection may re- 
duce the total number of viable cells in an individual, 
leading to growth failure. However, female patients with 
46,X,t(X;autosome) were normal in height under non- 
random inactivation of the normal X chromosome (Ta- 
ble 1, footnote). This suggests that such a selection, if it 
occurs, does not affect stature. 

Impaired endocrine status 

Female patients with sex chromosome aberrations fre- 
quently have severe oestrogen deficiency (Grumbach and 
Conte 1985) and the resultant hyposecretion of growth 
hormone (Ross et al. 1985) and somatomedin-C (Cuttler 
et al. 1985). Consequently, the pubertal growth pattern 
of  such patients is altered: they lack a pubertal growth 
spurt but continue to grow for a long time (Ranke et al. 
1983). However, since the adult height is similar between 
XXGD patients and normal females and between XYGD 
patients and TFS patients (Table 4), it appears that these 
hormonal abnormalities do not exert a major influence on 
the adult height. In addition, although such patients are 
frequently treated with sex steroids, it has been reported 
that sex steroid therapy with a standard dose does not 
alter the adult height of Turner patients (Lev-Ran 1977; 
Sybert 1984). 

Male patients with sex chromosome aberrations usually 
have slight or mild androgen deficiency (Grnmbach and 
Conte 1985). In this context, the finding that XYGD and 
TFS patients are shorter than normal males (Table 4) sug- 
gests that severe androgen deficiency has a deleterious ef- 
fect on stature. However, a longitudinal growth study of 
chromatin positive Klinefelter patients has shown that the 
mean height of such patients is around the 75th centile 
growth curve of normal males, before and after puberty 
(Schibler et al. 1974). Thus, in contrast to severe andro- 
gen deficiency, mild androgen deficiency is unlikely to 
exert an apparently deleterious effect on adult height. 
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Skeletal abnormality 

It has been speculated that skeletal abnormality may play 
a role in the genesis of short stature in Turner syndrome 
(Rosenfeld 1989). However, the structure of the growth 
plate, which primarily defines the linear bone growth, has 
been reported to be normal in Turner syndrome (Lubin et 
al. 1989). In addition, the upper/lower body segment ratio 
has been shown to be comparable between Turner patients 
and height-matched normal females (Varrela et al. 1984). 
These findings argue that skeletal abnormality does not 
constitute a major etiological factor for short stature. 
Rather, skeletal abnormality may be the consequence of 
global developmental disruption, since it is frequently 
found in other types of chromosome imbalance as well 
(Smith 1982). 

Summary' 

The above arguments indicate that the P- and the Y- 
growth genes may be relevant to the statural determina- 
tion in sex chromosome aberrations, and that quantitative 
alteration of euchromatic or non-inactivated region could 
cause growth disadvantage through gobal developmental 
disruption. Although an X-growth gene(s) escaping inac- 
tivation might exist on Xp, the data in support of such an 
X-growth gene(s) could be explained by the growth dis- 
advantage caused by loss of non-inactivated region. The re- 
maining factors are unlikely to exert a major influence on 
adult height in patients with sex chromosome aberrations. 

Step IIh Correlation of the mean adult height 
with the effects of specific growth-related factors 

Karyo(vpes without gross chromosome imbalance 

Among the karyotypes listed in Table 1, 46,X,del(X) 
(p22.32), 46,X,del(X)(q26), 46,X,t(X;autosome), 46,X,Xp+ 
(= Y(+) XX male), and 46,X,del(Y)(distal ql 1.2) are free 
from gross chromosome imbalance, and thus the growth 
disadvantage caused by quantitative alteration of euchro- 
matic or non-inactivated region is expected to be small. 
Indeed, the non-specific features attributable to global de- 
velopmental disruption are barely present in these karyo- 
types. 

The mean adult height in this category may primarily 
be explained by the dosage effect of the P- and the Y- 
growth genes (Fig. 2). Short stature in 46,X,del(X) 
(p22.32) would be mostly due to the loss of the P-growth 
gene(s), although the loss of non-inactivated region at 
the tip of Xp will have a small deleterious effect, as sug- 
gested by the presence of subtle phenotypic abnormalities 
(Appendix 50). Normal stature in 46,X,del(X)(q26) and 
46,X,t(X;autosome) is consistent with the P-growth gene(s) 
being present in two copies. The height difference be- 
tween Y(+) XX males and normal males is explained by 
the loss of the Y-growth gene(s); the value is similar to the 
height differences between XXGD and XYGD patients 
and between TFS patients and normal females (Table 4). 
Since most Y(+) XX males are generated by the abnormal 
X;Y interchange between the X-specific region in the ter- 

minal Xp and the Y-specific region proximal to SRY (Page 
et al. 1987; Petit et al. 1987), the P-growth gene(s) is ex- 
pected to be present in two doses after the abnormal inter- 
change. In addition, the hight difference between Y(+) 
XX males and normal females would be due to the sex 
difference in gonadal steroid, since it appears that ovarian 
oestrogens play no major role in statural growth whereas 
testicular androgens have the potential to increase the 
adult height (Table 4). Normal stature in 46,X,del(Y) 
(distal ql 1.2) is accounted for by assuming that most of 
the euchromatic region including the Y-growth gene(s) is 
preserved. 

Karvotypes with gross chromosome imbalance 

Among the karyotypes listed in Table 1, aneuploidies, 
large X deletions, and Xq isochromosomes are associated 
with gross chromosome imbalance, and thus both the 
dosage effect of the growth genes and the growth disad- 
vantage caused by quantitative alteration of euchromatic 
or non-inactivated region should be considered. Indeed, 
several features consistent with global developmental dis- 
ruption, such as non-specific anomalies, maturational fail- 
ure of various degrees, and mental retardation, are often 
observed in these karyotypes (Court Brown 1968; Rat- 
cliffe et al. 1982; Smith 1982; Linden et al. 1988; Rosen- 
feld 1989; Therman and Susman 1990). [Characteristic 
features such as Turner or Klinefelter stigmata are thought 
to be due to dosage effects of specific genes (Patil et al. 
1981 ; Richer et al. 1989; Ferguson-Smith 1991 ). ] 

The mean adult height in this category may be ex- 
plained by assuming both the dosage effect of the growth 
genes and the disadvantageous effect caused by quantita- 
tive alteration of euchromatic or non-inactivated region 
(Fig. 2). The severe short stature in 46,X,del(X)(pl l ) ,  
45,X, and 46,X,i(Xq) would be due to the total effects of 
the loss of the P-growth gene(s) and the growth disadvan- 
tage caused by alteration of the amount of non-inactivated 
region. Height comparisons between 46,X,del(X)(p22.32), 
46,X,del(X)(pl 1), 45,X, and 46,X,i(Xq), in which the P- 
growth gene(s) is present in a single copy, suggest that 
the degree of growth disadvantage correlates with the de- 
gree of chromosome imbalance. The height decrease in 
46,X,del(X)(q13-21) appears to be inexplicable without 
assuming the growth disadvantage caused by the loss of 
non-inactivated region, although no direct evidence for 
the presence of non-inactivated region has been found for 
the middle to distal parts of Xq. It might be possible that 
the P-growth gene(s) is subject to X-inactivation on Xq-  
chromosomes, as has often been claimed for the X-spe- 
cific loci of XG (Polani et al. 1970) and STS (Ropers et al. 
1981). However, the expression of the pseudoautosomal 
gene MIC2 on Xq-  chromosomes indicates that such an 
abnormal spreading of X-inactivation does not involve the 
pseudoautosomal loci (Goodfellow et al. 1984). In addi- 
tion, normal height in 46,X,del(X)(q26) argues that the P- 
growth gene(s) is at least expressed on X q -  chromosomes 
of small deletions. The mild height increase in 47,XXY 
and 47,XXX would be due to the combined effects of the 
growth advantage of an extra copy of the P-growth 
gene(s) and the growth disadvantage of alteration of non- 
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inactivated region (apparently milder growth disadvan- 
tage in 47,XXX and 47,XXY as compared with that in 
45,X is compatible with the notion that deletions usually 
cause more severe effects than corresponding duplications 
(Daniel 1979)). Finally, the height difference between 
47 ,XYY and 47 ,XXY may be accounted for by the 
dosage effect of  the Y-growth gene(s), and that between 
47 ,XXY and 47 ,XXX may be explained by both the 
dosage effect of  the Y-growth gene(s) and the difference 
in gonadal sex steroid. Since chromosome balance is 
believed to be comparable between the normal 46,XX 
and 46,XY chromosome complements, the condensed X 
and the normal Y chromosomes appear to have a similar 
effect on chromosome balance. This implies that the de- 
gree of  chromosome imbalance and the resultant growth 
disadvantage are similar between 47,XYY, 47,XXY, and 
47,XXX. 

For growth disadvantage caused by X chromosome 
deletions, the following findings may be noteworthy: (1) 
the height decrease caused by loss of  most of  Xq between 
46, XX and 46, X, del (X) (q 13-21 ) is larger than that caused 
by loss of the whole Xq between 46 ,X,de l (X)(p l l )  and 
45,X; and (2) the height decrease caused by loss of most 
of Xp between 46,X, del(X)(p22.32) and 46,X, del(X)(pl 1) 
appears to be larger than that caused by loss of the same 
Xp segment between 46, X, del (X) (q 13-21 ) and 45, X [(the 
height decrease between 46, X, del (X) (q 13-  21 ) and 45, X 
would be mostly due to the loss of  the P-growth gene(s)] 
(Fig. 2). The findings may imply that considerable loss of  
non-inactivated region between the normal state and large 
X deletions causes a severe growth disadvantage, whereas 
further loss of  non-inactivated region between large X 
deletions and monosomy X causes a relatively minor 
growth disadvantage. 

In this category, however, it should be pointed out that 
although the height distribution is plausibly explained by 
the dosage effect of  the P- and the Y-growth genes and the 
growth disadvantage caused by alteration of euchromatic 
or non-inactivated region, this does not exclude the pos- 
sibility that an X-growth gene(s) escaping inactivation 
might be present on Xp. I f  such an X-growth gene(s) in- 
deed exists on Xp, it could also contribute to the statural 
changes of  most karyotypes in this category. 

Remarks and conclusion 

Several remarks should be considered in the present study. 
First, the possibility of  latent mosaicism cannot be ex- 
cluded. In particular, a cryptic 45,X cell line is possible in 
cases of rearranged sex chromosomes. Secondly, except 
for a few cases studied by molecular analysis (Appendix 
50, 51,137,  143, 144), most structural abnormalities have 
been determined only by cytogenetic studies, which are 
not necessarily reliable (Goldman et al. 1982; Ferguson- 
Smith 1991). In particular, it might be possible that sev- 
eral Xp terminal deletions are virtually interstitial dele- 
tions preserving the P-growth gene(s), and that several 
Yq- chromosomes are actually i(Yp) chromosomes hav- 
ing two copies of the P-growth gene(s). Thirdly, although 
patients with sex steroid deficiency almost attain the final 

height at about 20 years of  age, they still continue to grow 
afterwards with an extremely small height velocity (Schib- 
ler et al. 1974; Ranke et al. 1983). Thus, the adult height 
in such patients may be underestimated slightly. Fourthly, 
it was impossible to allow for an influence of intra-Cau- 
casian height variation in several karyotypes. Fifthly, it 
was also impossible to allow for several influences on 
stature such as parental height (Mueller 1985), socioeco- 
nomic status (Eveleth 1985), and secular height change 
(van Wieringen 1985). Finally, there may be other growth- 
related factors not discussed here. 

In spite of  the above caveats, the present study offers a 
useful clue to the elucidation of the principal factors 
defining adult height in patients with sex chromosome 
aberrations. In conclusion, we propose that the adult 
height in such patients may primarily be defined by the 
dosage effect of the P- and the Y-growth genes, together 
with the degree of growth disadvantage caused by quanti- 
tative alteration of euchromatic or non-inactivated region. 
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