
C. U L I S E S  M O U L I N E S  

A P P R O X I M A T E  A P P L I C A T I O N  O F  E M P I R I C A L  

T H E O R I E S :  A G E N E R A L  E X P L I C A T I O N *  

1. I N T R O D U C T I O N  

The r61e and structure of approximation in empirical sciences is a 
neglected field in the philosophy of science. Not even a systematic 
account of the ditterent kinds of problems involved is known to me. Some 
effort has still to be made to clearly state the problems supposed to be 
solved. 

The responsibility for this neglect should not be adscribed to the 
philosophers alone. Theoretical scientists share some part of the blame. 
Philosophers of science normally look at what theoretical scientists write 
in their textbooks and t r ea t i s e s -o r  at least, they should do so. But 
theoretical scientists do not write much about approximation questions. 
These they leave as a kind of boring subsidiary work for experimental 
scientists and engineers. Only sometimes, when two different theories 
'should' be related in some simple and direct way, but are obviously not 
so, some rather unclear words are said about 'limiting cases', 'constants 
tending to O or infinity', etc. There is not much philosophical insight to be 
gained from such phrases. In any case, laws, theories, and empirical 
results are very often presented without saying a word about their 
approximative character and the problems involved in it. A similar 
picture is offered by many historians of science, who write much about, 
say, Newton's discovery in the seventeenth century that the planetary 
system 'obeys' the law of gravitation, but usually forget to tell us about the 
painstaking efforts made during the 18th century and afterwards to 
establish that Newton's law actually fits the astronomical observations 
'with quite good an approximation'.  

Of course, everybody knows - or should know - that scientific laws and 
theories can only be applied to reality up to a certain degree of approxi- 
mation, and that competition between different laws, theories, and 
'research programmes'  is, in many cases, nothing but competition to 
attain a better degree of app rox ima t ion -no t  the "truth', whatever this 
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may be. However, this fact is taken by systematic accounts in the 
philosophy of science as an uninteresting accidental feature of the 
scientific enterprise - something not really belonging to the 'essence' of 
science. I believe this view to be fundamentally misleading. It is mislead- 
ing to take for granted that the canonical situation the philosopher should 
account for, is the situation in which a scientific theory with perfectly 
exact concepts perfectly fits the facts it is supposed to systematize. There 
is no present significant theory in which this really happens, and I see no 
reason to suppose this will ever happen. To speculate about this possibil- 
ity seems a waste of time to me. And putting empirical science without 
approximation as an ideal to be reached by future scientists, is nothing but 
a part of the speculative teleology that W. Stegmfiller has described as the 
"teleological myth of increasing verisimili tude"- the idea that there is 
one absolute goal to be attained by science some time in the future (cf. e.g. 
[9], p. 36). 1 

It does not seem to be an audacious generalization to hold that 
scientific knowledge in general, quantitative as well as qualitative, is 
essentially approximative. In fact, this is so obvious, that nobody really 
cares much about it. For some people, especially working scientists, it 
may appear as a truism. But one of the tasks of philosophy is to carefully 
analyze and explicate alleged truisms. And 1 do not think this task is, in 
the present case, completely trivial. 

As far as I know, the first author to have seriously taken approximation 
as an essential feature of empirical theories, was Prof. G. Ludwig in [3]. 
The second chapter of his book includes a sketch of a semi-formal 
explication of the structures of a physical theory, containing an approx- 
imative element as a constitutive part. 2 Leaving aside Ludwig's general 
(and rather sketchy) explication of the theory concept, which is not our 
concern here, the main point I wish to stress is his (implicit) idea that any 
explication of the concept of empirical theory must take the approxima- 
tive element into account, otherwise the explication will be incomplete. 
To put it crudely: a realistic concept of empirical theory necessarily 
includes a concept of approximation. ! think this is an important 
philosophical insight. It was one source of inspiration for the present 
study. ~ 

The program is, then, to define appropriate approximation concepts 
and structures to be included in adequately defined theoretical structures. 
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A possible reaction against this program could be the following objec- 

tion. The approximation talk does not refer to the theory itself but to its 

applications; approximation notions should be kept out of theoretical 
structures, 

This objection rests on the assumption that the applications of a theory 
do not conceptually belong to the notion of the theory itself. That  is, an 

empirical theory should be treated like a mathematical  theory, as a mere  

formal structure (a 'mathemat ical  formalism')  determined by some 

axioms. However ,  for many reasons which I can not discuss here, this 

purely ' formalist '  concept of an empirical theory does not seem to be the 

most adequate one. a Anyway,  this is not the theory concept on which this 
article rests. We take an (advanced) empirical theory to be an entity 

composed of both the formal conceptual structure and its domain of 

applications. Approximat ion notions, then, have to be explicated as 

something that refers to both the formal structure and the domain of 
applications of the theory. 

2.  D I F F E R E N T  K I N D S  O F  A P P R O X I M A T I O N  

In the previous introductory remarks,  we have talked about  approxima- 

tion in rather  vague terms. The time has come to be more systematic. First 

of all, the logical status of the approximation concept seems to be that of a 

dyadic relation: Something is an approximation of some other thing. (It 

may be that in a formal reconstruction we shall be constrained to 

introduce more terms in the relationship; but then we shall see.) It also 

seems obvious that scientific research uses many different kinds of 
approximation,  in many different contexts. But perhaps they are not so 

many. Let us try to get at a crude typological classification of different 

approximation cases. At first sight, at least, I see four main types. 

(a) There  is the case where we try to systematize some empirical data 
within a given conceptual f ramework,  and in the process we have to make 

some ' idealizations'  and 'simplifications' (read: approximations) in order 

to get a manageable  model. For example,  we approximate  the movement  
of a macroscopic body by considering it as a particle on a continuous path: 
or from a finite number  of geodetical measurements  we conclude that the 
Earth is an e l l ipsoid-  forgetting all its mountains and valleys; or we 
consider a visible ray of light in our room as a geometrical straight line; 
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and so on. This level of approximation (or 'idealization', if you prefer) 
may be called 'model construction'. It builds the roots of science, but we 
shall not be concerned with it here. The reason is just that I have nothing 
to say about its formal structure.S 

(b) At the next level we approximately apply some law or theory to a 

'constructed model ' ,  that is, we try to subsume a conceptually sys- 
tematized collection of data under a propounded law or theory. For 
example, we try to make plausible that the body moving around us is a 
case of Galilers law, or that the Earth 's  movement around the Sun obeys 
the law of gravitation, or that we can apply the law of reflection to a(n) 

(idealized) ray of sun light. 
(c) When we consider a law as an approximation of another, more 

complicated law of the same theory (that is, the two laws belonging to the 
same conceptual framework), we have an approximative relation on a 
purely theoretical level. In such cases, we do not worry much about the 
empirical facts outside the theory - we are only doing mathematics within 
the theory. This comparison of laws is very common in physics, For 
example, Galilers law is taken as an approximation of the law of 
gravitation; or the ideal gas law is taken as 'approximately valid' with 
respect to the law of Van der Waals, and this is itself an approximation of 

a still more complicated express ion-  the virial equation of state; or the 

law for the simple pendulum 

is an approximation of 

r = 2 7 r  l + ~ s i n  

which is in turn an approximation to a power series. Many examples of 
this sort can be found in any physics textbook. It is frdDquent in such cases 
that the simpler or 'less exact'  law derives from the more complicated by 
substituting a fixed numerical value (e.g. 0 or 1) for a parameter  (a 
constant or a real function) which appears in the approximated law. For 
example, Van der Waal's equation 

p +  . ( V - b ) =  R . T 
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reduces to the law of ideal gases by taking a -- b = 0. Not all cases are so 
simple, of course. But commonly the 'approximation trick' consists in 

changing (and fixing) the value of some parameter  of the law. 
We are speaking here of a given law approximating another  given law. 

But in many cases the expressions approximating or approximated do not 
really deserve the label of 'laws'. They do not appear in the systematic 
exposition of the theory, they are just calculating devices introduced for 
some special p u r p o s e -  usually approximation needs. Formally, there is 
no clear-cut distinction between laws and special calculating devices; but 
sometimes we really would not like to call some special equation a law. 

Take the case of the systematization of the movement  of a motor  vehicle 
where we take the mass as t ime-dependent  (fuel mass being lost). Should 
we call the resulting dynamical equation a physical law? 

As a terminological convention let us speak in general of ' theoretical 
systematizations' of empirical states of affairs described in some previ- 
ously given conceptual framework. This label is intended to cover 'seri- 

ous' laws as well as calculating devices introduced ad hoc, for particular 
applications of the theory. We shall say that one theoretical systematiza- 
tion is an approximation of another one in cases of the sort we have just 
reported. In the following, we abbreviate ' theoretical systematization' to 
'th. sys'). 

As already noted, approximation between th. sys.'s is, in a certain 
sense, a purely theoretical endeavour,  a paper-and-pencil  operation, as 
P. W. Bridgman would say. Nevertheless, this fact does not preclude us 
from admitting an intimate relation between this kind of approximation 
and the approximation of the second kind mentioned, that is, the approx- 
imative application of a th. sys. to an empirical constructed model. 
Suppose we have applied some law L~ to an empirical domain D with 
some success, but we are still not very satisfied with the degree of 
approximation obtained; we may try to construct a second law L2 such 
that L1 is taken as an approximation of L2, and L2 applied to D gives a 
better  degree of approximation. Or, inversely, LI applies 'quite well' to 
D, but the calculations with LI are very tedious: We would like to have a 
simpler, even if cruder, way of systematizing D. So, we look for a Lo 
which, while being a simpler approximation of L~, can be applied to D 
with a degree of approximation that is sufficient for our purposes. A more 
formal description of this relation between the two levels of approxima- 
tion will be given below. 
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(d) Finally, there is a kind of approximative relation at the most 
theoretical level, which does not seem to be reducible to the approxima- 
tive relationship between laws. I mean approximation between two 
general theories, i.e. between whole structures with different conceptual 
framework and different fundamental laws. Let us call it 'intertheoretical 
approximation'-while kinds (b) and (c) could be described as 
'intratheoretical approximation', and (a) would be a pretheoretical 
approximation'. Intertheoretical approximation probably holds between 
classical and special relativistic mechanics, between phenomenological 
thermodynamics and statistical mechanics, between geometrical optics 
and electrodynamics. These examples are frequently subsumed under the 
label 'reduction'. But it seems fairly clear that these cases can not be 
subsumed under exact reduction as it has been reconstructed by E. W. 
Adams in [1] and by Sneed in [6]. Perhaps, we could speak here of 
'approximative reduction', but the problem of the logical relationship 
between approximative and exact reduction is still an open question. 
Moreover, there is no reason to suppose that all intertheoretical approxi- 
mations should be considered as a 'blurred' reduction. 

The problem of giving a formal reconstruction of intertheoretical 
approximation in general remains untouched. The concrete case of 
Kepler's laws being reduced to Newton's gravitation theory - I take this 
as an example of intertheoretical, not intratheoretical approximation-  
has been carefully analyzed by E. Scheibe in [4]. Scheibe's reconstruction 
of this case is very stimulating indeed. But it is doubtful whether he has 
succeeded in filtering out a general concept from this particular example, 
as he has tried to do elsewhere (cf. his article [5]). There is another 
proposal in this direction, viz. that of Ludwig in [3], pp. 120ff. Ludwig first 
defines a concept of exact 'Einbettung' ('embedding') of one theory into 
another, and he afterwards gives some conditions for 'blurring' this 
notion into a 'unscharfe Einbettung' ('approximative embedding'). In [9], 
Stegmiiller has pointed out the promising program which lies behind this 
notion; but Ludwig's explication is a very brief and sketchy one. It only 
can be viewed as a start to be further developed and completed. I hope to 
be able to contribute to this program in the future. 

This article does not deal with the problem of giving a formal explica- 
tion of intertheoretical approximation. The discussion is restricted to 
categories (b) and (c), i.e. to the notions of approximative application of a 
theory and of approximative relationship between th. sys.'s. 
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3. M O D E L - T H E O R E T I C  F U Z Z Y  S E T S  

We have now to be more precise about the logical category of the entities 
to be compared with each other in an approximative relationship of kinds 
(b) or  (c). 

A first thought could be to take statements as the entities to 
be compared. In a case of kind (b) we would say that the statement 
of an empirical law (say, the gravitation law) is approximative 
relative to the statement describing a physical system in mathe- 
matical terms (e.g. planetary orbits described in terms of particle 
mechanics). This would be the exact form of the explicandum we have 
to explicate. 

But this explicandum does not seem a very adequate candidate. Can we 

really give a precise meaning to the claim that some statement is the 
approximation of some other statement? It is likely that we would get into 
clumsy semantical trouble here. 

Of course, a possible way to give a semantical analysis of 'statements 
approximation'  would be in terms of relations between the models of the 
statements. This is, indeed, similar to the direction I propose in this 
article. But then, if we explicate approximation between statements as a 
model-theoretic relation, we can forget about 'approximation of state- 
ments'  altogether and work with models alone. That  this is possible, 1 
shall try to show in the following. 

The basic idea is to take not statements but set-theoretically defined 

models as the minimal entities to be compared in an approximative 
relationship. This approach to the matter  is in accord with the so-called 
structuralistic view in the philosophy of science first developed by Sneed 

in [6]. At least in its first step, the present explication could also be backed 
by the more traditional approach of Suppes and his collaborators. To 
make this point clear, 1 shall briefly resum6 Suppes' method. 

As Suppes himself puts it (e.g. in [12], p. 2-25) the slogan of his 
approach could be so stated: To axiomatize a theory is to define a 
set-theoretical p r ed i ca t e -wi th  the axioms written down as definitory 
conditions of the predicate; a model of the theory is then a tuple (a 
'structure') whose members satisfy the conditions of the set-theoretical 
predicate. ~ In [ 12], Suppes follows standard model-theoretical terminol- 
ogy and distinguishes between a model and a possible realization of a 
set-theoretical predicate (=  of a theory). This distinction is especially 
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relevant to the analysis of empirical theories and will prove very impor- 
tant for our present aims. The axioms or conditions defining the set- 
theoretical predicate of a theory can be divided in two classes: the general 
conditions describing the logico-mathematical categories to which each 
primitive term belongs and the proper axioms of the theory stating 
specific properties and expressing the 'real content' of the theory. Let us 
call the first class 'structural axioms', the second one 'material axioms'. 
The first class determines a possible realization of the set-theoretical 
predicate; it is only when we add the material axioms that we determine a 
model. Every model is a possible realization, but not conversely. 

Suppes' 'possible realizations' have been renamed 'possible models' by 
Sneed-Stegmiiller. We follow their terminology. If M is the class of 
models of a set-theoretical predicate ( = of a theory), Mr, is the class of its 
possible models. In general, we have M c M~. 

In the case of an empirical theory, a possible model is a possible 
mathematical description in the framework of this theory of a state of 
affairs. It is a possible description because, by applying the conceptual 
framework of the theory to that given state of affairs, we still have not 
settled the question of whether this description actually renders a model 
of the theory or not. If metric functions appear as primitives in the theory, 
there are uncountably many different possible descriptions of a given 
state of affairs. This is well-known from the discussion of the 
structuralistic view. The point I wish to stress here, is that, among the host 
of different possible descriptions which may correspond to a state of 
affairs, some pairs of them will be considered more similar to each other 
than other pairs; and the 'grade of similarity' between possible 
mathematical descriptions of some facts may be an important question to 
consider when we try to apply the theory to those facts. 

For example, if we try to apply a dynamic theory to the movement of 
some physical system S consisting of a set of particles P during some time 
interval T by help of a position function s, a significant question to ask is 
what grade of similarity between two possible descriptions of this system 
may be required. A possible answer may be given in the following terms. 
If x and y are two possible descriptions of S ( = two possible models) we 
shall be content with their similarity if they satisfy the following condition 
for some previously given real numbers e and 6: 

[S] Px=P,.^ Tx= T,.^ApcPx, t~ Tx: 

[sx(p, t)-sy(p, t ) ]< e ^ [D2s~(p, t)-D2sy(p, t )]< 6) 
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We shall then say that x is an approximation of y, and conversely. Note 
that, in order to state this approximation condition, no material axiom 
(empirical law) of the theory is needed. That  means in our terminology 
that we are working at the level of Mp alone. 

The present approach towards a general explication of approximative 
notions mainly rests on the proposal of taking approximation as a relation 
between two possible models of a theory, i.e. as a dyadic relation on Mp. 
The concrete features of the theory are totally irrelevant for the realiza- 
tion of this program. We do not need to suppose that we are dealing with a 
'quantitative'  theory (i.e. a theory with metric functions) nor that approx- 
imation rests upon some special measurement  m e t h o d s -  as it is some- 
times presupposed when talking about approximation. The generality 
level of the present explication is such as to be applied to very crude and 
qualitative theories as well. The only assumption needed is that we can 
axiomatize the theory and distinguish the structural from the proper  
axioms. 

Now, we are in a position to clearly state the explicandum we are after. 
It is a metatheoretical statement of the sort: 'potential mode[ x is an 
approximation of potential model y in theory T'. What is the way to its 

explicans? The set-theoretical point of view will help us on this question. 
Potential models of a theory T are all elements of the same set Mp of T. 

This means that we want to define an approximation relation between any 
two elements (or 'points') of a given set. There is a well-known method 
for defining such a relation in topological analysis: to introduce the 

concept of uniform structure as a specialization of a filter. Admittedly, the 
intended applications of this notion in topology are sets of real numbers. 

But, is there any cogent reason for not applying it also to sets of different 
entities, if required? I do not see any such reason, assuming that we are 
willing to accept that (a) the topological concept of uniform structure is 
the adequate explication for intuitive approximation in sets of points, and 
(b) the class of potential models of a theory axiomatized by means of a 
set-theoretical predicate is a well-defined entity. These two assumptions 
seem quite obvious to me. In any case, I do not intend to discuss them 
here. We reconstruct model-theoretic approximation by defining a 
uniform structure on potential models. In the following, we abbreviate 
'uniform structure'  to 'uniformity ' ]  

Before going to the formal definition of a model-theoretic uniformity 
let us grasp an intuitive picture of it. For a given set (in the present case, 
Mp), a uniformity determines a whole array of subsets, each of them 
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representing a 'degree of approximation'  or 'measure of fuzziness'. These 
subsets may be called 'fuzzy sets'. A fuzzy set consists of pairs of elements 
of the original set (Mp). If a pair (a, b) is in a fuzzy set U, this means that a 
and b approximate each other  in at  least  the degree given by U. We could 
alternatively say: a and b coincide at least up to U. Or still: a and b are 
U-nearly equal. In the case of a set of real numbers, where we have a 
standard metric (the absolute value of the difference) we can define the 
standard uniformity where each fuzzy set is determined by a particular e : 

U,: = {(a, b ) / [ a  - b] < e}. 

But this is a special case only. The concept of a uniformity does not 
depend on the concept of a metric; it is more general. The determination 

of empirically relevant fuzzy sets can be much more complicated than the 
previous example, or even not expressible in metrical terms. 

Such a general concept is precisely what we need for explicating the 
comparison of potential models. For the general treatment of approxima- 
tion we do not need to bother about the specific terms of the models 
(mainly functions) involved in the approximation. Besides brevity, this 
abstract treatment has some other  advantages. The same degree of 
approximation, i.e. the same fuzzy set U may be settled by taking the 
approximation on different functions of the theory. For example, in a 
gravitational study of the system Earth-Sun we may state the approxima- 
tion condition by considering 1/m~.. ~ O, or alternatively by considering 
the force which the Earth exerts on the Sun 'very small'; the same degree 
of approximation is obtained by considering masses and by considering 
forces. Still more important, in a general treatment we do not need to 

assume that the fuzzy sets used in some applications of the theory are 
determined by any completely specifiable conditions: it may be the case 
that a specific fuzziness depends on the 'personal knowledge' of the 
scientist, on his 'intuitions', changing pragmatic needs, and so on. All we 
need to know is that the fuzzy sets used are elements of a uniformity 
associated with the M s, of the theory. We need some special notation for 
the formal definition of the uniformity. 

If M is a set, then A(M) is the 'diagonal' of M, i.e. the set of all pairs of 
identical elements of M. 

If R is a dyadic relation, R J is the inverse, and 

R ~  = R 2 ={(x, y ) /V  z ( (x ,  z ) ~  R A (Z, y)~ R)} 

Rn can be defined analogously. 
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The following axioms correspond essentially to those given 

Bourbaki in [2], p. 131. 
(D1) lJ is a uniformity on Mp if[ 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

by N. 

A ul, u2(u~ e l i^  u, c_ U2--, u2e lt) 

A u~, u2(u~elI^ u2 elt--, u~ m u~e lJ) 

A U(UcU.a(Mp~_ u) 

A U(Uc11-~U ~cII) 

A u ,V  u2(v, c II~ 

We call the elements of 11 '(uniform) fuzzy sets'. Note that a fuzzy set is a 
dyadic relation on Mp. 

The first three axioms essentially define a filter - with a little variation 
in axiom (1) (see [2], p. 32), The following axioms (4)-(6) are specific of 
the uniformity concept. 

Let  us try to interpret this formal structure in terms of model-theoretic 
approximation to see whether it appears intuitively adequate. First, note 
that the pragmatic ground for associating a uniformity 1I with the set Mp 
of a theory T, is to allow for a liberalization in the application or 
manipulation of T. Should we assume that the theory applies exactly to its 
domain, or that the relationships between its special laws are always of an 
exact kind, we would bump into falsification quite rapidly. Formally, this 

would mean that we only allow the use of the diagonal - as a 'degener- 
ated' fuzzy s e t - i n  the manipulations of the theory. The use of the 
diagonal represents absolute exactness. But real scientists are more 
liberal than that. They use much bigger fuzzy sets in their manipulations 
of the theory. The size of the fuzzy sets used depends on the different 
kinds of applications and manipulations of the theory. The bigger the 
fuzzy set, the easier to stay out of trouble. Of course, we should suppose 

that if a certain limit is exceeded, the theory is considered useless. But this 
is a point we neglect for the moment;  we shall discuss it in the next section. 

As a kind of slogan for quickly interpreting the axioms of (D 1) let us 
say that: To associate a uniformity with a theory is a way to immunize it 
against troubles in its applications. (The limits to this immunization will 
be discussed later.) Suppose we have constructed uniformity 1I for theory 
T, and we are especially using some U ~ Lt for a given application of T. 
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This means that we have 'immunized' this application up to degree U. For 
example, the application may consist in the following. (This is only one 
possible case.) Given a system S, we make some theoretical calculations 
using T and predict that S will have the mathematical form described by 
potential model a. But then, after some 'empirical observations', we 
come to the conclusion that S should be better described by potential 
model b, being a ~ b. If (a, b) c U, then we are satisfied - at least for the 
moment. If (a, b)~ U, we may have two possible reactions: Either to be 
still more liberal and admit that, after all, we would also be satisfied with a 
U ' c i I  such that U c  U',(a, b)~ U'; or to reconsider T and/or  the 
mathematical description of S. Both kinds of reactions are copiously 
exemplified in everyday science. 

The more pairs (a, b) you let in U, the safer you are; and, of course, the 
less you can really do with the theory. 

Leaving aside the purely structural axiom (D 1)-(1), let us 'translate' 
the rest of them into the 'immunization language'. (D 1)-(2) states that if 
the theory is immunized by a fuzzy set U1, it will also be immunized by a 
bigger U2 including U1. (D 1)-(3) states that if you immunize T by using 
U1 and by using U2, you may put both of them together and immunize T 
by using their intersection. This axiom is, perhaps, less obvious than 
(D 1)-(2), but it seems quite plausible - at least as an idealization. (Note 
that the intersection can not be vacuous, by (D 1)-(4): It always contains 
at least the diagonal.) If you are satisfied with approximation degree U in 
some application, whatever this degree may be, you will also be satisfied 
with exact application, if this casually and fortunately happens; that is, 
exactness is included in every fuzzy set. This is the content of (D 1)-(4). s 
Axiom (D 1)-(5) is obvious in the present interpretation: The order of the 
models of a pair in a fuzzy set has no significance at all for the 
'immunization-degree' of the theory. (D 1)-(6) is a critical axiom. It 
roughly states that for any given fuzzy set U1 immunizing T, a sharper U~ 
may be found such that U2 still immunizes the theory; U2 is at least twice 
as sharp as Ul. 

For an easy appraisal of this last axiom, consider a very simple example. 
Suppose the model-theoretical fuzzy sets of a geodesical description are 
determined by an approximation condition on the position function of 
'particles' or 'points': 

u~ = {(x, x ' ) /A  p c ex c~ ex,([sx(p)- s~,( p)]  < ~)}. 
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Then, if U~ is to be a fuzzy set of a uniform structure, axiom (D 1)-(6) 
asserts the existence of a U~ of the same sort as UF but twice as sharp as it, 
and this means in this special case: 

Ua = {(x, x')/A pc P~ c~ P~'([G(p)-s~,(p)]< 8 ~< e_) }. 
~2 

In this particular example, axiom (D 1)-(6) guarantees the formal possi- 
bility of determining the position of a given p with ever increasing 
exactness. Such an axiom certainly represents an idealization of actual 
scientific practice, because it implies the possibility of making ever 
sharper applications of the theory. (But note that it does not imply that we 
shall ever attain A, i.e. exactness.) 

The mathematically relevant properties of uniformities in general may 
be found in any advanced topology textbook. For the present study we 
only need some simple corollaries. 

Let 1I be a uniformity and U any element of it. 

(Th. 1) f t~ l l .  

This directly follows from (D 1)-(1), (4). 

(Th. 2) U ~C_U ''* 

This follows by induction from (D 1)-(4), definition of U 2 and of U ~ in 
general. 

(Th. 3) U~lI-+/~n(U"~ll). 

This follows from (Th. 2), (D 1)-(2). 

4 .  F U Z Z Y  S E T S  O N  T W O  L E V E L S  

Up to this point, the present analysis of approximation has rested on no 
special approach in the philosophy of science, but only the very general 
assumptions (a) and (b) p. 209. Now we proceed to further develop the 
analysis of approximation within a particular metatheoretical 
framework: Sneed's structuralistic approach. We shall see that this 
approach is also capable of enlightening interesting aspects of approxi- 
mation. 

In the following, the reader is supposed to have some knowledge of the 
main tenets of the structuralistic approach as expounded mainly in [6] and 
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[8]. In more recent writings (e.g. in [7]) some formal modifications have 
been introduced into the former conceptual framework; but they are not 
essential for the present discussion. 

Neither need we all complexities of the structuralistic a p p r o a c h - f o r  
example, the notions of constraint and law specializations. The basic ideas 
assumed here are: the distinction between a theoretical and a non- 

theoretical level within a given theory, i.e. the distinction between the set 
Mp of possible models and the set Mpp of partial possible models in the 
Sneed-Stegmiiller terminology; 9 the notion of an empirical theory (or 

theory-element in the new terminology of [7]) as an ordered pair (K, I), 
where K is the so-called core (the mathematical apparatus of the theory) 
and I is the range of intended applications of the theory. The whole 

empirical claim of a theory is resumed in the 'holistic' statement that I can 
be subsumed under some specialization of K. All this we assume as 

already known. 
The structuralistic approach in its original form does not give any 

account of approximation. If we t h i n k - a s  I d o - t h a t  the Sneedian 
approach gives us a valuable framework for reconstructing empirical 
science, then we face the problem of supplementing it with approxima- 
tion structures. To put it more conspicuously, we have two aims to get at 
here: First, to introduce an approximative component  into the struc- 
turalistic notion of an empirical theory in such a way that it accords with 
the theoretical- non-theoretical distinction; secondly, to formally give an 
approximative version of the empirical claim of a theory. The first 
program is undertaken in this section; the second one is left to the next 

section. 
By introducing the distinction between the set of possible models, Mr,, 

(i.e. the theoretical level) and the set of partial possible models, Mpp (i.e. 
the non-theoretical level) a new possibility for expressing approximation 
is opened to us. For partial possible models are nothing but possible 
mathematical descriptions of empirical systems in quite the same sense as 
possible models are. The only difference is that the mathematical descrip- 
tion is offered in this case without any theoretical terms. Hence, it should 
be clear that the same reasons that lead us to talk about 'nearness' or 
approximation of possible models, and of fuzzy instead of exact descrip- 
tion, can also be argued for the case of partial possible models, viz. 
non-theoretical descriptions. Indeed, we have already seen an example of 
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approximation stated in purely non-theoretical (kinematical) terms in the 

case of particle mechanics (condition (S) on paths in p. 208). 

Consequently, it is reasonable to formally express non-theoretical 
approximation by using a uniformity defined on M~p in quite the same 
way we have done it for M r. We introduce a relation class 2 ~  
~(Mpp • Mpp) satisfying axioms analogous to those of (D 1). Its elements 
V~ may be called 'non-theoretical fuzzy sets'. 

This means that, in principle, we can associate two kinds of uniformities 
with an empirical theory: a H for Mr, and a ~ for Mp~,. Our intuitive 
expectations lead us to suppose that there should be some relationship 
between a uniformity on Mp and a 'corresponding' uniformity on Mpp, or 
still more intuitively: Approximation on the Mf,-level is done for the sake 
of approximation on the Mpt,-level. 

To make these intuitions somewhat clearer, let us consider the 
'paradigmatic' example of Newtonian gravitation theory and its applica- 
tions once again. 

Let  G be the set-theoretic predicate for "gravitational Newtonian 
particle mechanics' as it has been axiomatized by Sneed in [6], p. 
140-141. The possible models x for this predicate are tuples of the sort 
x = (P, T, s, m, f ) ,  where P is a set of particles, T is a time interval, s(p, t) 
denotes the position of particle p at time t, re(p) denotes the mass of p, 
and f (p,  t, i) represents a particular force acting on p at t. D2s is the 
acceleration function. 

Suppose we want to apply G to the physical system consisting of E, the 
Earth, and S, the Sun. We construct an x, = ({E, S}, T, s, m, f )  and claim 
G(xO. This claim entails, among other things, that the mutual forces 
which Earth and Sun exert on each other are non-zero: 

Z f ( E ,  t, i )= Z f ( S ,  t, i ) r  
i i 

Since we admit that the respective masses are finite, this implies in turn 
(by Newton's Second Law, which is a definitory condition of the set- 
theoretic predicate G), that the respective accelerations of Sun and Earth 
are non-zero: D2s(E,  t) r O, D2s(S, t) • O. 

If we translate this theoretical calculation into a description of the 
system in purely kinematical terms, we obtain a partial possible model 
r(xO c Mpp mathematically described by two ellipses: a big ellipse for the 
Earth and a 'very small' ellipse for the Sun. 
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Since the Sun ellipse is so 'small ' ,  physics textbooks tell us that, for 
some applications, it can be 'neglected' .  We suppose the Sun to be 

stationary, and this means that we construct an x0 with the condition 

f(S, t, i) = 0 instead of 

re(E)" re(S) 
~f(S,i t, i)= - G  "[s(E, t ) -s(S,  t)] 2" 

On the other  hand, we continue to assume that 

m(E).  re(S) 
~, f(E,i t, i )=-O.[s(E ' t ) -s(S,  t)] 2 

This ' idealization'  makes  the theoretical calculation and the kinematical 
description much simpler; and this is sometimes a very good reason for 

assuming it - at least for didactic purposes. The kinematical translation of 

x0, r(xo) ~ Mpp, is then a single ellipse for the Earth with the Sun on a focus 

of the ellipse. 
Of course, the price we have to pay for this ' idealization'  ( =  

approximation) is that potential model xo is no more an actual model of 

G, but a model for a th. sys. which only approximates,  but is not identical 

with G. In our general f ramework,  this means that the uniformity we take 

when handling gravitation theory contains a fuzzy set U determined by 

some conditions such that (xo, x~) 6 U, and that we actually use U at least 

sometimes for some purposes. 
U is a theoretical fuzzy set determined by a condition about  forces (or, 

alternatively, about masses). But it can be ' t ranslated'  into a non- 

theoretical fuzzy set V determined by a condition comparing a two- 
ellipses-system with a single-ellipse-system; and then we have 

(r(xo), r ( x , ) ) c  V. 
A further question is this: Does either of these two kinematical 

descriptions of the Sun-Earth-system correspond to any intended appli- 
cation of G, to any 'really observed '  system? The answer is clearly: 
No - at least not anno 1976. m The empirically 'constructed models '  for 

the Sun-Ear th-system do not fit either r(xo) or r(xl). The actual paths of 
Sun and Ear th  derived from astronomical observations are more compli- 
cated than the big-ellipse-plus-small-ellipse description, to say nothing of 

the single-ellipse description. 
Let us call i the partial potential  model corresponding to the intended 

application Sun-Earth-system in 1976. It is the case that i # r(xo), i # 
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r(x~). Nevertheless, x0 and x~ are sometimes used because they approxi- 
mate i at least up to a certain degree. Again, this means formally that 
gravitation theory sometimes uses non-theoretical fuzzy sets V0 and V~ 

such that (i, r(xo))c Vo and {i, r(xl))c V1, and V1 c Vo. We could also say 
that gravitation theory sometimes uses theoretical fuzzy sets Uo, U1 such 
that for a theoretical extension of i , e ( i )~Mp, (e ( i ) , xo)cUo and 
{e(i), xl)~ Ul, and Ul c Uo. 

If we want to be more exact in the theoretical description of i, we may 
construct a potential model x2 that takes the forces of the other planets on 
the Earth and the Sun into account; that is, we take a model x2 of a th, sys. 
which approximates G while considering the external planetary forces on 
the Earth-Sun-system. The kinematical description derived from 

x2, r(x2)cMee, will be more complicated than the two-ellipses- 
description; but, of course, x2 will still not fit i exactly; it only fits i with a 
better  approximation than the previous models. This means that we pick 

out a fuzzy set U2 with ( e( i), x 2) ~ U2 and U2 c U~ ~ Uo; or, alternatively, 
a V2 with (i, r(x~)) e V2 and V2 c V1 c Vo. And so on. 

The essential moral to draw from the analysis of this simple example is 
roughly this. Approximation between th. sys.'s on the fully mechanical 
Me-level induces approximation between kinematic descriptions on the 
Mee-level. The last is in turn needed to compare the calculated kinematic 
descriptions with the really intended application we have got as a 
'constructed model '  from pre-theoretical data. In more general terms: 
Approximations on the theoretical level induce approximations on the 

non-theoretical level needed for zeroing-in a given intended application. 
These are, 1 think, the essential features of the approximation mechanism 
(within one theory). 

However,  from a general standpoint there is no guarantee that this 
mechanism will always work. There is, in principle, no guarantee that a 

uniformity o n  Mp will induce a 'corresponding' uniformity on Mee-  
notwithstanding the intuitive plausibility of the idea. In fact, there is no 
general proof to the effect that this induction is always possible. The 
critical axiom (D 1)-(6) is the t rouble-maker here: Assuming the present 
concept of uniformity, it can not be generally proved that ever increasing 
sharpness of the theoretical fuzzy sets induces an ever increasing sharp- 
ness of their corresponding non-theoretical restrictions. The basic reason 
for this impossibility lies in the fact that many theoretical models 
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correspond to only one non-theoretical partial model. It is easy, but 
somewhat lengthy, to see that this fact has the over-mentioned effect. The 
reader may check this by himself. 

Nevertheless, we should not give up our hopes too hastily. It can be 
shown that by restricting the original concept of uniformity with a further 
plausible condition one gets the wanted induction theorem. 

The modified uniformity we call an 'empirical uniformity' - 'empirical' 
in the sense that it is significant for empirical theories only (i.e. for 
theories with the distinction between theoretical and non-theoretical 

concepts). It can be proved, then, that an empirical uniformity on Mp 
induces a corresponding empirical uniformity on Mr, p. 

To state this, some auxiliary definitions are needed. 
Let 11 be a uniformity on M, and U, its fuzzy sets. 

(D 2) Rs(Ui)=:{(y, y')/Vx, x'(y = r(x) ^ y ' =  r(x') ^ (x, x)c  Ui}. 

Let us call Rs(Ui) the 'restriction' of fuzzy set U,. (Our aim may be 
roughly stated as the proof that the restriction of a fuzzy set is itself a fuzzy 
set.) Three trivial corollaries follow from this definition: 

(Th. 4) Rs(U1 u U2) = Rs(UI)uRs(U2).  
(Th. 5) R s ( U I ~  U2)c_Rs(Ut)c~Rs(U2). 
(Th. 6) U1 c U2-~Rs(UI)~ Rs(U2). 
(D 3) ~[I[]=:{V/VU(Ue 1I ^ V=Rs(U))}.  

Now, let us consider pairs of possible models that have exactly the same 
non-theoretical components,  i.e. the same non-theoretical parts. They 
are, so to say, 'empirically identical'. Two possible models of such a pair 
can be considered as describing exactly the same possible state of affairs; 
formally, they are different, but, as to their empirical import, they are 
equivalent. If possible model xl approximates possible model x2 by a 
certain degree U, and if we take an x'~ such that r(xO = r(x]), then the 
result of the approximation will be the same, i.e. x'j will approximate x2 by 
the same degree U. A change in the choice of the theoretical functions 
which has no bearing on the non-theoretical determination of the physi- 
cal system, is irrelevant for approximation matters. This is the intuitive 
content of the axiom we add to the original uniformity concept. 

(D 4) H is an empirical uniformity on Mp iff 
(1) H is a uniformity on Mp 
(2) /k U, x,, xz, x; ((x,, x2)~ U ^ r(xO = r(x',)-~ (x'l, x2)~ U). 
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In entirely the same way, an empirical uniformity on Mpp can be 
defined. But it is obvious that the concepts of an empirical uniformity on 
Mpp and of a uniformity on Mpp are coextensive, since, in this case, 
r(y) = y. 

Now we come to the 'induction theorem'. 

(Th. 7) If LI is an empirical uniformity on Mp, then 2311I] is a(n) 
(empirical) uniformity on Mpp. 

Proof: II is assumed to satisfy the seven axioms of an empirical 
uniformity. It has to be shown that 23[H] also satisfies the uniformity 
axioms with respect to Mpp. 

(1) 9.~J~[H]~(MppXMpp). 
By (D 3), it is obvious that 2311I] c_q_ ~ (Mpp x Mpp). 

And by (D 1)-(1) and (Th. 1), there is a U ~ l t  such that 0 ~  U; it 
follows from (D 3) that 0 ~ Rs(U) ~ 23111]. 

(2) "? v ,  c 2311I] ^ v~ _~ v2--, v2 ~ 2311.t]. 
There is a U1 ~ 1t with Vl = Rs(UO by (D 3). 

Let V2 = V1 U {y, y') . . . .  }, where y = r(x), y' = r(x') for some x, x'. 
Consider Us = U1U {(x, x') . . . .  } 

V2 = Rs(U2) by (D 2). 
U2 c H by (D 1)-(2). 
V 2 c 23[H] by (D 3). 

(3) ? v ,  c 2311I] ̂  v2 ~ 23111]--, v ,  n v~ ~ 23111]. 
By (D3)  there are U1, U2~11 such that VI=Rs(U1),  V~=Rs(U:) 

~ U~ N U2 c 11 by (D 1)-(3), (Th. 1). 
This means 0 ~ Rs(U11"7 U2). Further 

Rs( U, A U2) c Rs( U~) f"l Rs( U2) = V, N V2 by (Th. 5). 
Take V0=: Rs( U1 f3 U2). 
We have 0 ~ Vo _c V~ f3 V2 

Vo ~ 23[H] by (D 3). 
V1 f3 V2c 23111] by (D 1)-(2) for 23111], which we have already proved. 

(4) ? v c  23[1I]~ a ( M ~ )  ~_ V. 
By (D 3), there is some Uc11 with V =  Rs(U) 

A x e  Mp: (x, x)e  U by (D 1)-(4). 
Ax c Mp: (r(x), r(x))c Rs( U) = V by (D 2). 
This means A(Mp~) ~ V. 
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(5) ? v e ~[1I]-~ v - '  e ~[H]. 
This trivially follows from (D 1)-(5), (D 2), (D 3). 

(6) A v,  V v2(vl  e ~[l.t]-, v~_= v, ^ v2 c ~[H]). 
Take any V1 e ~[l~]. 
By (D 3), there is a U~ r such that V~ = Rs(UO. 

2 By (D 1)-(6), we know there is a U2~]]  such that U2c_ U1; Rs(U~)c_ 
Rs( U~) = V~ by (Th. 6). 

Consider V2---Rs(U2); Vz~23[LI], by (D3), U2~1I; V2=Rs(U2) 2= 
{(Y2, y'2)/Vv2((y2, v2)c Rs(U2)^ @2, y ' )~  Rs(U2))} = {(y2, y'~)/Vx2, x'2, 
w2, w'2(y2=r(x2)Ar(w2)=r(w~)^(x2, w2)6{U2^(w'2, x'2)e U2)} by 
(D 2). 

From r ( w 2 )  = r(wr2) it follows, by (D 4)-(2), that (w2, x~)c U2. That 
is, 
Rs(U2)2={(y2, yr2)/Vx2,xt2, w2(Y2=r(x2) A yt2=r(X~)A(X2, W2)c U2 A 
(W2, X~)C U2)} = Rs(U2). 

Since Rs(U~)~_ Rs(U1), we get 
V~= Rs(U~)~_Rs(U~)= V~. Q.E.D. 

An empirical uniformity on the theoretical level always induces a 
corresponding uniformity on the non-theoretical level in a natural way. 
Hence, I propose that, for approximation matters, the structuralistic 
theory concept should be supplemented with the notion of an empirical 
uniformity on M e. To put it formally, an empirical theory is no longer a 
pair (K, 17, but a triple 

(K, 1I, I), 

where 1I is an empirical uniformity defined on Mp of K. 

5 .  T H E  A P P R O X I M A T I V E  V E R S I O N  O F  T H E  E M P I R I C A L  C L A I M  O F  

A T H E O R Y  

A well-known aspect of the structuralistic approach is the reconstruction 
of the empirical content of a theory at a given time as a single 'holistic' 
proposition stating that the theory as a whole is applicable to its range of 
intended applications I (as a whole). If E, denotes the so-called 
'expanded core' of the theory at time t, then the theory-claim is, in 
Stegmiiller's symbolism: I e A (E,), where A is a set-theoretic operator 
applying the theoretical structure E) to the non-theoretical level (see e.g. 
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[8], p. 136). ~ ~ It is important to note here that the empirical claim of a 
theory is a historical time-relative entity. 

The original reconstruction takes the empirical claim of a theory as an 
exact claim. This is, of course, a strong simplification. The purpose of this 
section is to 'blur' that reconstruction in order to get a more realistic 
account of the structure of the empirical claim. Let us try to do this by 
using the explicated approximation concept. 

The basic idea is that the theoretical structure E, is not applied exactly, 
but only approximately to the domain I; and this is done by using many 
different fuzzy sets of the empirical uniformity 1~ associated with the 
theory. But, of course, not every fuzzy set will do. For one thing, 1t 
contains fuzzy sets too big (remember (D 1)-(2)) to be used in a reason- 
able way in the application of the theory. If you blur the application too 
much, nobody will take you seriously. Some fuzzy sets will be considered 
admissible, others not. 

What degree of fuzziness will still be considered admissible, is an issue 
that heavily depends on the particular i e I which is supposed to be 
explained. When applying the law of gravitation to planetary motion, we 
do not expect the same degree of approximation as in the case we apply it 
to the attraction between two large lead spheres on the Earth's surface, 
making measurements by means of a delicate torsion balance. 

However, the admissible degree of fuzziness not only depends on the 
particular application at stake. It also depends on the stage of scientific 
evolution. The expectations of the scientific community with respect to 
approximation change in time, according to varied and informal factors, 
like technological progress in detection and measurement, mathematical 
progress in the theoretical calculations, previous success attained by rival 
theories, etc. These are strongly pragmatic factors. It is hardly to expect 
that they will ever be completely and formally explicable. On the other 
hand, they are very important for the admission of a given fuzzy set for a 
particular application. In the reconstruction of the empirical claim of the 
theory, we should take them somehow into account. 

Here, we are facing a problem similar to that of formally determining 
the concept of an intended application, which is also strongly pragmatic. 
This problem has been thoroughly discussed in [6] and [8]. All that can be 
demanded from the philosopher of science in such cases, is that he tries to 
find some (weak) necessary conditions for the determination of the 
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concept in question. This is what I shall try to do here for the notion: 'class 
of admissible fuzzy sets (for the application of a theory at a given time)'. 

Let  us denote this class by 9~. 
Obviously, this class must be a subset of the empirical uniformity on 

Mp - or, alternatively, a subset of the induced uniformity on Mpp. Further, 
as already discussed, a too high degree of fuzziness in any application 
would appear unacceptable to the scientific community. So, it seems 
plausible to postulate a maximum for the admissible fuzziness in particu- 
lar applications. (Different kinds of applications will generally have 

different maxima.) Perhaps, it would also be plausible to introduce a 
minimum: It seems realistic to assume that we can never guarantee that 
full-blooded theories used by full-blooded scientists will exactly apply to 
any domain - at least, if they are not trivial. However,  I do not want to 
formally preclude the possibility of exact application at least in some 

particular kinds of domains of some particular theories; so, I shall not 
propound the minimum requirement here. (The reader who thinks it is 

really a necessary condition for admissible approximation, may easily add 
it to the a~ioms below.) An obvious requirement is further that the 
admissibility of a fuzzy set should be invariant with respect to purely 
theoretical changes in its models; that is, if U fully coincides with U' in its 
non-theoretical parts, and U is admissible, then U' should also be. A last 
requirement which really seems necessary to me, is that an admissible 

fuzzy set should have some non-trivial significance to at least one 
intended application of the theory; that is, every admissible fuzzy set 
should be used to give a non-trivial approximation of at least one 

intended application. This is the intuitive meaning of the last axiom of the 

list below. 
Since we do not want to preclude the possibility that other necessary 

conditions for the concept of admissible fuzzy sets could be postulated, 
we shall speak of a 'potential class of admissible fuzzy sets'. 

Let 1/be an empirical uniformity on Mp of theory T and I the range of 

intended applications of T. 
(D 5) ~ is a potential class of admissible fuzzy sets of 11 iff 
(1) ~_cIL 

(2) Vu,.(umc~^AU(U,,cu~u~9~)). 
(3) AU, U'(uegJA U'eg.IARs(U)=Rs(U')-~U'egl). 
(4) AUVx, x'(Ueg.l-~r(x)eI^r(x)#r(x')A{x,x')eU). 
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Observations: (D 5)-(2) allows for many different 'maxima' U,,, so long 

as they are not connected. In (D 5)-(4), the condition r (x )g  r(x') is 
necessary since otherwise the requirement would be trivially satisfied by 
identity pairs (x, x), which are all in every U. 

In an entirely analogous way, a concept of admissible fuzzy sets could 
be defined for a uniformity of Mr, e. Requirement  (D 5)-(3) would then 
reduce to a tautology. 

A question similar to that of the foregoing section can be raised now: 
Are classes of admissible fuzzy sets on the non-theoretical level related in 
some natural way to classes of admissible fuzzy sets on the theoretical 
level? The answer is: yes - so long as we restrict ourselves to the present 
list of axioms. ~2 It can be shown that a potential class of admissible fuzzy 
sets on Mp induces its corresponding class of admissible fuzzy sets on Mpp. 

Let ?1[ be a subclass of uniformity H on Mr,. We define: 

(D 6) ~[~l]=:{ V / V  U(U c ~l ^ V = Rs(U))}. 

(Th. 8) If ~)l is a potential class of admissible fuzzy sets on Mr,, then 
~ [ ~ ]  is a potential class of admissible fuzzy sets on Mm,. 

Proof: 
(1) ~ [ ~ ]  c ~[H],  by (D 6), (D 5), (D 3). 

(2) ? V v , ~ ( v . , ~ [ ~ ] ^ A v ( v . , c  w ,  v~ ~[~])). 
From (D 5)-(2), we know there is at least one Um ~ ~)| such that 
(A) A U( u, ,  c u -~  u ~  ~)l). 
Take V,,=: Rs( U,~). 
Suppose there were a Vo such that V,, c Vo, Vo c ~[~[]. 
This implies that there is a Uoc ~)l with Vo= Rs(UO). 
Since V0 ~ Vm, also Uo e U,~. Take Uo U U,,. 
By (Th. 4). Rs(UoU Urn)= Rs(Uo)U Rs(U.,)  = VoU Vm = "~, = 

Rs(U,). 
Since Rs(UoU U~)=Rs(UO) and U0c ~)l, also UoU U,, ~ ~1 by (D 5)- 

(3); further, U~ c U0 U U,,,. 
This contradicts (A). 
(3) is trivial since Rs(V)  = V. 
(4) easily follows from requirement (D 5)-(4) for ~.  Q.E.D.  
Now, suppose we are given a class of admissible fuzzy sets ~l to 

approximately apply an expanded c o r e  Et of theory T to the range I at a 
given time of the theory evolution. (~l is itself a time-relative entity.) 
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What does this mean? Roughly, this means that the exact claim I ~ A(Et) 
is blurred by an approximative c l a im- in  symbols: I~A(E , ) -  
constructed by means of ~l. How can ' l~A(Et)'  be made formally 
precise? 

To this purpose, it is useful to introduce a special notation which leads 
to a sort of 'approximation Iog ic ' - in  order to blur model-theoretic 
relations. 

'x - x "  means: VU(UE 9,1 ̂  (x, x')c U). I-~ 
For any model-theoretic predicates P, R, �9 

'P(~) '  means: Vx'(x ~ x'^ P(x')). 
'R(s y)'  means: Vx'(x - x ' ^  R(x', y)). 
It should be clear how R(~, )~), R(s y, •), etc. could be defined along 

the same lines. 
And for model-theoretic classes X, Y, . . .  we have: 

' X -  Y' means: A x V y ( x c X - - , y c  Y ^ x - y ) ^  
A y V x ( y  c Y-~ x ~ X ^ x - y). 

,/3(,~), means: V x ' ( x  ~ x '  ^ P(X')). 
' /~0(,  Y)' means: V X ' ( X - X '  ^ R(X', Y))etc. 
To further develop this device in order  to obtain a kind of 'approxima- 

tion calculus' could prove to be an interesting task for its own sake. But 
this is not our present aim. What we want is to use this device for precisely 

reconstructing an approximative version of '1 e A (E,)'. 
Since the empirical claim of the theory is a dyadic e -relation between a 

set and a class of sets, we can, in principle, blur it in three different ways: 
Either to blur the first relation term only, or only to blur the second one, 
or to blur both of them simultaneously. We have, then, following pos- 
sibilities for expressing the approximative claim of the theory: 

(a) [cA(Et)  i.e. V Y ( Y - - I A  YeA(E,)) .  
(b) I~A(Et)  i.e. V ~ s ~ ( ~ A ( E , ) A I ~ ) .  
(c) [EA(E~-~t) i.e. V Y , ~ ( Y ~ I ^ x ~ - A ( E , ) ^ Y c ~ ) .  
It should be noted that (b) implies (a), but not conversely; and (c) has no 

logical relationship to (a) or (b). Each one of these statements has a 
formally precise meaning according to the previous definitions. The 
symbol ~ allows for a strong abbreviation of the respective approxima- 
ti~,e propositions; otherwise, the expressions (a), (b), (c) would be lengthy 
and cumbersome. As an example, take the most simple of them, the first 
one, which runs as follows when explicited without ~ : 

(a') V Y ( Y c A ( E , ) ^ A y V y ' ,  V ( y c  I - ~ y ' ~  Y^ V ~ [ ~ ] A ( y ,  y')E V). 
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The explicit form of (b) and (c) is still more complicated. It is, however, 
totally precise. 

The question now is, which of the three possible versions (a), (b), and 
(c) is the most adequate for representing the approximative claim of an 
empirical theory. (a) means that we take approximations only on the 
intended applications; this does not seem plausible, since approximation 
of laws is undertaken independently of the intended applications - as the 
example of gravitation law applied to the Earth-Sun-system has already 
shown. For quite the opposite reasons, (b) does not seem to be a good 
candidate either, since even if we take a theoretical approximation of a 
law, we shall not be warranted to infer that this approximation exactly 
applies to some intended application (remember the same example). So, 
it really seems that ' [~  A-~,) '  is the best candidate for expressing the 
approximative empirical claim of the theory: Its theoretical systematiza- 
tions as well as its intended applications are generally blurred. In this way, 
there may be some hope for the scientist that "the theory fits the facts". 

N O T E S  

* Preliminary research on this paper was partly supported by DFG-grant 'Ka-407'. I would 
like to thank Professors A. Kamlah and J. D. Sneed for many stimulating discussions on 
topics related to this paper. 

Unfortunately, the term 'approximation' contributes itself to the teleological myth of 
science coming closer and closer to an Absolute Goal waiting for us somewhere. But the 
explication of the approximative relations which I have in mind and which is (partly) 
exposed in this paper, is completely independent of any teleological ideas about science one 
might hold. 
2 Prof. Ludwig only deals with physical theories. However, his explication is stated in such 
general terms that it should be applicable to any theory whose axioms are expressed in 
'mathematical language'. Since set theory can be included in mathematical language, it 
follows that Ludwig's explication is relevant to almost every significant empirical theory. 
3 Although the formulations in the present article do not have much in common with 
Ludwig's. They rather belong to the Suppes-Sneedian framework. My main debt to Ludwig 
is the idea of using the topological notion of a uniformity for reconstructing approximative 
relations in empirical theories. Of course, I am responsible for the concrete details of 
formulation and interpretation. 
4 The reader interested in the arguments for introducing a 'more empirical' notion of 
empirical theory should read the relevant passages in the books of J. D. Sneed [6] and W. 
Stegmiiller [8], where the concept of a physical theory is discussed. 
.s A first step towards a logical analysis of this level has been made by P. Suppes in [11]. 
6 The reader not well acquainted with Suppes' ideas may consult his explanations and 
examples in [10], Chapter 12, and [ 12], Chapter 2. 



2 2 6  c .  U L I S E S  M O U L I N E S  

v The idea of explicating approximation in empirical theories by means of uniform 
structures goes back to Prof. Ludwig. But Ludwig's approximated entities do not corres- 
pond to our potential models; they are variously defined tupels of terms. I consider the 
present use of uniform structures to be simpler and more homogeneous than Ludwig's. 

It is not assumed that the diagonal is itself a fuzzy set; this can not be proved in this axiom 
system. And I think this is all right. It is science fiction to assume that a theory will ever be 
supposed to apply with absolute exactness. 
o The reader is reminded that the sets Mp and Mpp are related by a many-one restriction 
function r such that it applies a possible model to its corresponding partial model by 'cutting' 
the T-theoretical terms: r[Mp] = Mpp. 
~o Against Sneed, I consider the concept of range of intended applications as a historical 
time-relative notion. Most of Newton's intended applications are not the intended applica- 
tions of present mechanics - of course, most of them are nearly the same. I have no use for a 
notion of God's intended applications of mechanics. 

~ In more recent writings, Sneed and his collaborators reconstruct the empirical claim of a 
theory by using the notion of a 'theory-net' instead of an "expanded core'. But this 
modification has no particular bearing on the present issue. 
~2 The addition of the 'minimum' postulate to (D 5) would not modify this assertion, as can 
be easily proved. 
~3 Since the admissible class ~l on the Mp-level induces an admissible class ~[~1] on the 
Mpp-level by (Th. 8), the relation x - x '  on the Mp-level can always be translated into a 
corresponding relation r(x)~ r(x') on the Mpp-level. 
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