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Abstract. We study a neural network consisting of 
model neurons whose efferent synapses are either exci- 
tatory or inhibitory. They are densely interconnected on 
a local scale, but only sparsely on a larger scale. The 
local clusters are described by the mean activities of 
excitatory and inhibitory neurons. The equations for 
these activities define a neuronal oscillator, which can 
be switched between an active and a passive state by an 
external input. Investigating the coupling of two of 
these oscillators we found their coupling behaviour to 
be activity-dependent. They are tightly coupled and 
almost synchronized if both oscillators are active, but 
weakly coupled if one or both oscillators are passive. 
This activity-dependent coupling is independent of the 
underlying connectivities, which are fixed. Finally, for 
coupled active oscillators we derive a simplified descrip- 
tion by disregarding the amplitudes of the oscillators 
and working with their phases. We use this simplified 
description in a compagnion article to model the oscil- 
lations in the visual cortex. 

1 Introduction 

Recent studies of the visual cortex of cats and monkeys 
(Gray and Singer 1989; Gray et al. 1989; Eckhorn et al. 
1988; Freeman and van Dijk 1987) found oscillatory 
responses which are induced by external stimuli. The 
frequency of these oscillations, which are not stimulus- 
locked, lies in the range 40-60 Hz. Similar oscillations 
have long been known for the olfactory bulb of rats 
and rabbits by investigations of Freeman (Freeman 
1975; Freeman et al. 1988). For the oscillations in the 
visual cortex, which are synchronized over large cortical 
distances up to 7 mm, there exists some ideas about the 
generation and the purpose of these oscillations. Recent 
articles (Kammen et al. 1989; Kammen et al. 1990; 
Sporns et al. 1989; Finkel and Edelman 1989) suggest 
that there exist global feedback connections to other 
parts of the cortex, which synchronize the oscillations 
in the visual cortex. 

It will be shown in the following study that the 
oscillations in the visual cortex can be understood as an 
intrinsic phenomenon of a single column. If we assume 
long range but sparse interactions between columns in 
one cortical layer we can also explain the experimen- 
tally observed synchronization effects. 

In this way we avoid the problem of (Kammen et 
al. 1989, 1990) where the global feedback connections 
of the so called comparator model tend to synchronize 
the phases of distributed neural oscillators even if the 
figure which generates the stimulus is not connected 
(see below). But we are aware that feedback connec- 
tions to other areas exist and will be necessary to 
explain more complicated linking effects. 

Our investigation will be reported in two articles. In 
the first one we describe the emergence of oscillations in 
a single column which is modelled by subpopulations of 
excitatory and inhibitory neurons. Furthermore we show 
that these oscillations can be described by the phases of 
limit cycle oscillators irrespective of the amplitudes. 

In the second article we introduce long range sparse 
interactions between different columns with the same 
orientation and velocity preference and show that this 
leads to a nonlinear interaction. 

Our first paper is organized as follows. In Sect. 2, 
we derive the appropriate macroscopic mean-field equa- 
tions for a cluster of densily interconnected neurons 
which model a single column. Two columns are coupled 
in Sect. 3, and we introduce a reduced phase description 
of coupled oscillators. We find an activity-dependent 
coupling between these phase oscillators. The coupling 
is strong, if the two oscillators are active, and remains 
weak, if one or both oscillators are passive. Section 4 
contains a summary. Appendix A gives a derivation of 
the mean-field equations, supported by numerical simu- 
lations. A derivation of the equations for the phases of 
the oscillators is given in Appendix B. 

2 Model for a single column 

We model a single orientation and velocity specific 
column in the visual cortex (Kandel and Schwarz 1985) 
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by a set of two neuron populations which are distin- 
guished by the fact that their axons end with excitatory 
or inhibitory synapses, respectively (Dale's law, see for 
instance (Wilson and Cowan 1972; Shinomoto 1987)). 

The description for such groups can be generalized 
to clusters of neurons, which consist of more than two 
types of model neurons, and it is related to the concepts 
of neural assemblies (Gerstein et al. 1989) or to the 
theory of neuronal groups (Edelman 1978, 1987). 

Each neuron can be described by its mean firing rate 
ek(t) or il(t), where ek(t) stands for excitatory and il(t) 
for inhibitory neurons and k = 1 . . . . .  Ne, ! = 1 . . . . .  
N~. If  we make the biologically reasonable assumption 
that within a column each neuron is coupled to all 
others and denote the couplings as shown in Fig. 1, we 
arrive at the following set of  differential equations for 
the activities ek(t) and il(t): 

Ne 

dek/d t  = --ek + S(ae((1/N~) ~ Uklel 
1 = 1  

Ni 

- -  ( 1 / N i )  ~" vklil  - O~ + P k ) )  
1 = 1  

k = l , . . . , N e  

( la)  

dik/dt  = --ik + S(a,((1/N~) ~ Wktet 
l = 1  

Ni 

- ( 1 / N i )  ~,, Zktit--O~)) k = l  . . . . .  N, ( lb)  
l = 1  

Here t denotes time, S(x)  = ( 1 + exp( - x)) - i models a 
sigmoid function and we see that if the couplings 
Ukl, Vkl, Wkl, Zkl and the external stimulus Pk are switched 
off, all activities simply decay exponentially to zero, 
provided the thresholds 0~, and 0~, are large enough. We 
note that (1) are related to Hopfield's model (Hopfield 
1984) by an affine transformation. Hopfield used the 
input into one neuron, hT, = Y~cz i uktel - -  ~.Ni__ I Vklil +Pk  
and similar for h~ as the variable which describes the 
state of a neuron. With this transformation ( l )  becomes 
equivalent to (5) of (Hopfield 1984). For  all to all 
couplings with means c I = 1/N 2 ~,k,lUkl, C 2 = 1/ 
( N e N i ) E k ,  ll)kl , C a = 1 / ( N e N i ) Z k , l W k l  and C 4 = 1/N 2 Zka Zkl 
the activities of  the subpopulations become nonzero 

I P 

+ C 3 + 

C 2 

Fig. 1. Schematic representation of  a population of  two coupled 
subpopulations, one being the inhibitory one (denoted by I) and the 
other being the excitatory one (denoted by E). The couplings are 
denoted by cm to c4, the + and - signs for excitatory resp. inhibitory 
coupling, P is the external input 

and can be described by their means (the mean-fields of  
our theory): 

Ne 
E(t)  = (1/N~) ~ et(t) (2a) 

l = l  

Ni 

I(t) = (1/Ni) ~ it(t) (2b) 
l = l  

which in turn obey the differential equations: 

= - E  + S(ae(ClE - c2I - e "  + P)) (3a) 

] = - I  + S(ai(c3E - c4I - e ' ) )  (3b) 

where e e  = (1/Ne)Z~= l Oek, e i =  l /N,  Y.~L l O~ k and 
P = (1/Ue) ~,Ne lPk. 

Equations (3) are correct to order 1 / x / ~  as shown 
in Appendix A. If  we associate with each column about 
104 neurons, we get 1 / x / ~  ~ 10 -2. This result shows, 
that the neural field equations introduced in (Wilson 
and Cowan 1972), which become equivalent to (3) in 
the limit % = 1, z; = 1 and refractory period r = 0 (see 
(7) and (8) of  Wilson and Cowan 1972) can be derived 
rigorously starting from individual neurons with long 
range couplings. In contrast to Wilson and Cowan we 
neglect the refractory period of  each neuron, i.e. we set 
r = 0. This is justified by the fact that we are interested 
in oscillations in the visual cortex which have time 
scales of  about 20 ms which are much larger than the 
absolute refractory period which is of  order 1 ms. 

In the following we choose for the averaged cou- 
plings the values c~ = 10, c2 = 6, c3 = 10, Ca = 1, for the 
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Fig. 2. The bifurcation diagram. Shown is - as function of  the input 
P - the value E 0 of  the fixed points. Solid lines indicate stable fixed 
points, broken lines instable fixed points. For low values of  P there is 
a stable fixed point only, at Ptl an additional pair o f  fixed points 
arises, one of  them a saddle, the other a stable fixed point with 
complex conjugate eigcnvalues, but negative realpart. Increasing P 
further, the fixed point with the complex conjugate eigenvalues under- 
goes (at Pc) a Hopf  bifurcation, i.e. its two eigenvalues cross the 
imaginary axis, so creating the limit cycle of  the system. At P l : ,  the 
stable fixed point meets the saddle point and disappears, leaving only 
the unstable fixed point with its limit cycle. At Phi, a new pair of  
fixed points arises, a stable one and a saddle. The limit cycle becomes 
semi-stable, i.e. it is attracting to all points that lie inside it, and 
repelling to the points outside. If  one increases P further, ultimately 
(at Ph2) the saddle and the unstable fixed point met and disappear 
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Fig. 3. Amplitude A (a) and frequency co(b) of the limit cycle as 
function of the input P. The results are obtained by numerical 
integration of (3) 

prefactors a e - -  1.2, a~ = 2 and ~9 ~ = 2 and ~ i  = 3.5 for 
the thresholds, similar to the values reported by 
Wilson and Cowan. 

The dynamical behaviour of  the solutions of  (3) as a 
function of  the input stimulus P is summarized in the 
bifurcation diagram shown in Fig. 2. Our main conclu- 
sion is that for small stimuli P ~< - 0 . 9  the mean ac- 
tivities of  b o t h  populations are time independent i.e. 
we have a stable fixed point E ( t ) = E o ,  I ( t ) = I o ,  
whereas for higher stimuli - 0 . 9  ~<P ~<0.9 there oc- 
curs a transition to oscillatory behaviour via a Hopf  
bifurcation, which has also been seen in (Baird 1986; 
Wilson and Cowan 1972). The amplitude of  the exci- 
tatory activity, given as A ( P ) = ( 1 / 2 ) ( m a x { E ( t ) } -  
min{E(t)}) and the frequency co(P) of  the correspond- 
ing limit cycle as obtained by numerical integration of  
(3) are shown in Fig. 3. This suggests that the oscilla- 
tions which have been observed experimentally in the 
orientation specific columns in the visual cortex of  cats 
could result from a dynamical competition between 
two macroscopically coupled subpopulations of  neu- 
rons within each column. In the following we make 
explicit use of  the fact that in our model this oscilla- 
tion can be switched on and off via the external stimu- 
lus (as shown in Fig. 3b). 
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3 Coupled columns and phase description 

In the following we couple two units according to Fig. 
4. This leads to the following equations of  motion: 

E k = - E k + S ( A ~ + q a ~ U t ) ,  k , l = l , 2 k r  (4a) 

] k  = - -  Ik Jr" S ( A  i k q- ~lai Vt ), k ,  1 = 1, 2 k r 1 (4b )  

where: 

Ut = al Et - a2It 

v t  = a3E~ - a ,  It 

Aek = ae(Cl Ek --  C2Ik -- 0 e -F Pk)  

A~  = a i ( c3E  k - c4I  k - -  6) ~) 

By expanding (4) to first order in the coupling strength 
r/, which can be done if the coupling is weak 
r /~max{cj} j=l  .... 4. and introducing the deviations 
Xk : = Ek -- Eko oC rk COS Ckk, Yk == Ik --  Iko OC r k sin ~b k 
from the unstable fixed points (Ek0, Ik0), we obtain 
analytically, as shown in Appendix B, the following 
equations for the phases ~bl, 2 of  the limit cycle oscilla- 
tors (Kuramoto 1984; Winfree 1980) which describe 
two coupled columns in the active state: 

q~l = col - K12 sin(~bl - 02) (5a) 

q~2 = co2 - K21 sin(02 - ~bl) (5b) 

where col, 2 are the frequencies of  the oscillators, and the 
couplings Kkt (with Kkt # Ktk in general) are propor- 
tional to t/. The expansion (4) with respect to t/, i.e. 
Ek = --Ek + s(Aek) + rWeS'(A~)Ut and similar for ]k, 

�9 G leads to the coupling terms Lekt = r l a e S  ( A k ) U  t and 
L i t  = r l a i S ' ( A ~ ) V t  respectively. They depend strongly 
on the inputs into the two oscillators, which is shown in 

Is al + 
a2 E2 ,_ 

Fig. 4. Model of the couPlings of two neuronal oscillators. Each 
oscillator is connected to the other one by coupling a I and a 4. Again 
the "+"  and " - "  and signs stand for excitatory respective inhibitory 
couplings. We have omitted the designation of the intrinsic couplings 
c~ to c 4 



80 

K 
0.120 

0.105 

0.090 

0.075 

0.060 

0.045 

0.030 

0.015 

0.000 
. . . . . . . . .  i . . . . . . . . .  , 

-2  -1 0 

P 

Fig. 5. The activity dependent coupling K = adlS'(A 0 of the passive 
oscillator as a function of the input into this oscillator, while the 
input into the active oscillator is fixed. Note the steep step in the 
coupling constant, and the hysteresis in the switching-on process. The 
solid line is for increasing the input into the passive oscillator, while 
the dashed line stands for decreasing input. This figure is obtained by 
numerical integration of two coupled oscillators, the plotted coupling 
constant is the long time average (l/T)SrK(t)dt 

Fig. 5 for  the prefac tor  o f  L~t, K = qaeS'(Aek). Figure 5 
is obta ined  by increasing the input  into oscillator k 
while holding the input  into oscillator l on a cons tant  
value where a selfsustained oscillation occurs. It  is seen 
that  the coupling is weak if one or bo th  oscillators are 
passive, and it is enhanced by nearly one order  of  
magni tude  if bo th  oscillators are active. 

4 Discussion 

We have int roduced a mean-field theory for  the dynam-  
ical behaviour  o f  neuronal  groups  o f  densely intercon- 
nected model  neurons.  The  theory reduces drastically 
the number  of  variables involved in a description of  
such a group,  and  therefore it is possible to economize 
compu te r  power  in large scale integrat ion of  model  
neurons,  such as in Sporns  et al. (1989) and Finkel and 
Ede lman  (1989). 

In  cases, where such clusters behave oscillatory, we 
have shown that  it is possible to reduce the set o f  
variables once more:  I t  is sufficient to use the phase  of  
such an oscillator as the only remaining variable,  if  the 
radius of  the limit cycle is robus t  against  weak pertur-  
bations.  

In  our  system, we found  that  the coupling o f  such 
neuronal  groups  leads to a novel  feature,  i.e. the cou- 
pling strength depends on the activity o f  the two cou- 
pled clusters. It  is enhanced nearly one order  o f  
magni tude,  if the two coupled columns are active. 

The advan tage  of  this reduct ion is, that  it gives a 
t ransparen t  descript ion o f  the synchronizat ion be- 
hav iour  o f  such nonl inear  oscillators and eventually 
makes  it possible to get analytical  results. In a com- 
pagnion  article we will use the results o f  this reduct ion 
to model  the experimental ly  observed synchronizat ion 
o f  oscillations in the visual cortex. 

Acknowledgements. It is a pleasure to thank W. Singer for most 
fruitful discussion and the Sonderforschungsbereich 185 Frankfurt] 
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Appendix A: derivation of  the mean field equations and 
numerical simulations 

Summat ion  in (1) over  k yields: 

Ne 
E = - E + ( 1 / N e )  ~ S(aek) (6a) 

k = l  

Ni 
1 = - - I + ( 1 / N , )  ~ S(a~) (6b) 

k = l  

where a~, and  a~, are abbrevia t ions  for  the a rguments  o f  
the s igmoidfunct ions (see (1)). We decompose  each 
term, i.e. the couplings Ukt = Cl + 6Ukt etc. and the activ- 
ities ek = E + ~Sek and ik = I + 3ik in its mean  value plus 
a f luctuation a2' i = A e, i + 6a~,' ~, where A e, ~ = 1/ 
Ne,~ Y'~='I a~' i and expand (6) as: 

Ne 

= - E  + (1/Ne) ~ (S(A e) + S'(Ae)~aek 
k = l  

+ (l/2)S"(Ae)(~Sa~) 2 + . . . )  
Ni 

] =  - I  +(1/N,) ~ (S(A') + S'(A')ba~ 
k = l  

+ (1/2)S"(A')(ra~,) 2 + . . . )  

The  lowest order  terms contain  no fluctuations and 
yield the mean  field approx ima t ion  eqns (3). All first 
order  terms cancel, because the f luctuations have mean  
zero by construct ion.  Terms  o f  the fo rm ( I /  
N)  E~'= ~ 6Uktret can be es t imated as follows. I f  we as- 
sume, tha t  all 6uk~ have probabi l i ty  distr ibutions p(rUk~) 
which are independent  o f  k and l, then the central  limit 
theorem guarantees,  tha t  ( 1/N) Z~V= ] 6Ukl obeys a gaus- 
sian probabi l i ty  distr ibution with mean  zero and  stan- 
dard  deviat ion 1/,v/-N. Therefore  (1/N) Y~=lrUkl= 
d~(1/w/-N ) and (1/N)E~=~(1/N) Xtu=~fUktfet=(9(1/ 

w/-N)( 1/U)X~v= x fie, = d~( 1 / ~ / N ) .  
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Fig. 6. Comparison between numerical simulation of (1) (micro- 
scopic description- broken line) and numerical integration of (3) 
(macroscopic description - solid line). Plotted is the activity E of the 
excitatory population as function of time t. The system size is 
Are = Ni = 400. Only small deviation are seen, which scale approxi- 
mately as I/v/-N, w e r e  we used as an error parameter the phase 
difference per period between the two oscillations 



To check the validity of our mean-field approxima- 
tion we performed numerical simulations of (1). The 
values for the matrices Ukt, Vk~, Wkt and Zkt have been 
chosen at random between zero and the twice of their 
mean values. All the inputs Pk were set to the same 
value, and so were the thresholds. We used a fourth 
order Runge-Kutta integration routine and investigated 
systems of four different sizes, N = 5 0 ,  N = 1 0 0 ,  
N = 200 and N = 400, where we have chosen the num- 
bers of the neurons of the two subpopulations to be 
equal, N = N~ = N;. This can be done without loss of 
generality, because the mean values of the couplings are 
the only relevant variables. Our results differed from 
those obtained by direct integration of (3) only by finite 
size effects which are of order ~(1/x/N), see Fig. 6 for 
comparison. 

Appendix B: derivation of the phase equations 

We introduce in (4) the deviations Xk ' = E k -  Eko and 
Yk := Ik --  Iko from the unstable fixed points Eko, Ik0 and 
expand the sigrnoid functions into a Taylorseries up to 
third order: 

3 

YCk = - - X k  + ~ (1 /v! )a~S~)(A~)(6A~ + nU,)  ~ 
v = l  

+ (9((6Aek + qUt) ~) (7a) 
3 

J~k = --Yk + ~ (1/v!)a~'S~)(Aiko)(6A~k + qVt)  ~ 
v = l  

+ O((6A~k + qVt)  ~) (7b) 

withk,  l = l , 2 a n d k # l  

where the terms of zero order in 6Aek'~ cancelled, and 
with 6Aek = C~Xk -- c2y k and 6A~ = c3x k - -  c4y k. Equa- 
tions (7) become: 

3 
yc~ = - x ~  + Y~ (1/v!)a~S~)(ag)(6~e~) ~ + ~((6.4g) ") 

v = l  

2 
+rlU~ ~. ( 1 / v ! )a~+ 'S~+~  2) (8a) 

v ~ 0  

3 
.iCk = --Xk + ~_, (1/v!)a~.S(~)(A~)(fA~) ~ + ~((6A~) 4) 

V = I  

2 

+nV~ ~ ( 1 / v ! ) a ~ + ~ S ~ + ~  (8b) 
v = 0  

This expansion is the starting point for the deriva- 
tion of the normal form of the Hopf bifurcation (Guck- 
enheimer and Holmes 1983; Hassard and Wan 1978) 
and for the derivation of the phase equations. First we 
consider only the uncoupled situation q = 0. We trans- 
form (8) to new coordinates ~7, )~ (Hirsch and Smale 
1974) via: 

X k = ~"dk2 k "JI- (l,~k - -  ak2)fik (9a) 

Yk = akl f ik  ( 9 b )  

with a~ - 1 + a~cl S ( A k )  , akl2 - - a e c 2 S  ( A k )  , 
a2kl , i �9 i a i c a S  ( A k ) ,  ak2 --1 = = = --  a i c 4 S  ( A k ) ,  [Zk 
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(ak ,+ak2) /2  and s = ( --a,2a2,k k _ (ak_ak2 )2 /4 ) l / 2"  
This diagonalizes the linear part of (8): 

~k = Uks -- t2kfik + (9('22, ~2) (90  

Yk = f2kxk +/~k.~k + ~(g2, fi~) (9d) 

A subsequent nonlinear transformation (Hassard 
and Wan 1978), U k : X k ' ~ - ~ 2 < ~ i + j < ~ 3 ~ i k ) x ~ f ~  and 

v o(k) ~.i ~d Vk = Y k  "1-~"2<~i+j<~31~O" -~kYk, r e m o v e s  the terms of sec -  
o n d  order from (8), and finally yields the Hopf normal 
form in polar coordinates Uk = rk COS Ckk, Vk = rk sin r k: 

f'k = ftkrk "~- akrak -k ~(r~) (10a) 

~k = f2k + bk r2 + e(r  4) (10b) 

where ak and bk depend on the coefficients of the second 
and third order terms of the Taylor series (8). Thereby 
one can identify the parameters, which leads to the 
amplitude rok = --X/--~k/ak and the frequency 
O k = ~"2 k -- lZkbk/a k of the limit cycle. 

We now discuss two coupled oscillators. By keeping 
in (8) only the leading term to order q, Le. a~S ' (A~)Ut  
and transforming the equations for each oscillator to 
their Hopf normal form (see also (Baird 1986)), we 
obtain in rectangular coordinates: 

~l k = U k U  k - -  ~ '~kVk "~- (aku  k --  bkVk)(U 2 -t- V 2) 

+ rlKuUl(ut, vl) + tlO(u 2 + v 2) ( l la )  

bk = t2kUk + I~kVk + (akVk + bkUk)(U 2 + V 2) ( l lb )  

K.  = a~S ' ( , 4~ ) / t~  (11c) 

Ul(ut, vt) = a, t2tul + (a,(ul - at22) - a2at:l)Vt ( l ld)  

with k , l =  1, 2 and k # l  

where we have chosen Vt = 0 for simplicity. According 
to (Kuramoto 1984) we can reduce (11) to equations 
for the phases alone by application of the theory of 
phase description, which yields: 

~k=COk+Fkt(dpk, dPt), k , l = l , 2 a n d k v ~ l  (12) 

where 

rkt( tkk, dp, ) = rlKuZ( dpk ) Ut(u,( dpt ), vt( dp, ) ) 

Z(dpk) = - - (  1/(akrOk))(bk COS flPk -k ak sin ~bk) 

Z(dpk) is the first component of the phase-dependent 
sensitivity, which measures the influence of an external 
perturbation on the limit cycle (see (3.2.9) in Kuramoto 
1984). The term Ut has to be evaluated along the 
unperturbed limit cycle, which is the solution ~k = 0 of 
(10) and is parametrized as Uk=rokCOSdpk and 
Vk = rok sin ~b k. 

The coupling F k l ( ~ k ,  (~l) between the phases consists 
of two parts involving different time scales. It can be split 
into a term proportional to sin(~k + q~t + ~kl), which 
undergoes a fast motion with frequency c~ where 
c~ = to1 + c02, and a term sin(~k -- ~t -- ~tkt), which varies 
on a longer time scale. We make these different time 
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scales more  explici t  by  in t roduc ing  into  (12) new vari-  
ables  ~bk .'= (1/2)03t + ~b k to obta in:  

~k = ACOk -- Kkt sin(~k -- ~bt --  ~kt) 

-- K'kt sin(e3t + ~'k + ~'l + 07kt), 

k , l =  1,2 and  k ~ l  (13) 

with 

Kkt = t l ( a e S ' ( A ~ ) r o t ) / ( f 2 k a k r o k ) ~  B 2 

tan  ~kt = A / B  

A = bkal f2t + ak(al (Itt -- at22) --  a2at21) 

B = bk(al (~t -- a122) -- a2a~l)) -- akal f2t 

,'109 k = 09 k -- 03 

We have omi t ted  the explici t  express ions  for  gkl and  
~kt, because this terms will be averat~ed out  as shown 
below. Equa t ion  (13) shows, tha t  ~'k ha rd ly  changes  
dur ing  a pe r iod  T = 4 ~ / 0 3 ,  because KklOCrl and A O k /  
03 ,~ 1 are  small .  Averag ing  (13) over  one pe r iod  T by 
in tegra t ing  each term over  the in terval  [0, T], the ex- 
plicit ly t -dependen t  term cancels ( K u r a m o t o  1984; 
Nayfeh  and  M o o k  1979): 

~k = Ao~k --  Kkt sin(~k -- ~bt --  ~tkl) k, l = 1, 2 and  k ~ 1 

(14) 

which is (5). Note ,  tha t  the phases  $k are t ime coarse  
gra ined variables.  Thei r  use can be mo t iva t ed  fur ther  by  
the fact, tha t  the exper imenta l ly  measured  phases  are  
t ime coarse  grained,  too,  because  they have been ob-  
ta ined f rom filtered signals, and  we recall  tha t  a low 
pass  filter jus t  pe r forms  an  in tegra t ion  in time, which 
el iminates  high frequencies.  

F ina l ly  we assume tha t  the phase  0tkt can be ne- 
glected wi thou t  changing  our  results.  This  is just i f ied by  
the fol lowing facts: F i rs t  we observed  numer ica l ly  tha t  
~kt depends  only  weakly  on Pk and  Pt, and  second it is 
found  in (Sakaguch i  and  K u r a m o t o  1986) tha t  the 
add i t iona l  phase  makes  synchron iza t ion  difficult, bu t  
still possible.  
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