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Abstract.  A theoretical analysis of two models of the 
vestibulo-ocular and optokinetic systems was per- 
formed. Each model contains a filter element in the 
vestibular periphery to account for peripheral adap- 
tation, and a filter element in the central vestibulo- 
optokinetic circuit to account for central adaptation. 
Both models account for 1 adaptation, i.e. a response 
decay to a constant angular acceleration input, in both 
peripheral vestibular afferent and vestibulo-ocular 
reflex (VOR) responses and 2 the reversal phases of 
optokinetic after-nystagmus (OKAN) and the VOR 
and 3 oscillatory behavior such as periodic alternating 
nystagmus. The two models differ regarding the order 
of their VOR transfer function. Also, they predict 
different OKAN patterns following a prolonged opto- 
kinetic stimulus. These models have behavioral impli- 
cations and suggest future experiments. 

seen during sustained acceleratory stimuli (Boumans 
et al. 1983; Brown and Wolfe 1969; Malcolm and Jones 
1970; Paige 1983a) nor the reversal in direction that 
follows the previously mentioned exponential decay in 
the VOR response to brief angular acceleration (Sills et 
al. 1978; Aschan and Bergstedt 1955; Jeannerod et al. 
1975). Subsequent models of the VOR accounted for 
these behaviors by the inclusion of an "adaptation 
operator" (Young and Oman 1969; Malcolm and 
Jones 1970; Schmid et al. 1971). These operators stored 
signals in the path between the inner ear and the eye 
muscles and, because their contents were subtracted 
from the unadapted output, caused the response 
decline and undershoot behaviors mentioned above. 

Shown in Fig. 1 are block diagrams, based on work 
by Young and Oman (1969) and Malcolm and Jones 
(1970), of two models of the VOR that contain 
adaptation operators. Although the models in Fig. 1 

Introduction 

The vestibulo-ocular reflex (VOR) acts to maintain the 
orientation of the eyes such that visual targets remain 
stable on the retina during head movement. However, 
during constant velocity head movements in the dark, 
eye velocity is equal and opposite to head velocity for 
only a few seconds because eye velocity decays toward 
zero. The pattern with which eye velocity declines has 
prompted the development of many mathematical 
models of vestibular signal processing. Early models of 
the VOR used a mathematical form developed for the 
peripheral vestibular apparatus, i.e. the "torsion pen- 
dulum model" of semicircular canal cupular move- 
ment (see Wilson and Jones 1979). These models 
predicted that the response, in terms of slow compo- 
nent eye velocity, to a brief angular acceleration of the 
head would consist primarily of a decaying exponen- 
tial. Such models did not predict the decay of response 
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Fig. la and b. Vestibulo-ocular reflex models that include adap- 
tation operators, a Based on work by Young and Oman (1969). 
Note that a negative feedback loop is used to create the 
adaptation operator, b Based on work by Malcolm and Jones 
(1970). Note that a negative feed-forward loop is used to create 
the adaptation operator. In both models, s is the Laplace 
operator,/~ is eye velocity,/:/is head velocity, T~ is the cupular 
time constant, and T~ is the adaptation time constant 
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differ from one another, both have the identical VOR 
transfer function: 

--sT~ sT, 
H - s T ~ + l  STa+l' (1) 

where/~ is eye velocity,/~ is head velocity, T~ is the long 
peripheral vestibular time constant, and Ta is the 
adaptation time constant. This transfer function is 
characteristic of a second order overdamped system 
(Hostetter et al. 1982). In other words, the impulse 
response of/~ can be expressed as the sum of two 
decaying exponentials. Because their transfer functions 
are identical, the models in Fig. 1 make identical 
predictions of behavior. Accordingly, both models 
account for VOR response decline following pro- 
longed constant angular acceleration and for the 
reversal in direction of vestibular nystagmus that 
occurs following brief, unidirectional rotational ac- 
celerations. These models do not address the question 
of whether the adaptation process occurs in peripheral 
vestibular (inner ear and eighth cranial nerve) or 
central vestibular (brain stem and cerebellum) 
structures. 

Subsequent models of the VOR accounted for not 
only adaptation but also for the known association 
between vestibular and optokinetic responses (Waespe 
and Henn 1977a, b). These models employed shared 
VOR and optokinetic processing with feedforward 
(Raphan et al. 1977) or feedback (Robinson 1977) 
circuits. These models also included a distinction 
between peripheral vestibular afferent and central 
vestibular processing and thereby accounted for the 
difference in dynamics between peripheral vestibular 
firing patterns in primary afferents and VOR 
responses. 

A representative vestibulo-optokinetic model is 
shown in Fig. 2. The transfer function of this model 
with switch SI open, relating/~ to /4  is: 

--1 sT~ sT a sTo+l 
= 1 - k  sT~+l ' sT~+l  sTo/(1-k)+l '  (2a) 

where k is the central loop gain. It can be simplified by 
matching the time constant of the central vestibulo- 
optokinetic circuit, To, to the peripheral vestibular 
(cupular) time constant T~. Then, a pole-zero cancel- 
lation is effected (Robinson 1981) so that the VOR 
transfer function is: 

- 1  sT. sr~ 
(2b) 

H 1 - k  sT,+l sTv+l '  

where Tv = TJ(I - k )  is the behavioral VOR time con- 
stant. In this way, despite cascading a second order 
vestibular periphery with a first order central 
vestibulo-optokinetic system (which results in a third 
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Fig. 2. A combined model of the vestibular and optokinetic 
systems based on work by Robinson (1977). The peripheral 
vestibular system is modeled by both a cupular time constant, T~, 
and an adaptation time constant, Ta. The central nervous system 
is modeled as a positive feedback loop containing a low pass filter 
with time constant To and loop gain k. Parameters are as in Fig. 1 
and G is gaze velocity, Vr is the velocity of the world with respect 
to the subject, and ~ is retinal slip velocity. The switch S1, 
represents the visual condition with D (S1 open) indicating 
darkness and L (S1 closed) indicating a lighted visual surround 

order system), by appropriate choice of T O , the model 
reduces to second order VOR dynamics overall. Opto- 
kinetic after-nystagmus (OKAN), a persistent nys- 
tagmus in darkness following optokinetic stimulation 
(modelled by opening the switch S1), is also generated 
by this model and is predicted to decay with the same 
time constant as that of the VOR, namely T~/(1 --k). 
The model thus accounts for the fact that the time 
constant of the VOR and that of OKAN are similar 
and that these time constants exceed the time constant 
of peripheral vestibular afferents, as T J(1 - k ) >  T~, for 
0 < k < 1. Note that because the adaptation operator, 
sT~/(sTa + 1), is located in the vestibular periphery, the 
model accounts for adaptation in both peripheral 
vestibular afferents and the VOR. However, because 
the model shown in Fig. 2 is overdamped it cannot 
account for oscillatory behaviors that have been 
observed in the VOR (Baloh et al. 1976; Hood 1981; 
Jung and Kornhuber 1964). Furthermore, because the 
central portion of the model is first order, it cannot 
account for oscillatory behavior in optokinetic re- 
sponses, i.e. the reversal phases of OKAN (e.g. OKAN 
II) (Aschan and Bergstedt 1955; Brandt et al. 1974; 
B/ittner et al. 1976; Koerner and Schiller 1972; 
Waespe and Henn 1978). These observations could be 
explained by postulating a central adaptation 
operator. 

Additional support for a central adaptation 
operator comes from habituation paradigms, i.e. re- 
peated exposure to optokinetic or rotational stimula- 
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tion. Optokinetic habituation results in a shorter 
OKAN duration and an increase in the peak velocity 
of OKAN II (Waespe and Henn 1978). Such changes in 
optokinetic responses are readily accounted for by the 
presence of a central adaptation operator whose 
characteristics can be altered. Habituation to rota- 
tional stimulation is characterized by an earlier onset 
of post-rotatory nystagmus reversal and an increase in 
low frequency phase lead (Buettner et al. 1981 ; Paige 
1983b). Such changes in VOR responses have been 
accounted for by alterations in both the long VOR 
time constant and in the adaptation time constant 
(Buettner et al. 1981; Paige 1983b). In that peripheral 
vestibular adaptation is unlikely to be changed by 
repeated stimulation, the presence of a central (modifi- 
able) adaptation operator is thus likely. 

In an effort to simulate the ocular motor disorder of 
periodic alternating nystagmus (PAN) (Baloh et al. 
1976), an extreme case of oscillatory behavior, Leigh et 
al. (1981), developed a model that included an adap- 
tation operator in the central vestibulo-optokinetic 
system. The Leigh et al. (1981) model is identical to that 
shown in Fig. 3a except that their model did not 
include the peripheral adaptation operator (which is 
enclosed by dashed lines). Contrary to the model in 
Fig. 2, which contains a second order vestibular peri- 
phery and a first order central vestibulo-optokinetic 
system, the Leigh et al. (1981) model has a first order 
vestibular periphery and a second order central ves- 
tibular system. Like Robinson (1981), Leigh et al. 
(1981) matched the central time constant, T o , to the 
peripheral vestibular (cupular) time constant, T~, to 

effect a pole-zero cancellation so that the VOR transfer 
function of the model in Fig. 3, omitting peripheral 
adaptation, is: 

-sT~.sT.~ 
= T~. T , c . s 2 + ( r , c - k .  T,c-t- T~)- s+  1 ' (3) 

where 1/T~ c is the gain of the central negative feedback 
loop. Thus, despite cascading a first order vestibular 
periphery with a second order central vestibulo- 
optokinetic system, the VOR transfer function of the 
Leigh et al. (1981) model reduces to second order 
dynamics. Because of second order dynamics in the 
central vestibulo-optokinetic system, by appropriate 
choice of Tac and loop gain k, the model can account for 
reversal phases of OKAN, and, with the addition of 
appropriate nonlinearities, can account for PAN. 
Maioli (1988) has recently proposed a model of OKAN 
that also uses second-order central dynamics. Both the 
Leigh et al. (1981) and the Maioli (1988) models, 
however, ignore adaptation in peripheral vestibular 
responses. In this regard, it is known that at least part 
of the adaptation process is peripheral in that response 
decline and reversal phases have been observed in 
eighth nerve recordings (Goldberg and Fernandez 
1971; Blanks et al. 1975). 

Based on the model shown in Fig. 2 and the model 
of Leigh et al. (1981), we endeavored to develop an 
improved model of the vestibular and optokinetic 
systems that accounts for adaptation in both peri- 
pheral vestibular afferent and VOR responses, as well 
as oscillatory phenomena in the vestibular and opto- 
kinetic systems. 
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Fig .  3 a  a n d  b. A model of the vestibular and optokinetic systems that  contains both  a peripheral vestibular afferent and a central 
vestibular adaptation operator. Removal of the element surrounded by dashed lines results in the model proposed by Leigh et al. (1981). 
a A model with a positive and a negative feedback loop in the central nervous system, b Block reduction of a with a single central nervous 
system loop containing a high pass filter element. Designations are as in Figs. 1 and 2, T,c is the central adaptat ion time constant, and g, is 
the retinal slip gain 
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Model Development 

Two alternative models of the vestibulo-optokinetic 
system were evaluated. Each of these models, one 
shown in Fig. 3 and one shown in Fig. 4, includes an 
adaptation operator in both the peripheral vestibular 
and the central vestibulo-optokinetic systems. The 
model in Fig. 3a can be viewed as the Leigh et al. (1981) 
model with the addition of a peripheral adaptation 
operator. This model, written in block reduced form 
(Fig. 3b), can also be viewed as the model of Fig. 2 with 
the addition of an adaptation operator, sT, J(STa~+ 1), 
to the central vestibulo-optokinetic loop. The model in 
Fig. 4 was developed by modifying the central adap- 
tation operator of Fig. 3 for reasons to be discussed 
below. These models were analyzed in terms of their 
ability to simulate observed vestibular and optokinetic 
phenomena. 

The model in Fig. 3 accounts for adaptation 
phenomena in both peripheral and central vestibular 
responses and it predicts oscillatory behavior in VOR 
and OKAN responses. The VOR transfer function of 
the model (with switch S1 open) is 

/~ - s ~  s ~  
H sT~+l sT~+l 

( sT  o + 1). ( sTJ  
x (4) 

T O �9 T ~ . s 2 + ( T ~ - k  �9 T~+ To). s +  1 " 

By setting T O equal to Tc, the VOR transfer function 
reduces to 

-sT~ 
H STa+l 

s~.T<.To~ 
x T~. T~.  s 2 + ( T ~ - k  �9 Ta~+ T~)-s+ 1 ' (5) 

which is characterized by third order dynamics. This 
complexity in response dynamics results from the 
cascading of a second order vestibular periphery with a 
second order central vestibulo-optokinetic system and 
cancellation of only a single pole. 

Using the standard form 

/~ s ~  - s  ~ 
- -  2 ( 6 )  

H sT~+I S2+2~conS+con 

the behavior of the model in Fig. 3 can be described as 
that of a peripheral adaptation operator cascaded with 
a second order system with a damping ratio ~ of 

~ = (T~ + Ta~. [1 -k]) / (2 .  [T~. T~] 1/2) (6a) 

and a characteristic frequency co. of 

con = l / ( T c "  r a c )  1 / 2 "  (6b) 

Note that this is a third transfer function. However, for 
large T~ (>1000), the central adaptation operator 
becomes ineffective and the model reduces to that of 
Fig. 2. Because T O has been chosen to equal T~ and 
because the values of T~ and T~ are known from 
vestibular afferent data, the only undetermined param- 
eters in the transfer function are the loop gain k and 
the central adaptation time constant Ta~. 

Shown in Fig. 5a is a diagram of the VOR behavior 
of the model in Fig. 3 as a function of the values of k 
and T~c. It can be seen that by appropriate choice of the 
model parameters, the system will either i have all real 
poles (~> 1), i.e. be overdamped, 2 contain two com- 
plex conjugate poles (~< 1), i.e. be underdamped, or 3 
have right half-plane poles (~ < 0), i.e. be unstable. The 
T~r regions that produce these behaviors are sep- 
arated by lines that define critically damped (~ --- 1) and 

Si 
~ + 

> +  < 

> 

>++( 

,:7 

$ 

> 

< 

S I 

b 
> 

Fig. 4a and b. An alternative model of the vestibular and optokinetic systems that contains both a peripheral vestibular afferent and a 
central vestibular adaptation operator, a A model with a positive and a negative feedback loop in the central nervous system, b Block 
reduction of a with a single central nervous system loop containing a lead-lag element. Designations are as in Figs. 1 and 2, k, and kv are 
loop gains, T, is the central adaptation time constant, and g~ is the retinal slip gain 
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Fig. 5a and b. Dependence of model behavior on parameter values, a Behavior of model shown in Fig. 3 as loop gain k and central 
adaptation time constant, T=o are varied to yield different types of second order dynamics. T O = T~ = 5.7 s. b Behavior of model shown in 
Fig. 4 as loop gains k, and ko are varied to yield different types of second order dynamics. T O = T~ = 5.7 s. T, = T~ = 80 s. The parameter 
value regions that correspond to normal VOR behavior are indicated. Also shown are the parameter combinations used to simulate the 
eye movement velocity of a patient with periodic alternating nystagmus and the VOR response to a step in head velocity of a patient with 
rebound nystagmus reported by Hood (1981) 

undamped (~=0) responses. The parameter region 
producing VOR responses that are within normal 
limits is also indicated on Fig. 5a. This region is based 
on the results of Malcolm and Jones (1970) who used 
the overdamped second order VOR model shown in 
Fig. lb  to characterize the VOR responses of normal 
subjects. Because the model in Fig. 3 has third order 
VOR dynamics, pole locations could not be matched 
directly. Rather, the region of normality in Fig. 5a was 
generated by matching the VOR phase leads predicted 
by the model in Fig. 3 at 0.01 and 0.05 Hz to the phase 
leads predicted by the model in Fig. lb  using the VOR 
response parameters developed by Malcolm and Jones 
(1970). 

are predicted to have the same dependence on model 
parameters as those of the VOR (see Fig. 5a). 

In an effort to simplify the overall VOR transfer 
function of the model in Fig. 3, the adaptation 
operator  was changed by substituting a leaky in- 
tegrator 1/(sT, + 1) for the ideal central integrator, 1is, 
of Fig. 3a. This substitution results in the model of 
Fig. 4. It can be seen in the block reduced form of the 
model that the adaptation operator  is changed from 
the high pass filter, sT, c/(sT, c + 1), of Fig. 3b to the lead- 
lag network, (sT, + 1)/(sT, + 1 + kr), of Fig. 4b, where T, 
is the time constant of the central adaptation operator,  
and k, is the gain of the central negative feedback loop. 

The model in Fig. 4 has a VOR transfer function of 

-sT< sT. (sTo + l). (sT,+ 1) 
/4 sT~+l s T , + l  T o - T , . s 2 + ( T , - k o . T , + T o + k , . T o ) . S + ( 1 - k ~ + k , )  ' 

(8) 

The model in Fig. 3 predicts that O K A N  is de- 
scribed by (see Appendix): 

F # . g ,  �9 1 ] 
2~g.s + m.~J' (7) /~oKAN(t) = ~ -  ' / - - - ~ - - o  s 2 + 

where s indicates the inverse Laplace transform, 
and ~ and co, are as in (6). Note that OKAN dynamics 

where k~ is the gain of the central positive feedback 
loop. By setting the time constant of the central 
adaptation operator, T,, equal to that of the peripheral 
adaptation operator, T., a pole-zero cancellation can 
be effected in a manner analogous to the matching of 
T o to T~ as discussed above. Thus, with T o equal to T~, 
and T~ equal to T., the transfer function reduces to 

/~ - s2 .  T~. T. 
I~ T ~ . T , . s 2 + ( T , - - k ~ . T , + T ~ + k , . T , ) . s + ( 1 - k ~ + k , )  ' 

(9) 
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which is that of a second order dynamic system. 
Therefore, despite cascading a second order vestibular 
periphery with a second order central vestibular 
system, the VOR transfer function reduces to that of a 
second order system overall and thus conforms to 
existing descriptions of VOR responses. The model in 
Fig. 4 accounts for adaptation phenomena in both 
peripheral and central vestibular responses. Also, with 
appropriate choice of parameters, the model can 
produce oscillatory behavior in VOR and OKAN 
responses. 

Using the form 

/~ - s  2 
= s 2 + 2~a).s + ~2 (10) 

the VOR behavior of the model in Fig. 4 can be 
described as that of a second order system with a 
damping ratio ~ of 

[1+kr] 
+ T,. [ 1 -  kv])/(2. ITs. T~-(1-k~+kJ] ~/2) 

(10a) 

and a characteristic frequency ~o, of 

~o. = ([1 -- kv + k ,] /[  T~. T~]) '/2 . (10b) 

Because T o has been chosen to equal To and T~ has been 
chosen to equal T~, (T~ and T~ known from vestibular 
afferent data), the only undetermined parameters in the 
transfer function are the loop gains k v and kr. Shown in 
Fig. 5b is a diagram of the model's VOR behavior as a 
function of the values ofkv and k,. It can be seen that by 
appropriate choice of the loop gains, the system will 
either 1 have real poles ( (>  1), i.e. be overdamped, 2 
have complex conjugate poles (~<1), i.e. be under- 
damped, or 3 have right half-plane poles ((<0) i.e. be 
unstable. The k o - k  r regions that produce these 
behaviors are separated by lines that define critically 
damped (~= 1) and undamped ((=0)  responses. The 
region of loop gain combinations that produce VOR 
responses that are within normal limits also is in- 
dicated on Fig. 5. This region was generated using the 
data of Malcolm and Jones (1970) noted above, in 
which they used the overdamped second order VOR 
model shown in Fig. l b to characterize normal sub- 
jects. Because the model in Fig. 4 has second order 
VOR dynamics, pole locations could be matched 
directly to those developed by Malcolm and Jones 
(1970). 

The model in Fig. 4 predicts that OKAN is de- 
scribed by (see appendix): 

/~OKAN(t) 

[ gr" 
1 +gr--k~+k~" ~ +2-~-~.s~/-~Z_I ' (11) / 

where L~-1 indicates the inverse Laplace transform, 
and ( and 09, are as in (10). Note that OKAN dynamics 
are predicted to have the same dependence on model 
parameters as that of the VOR (see Fig. 5b). 

Using the models shown in Figs. 3 and 4, we 
simulated 1 normal behavior including adaptation in 
VOR responses and OKAN with reversal phases, and 
2 abnormal behavior including a damped oscillatory 
VOR response and PAN. The locations of the param- 
eter combinations used for these simulations are 
shown in Fig. 5. Figure 6 shows simulated normal 
VOR adaptation and simulated normal OKAN using 
the model of Fig. 4. Figure7a shows simulated 
damped oscillatory VOR responses using the model of 
Fig. 4; Model parameters were chosen to reproduce 
the VOR responses of a patient with rebound nys- 
tagmus described by Hood (1981). 

To simulate PAN, the loop gain k (for the model of 
Fig. 3) or kv (for the model of Fig. 4) was modeled using 
a nonlinearity such that its value decreased exponen- 
tially from a nominal value as eye velocity increased. 
That is, the loop gain was of the form 
(kma,~-kmi,) .exp(-IJEl/Eo)+kmin,  where kma x is the 
nominal loop gain at zero eye velocity, kmi, is the 
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Fig. 6. a Simulated slow component eye velocity of normal 
response decline during a rotational VOR stimulus of constant 
acceleration. The model shown in Fig. 4 was used with parameter 
values of To= T~=5.7; T,= T~=80; kv=0.7; kr=0.05; H(t)=2t; 
Switch S1 open. b Simulated slow component eye velocity of 
OKAN with a reversal phase. The model shown in Fig. 4 was 
used with parameter values of To = T~ = 5.7; T, = T~ = 80; kv = 0.7; 
k, = 0.05; gr = 1.0; l?V(t)= 30; /:/(t)=0. The arrow indicates the 
time at which switch S1 was opened (after steady state) 
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Fig. 7. a Simulated slow component eye velocity of the VOR 
response to a step in head velocity of a patient reported by Hood 
(1981) with rebound nystagmus. The model shown in Fig. 4 was 
used with parameter values of T O = T~ = 5.7; T~ = T~ = 80; kv = 1.03; 
k,=0.8; gr=l.0; H(t)=100; switch S1 open. b Simulated slow 
component eye velocity of a patient with periodic alternating 
nystagmus. The model shown in Fig. 4 was used with parameter 
values of To= T~=5.7; T~=T~=80; k~=l.4 exp(-I/~l/45)+0.2; 
k,=0.52; g,= 1.0;/:/(t)=0; switch S1 open 

minimum loop gain at large eye velocity, and/~0 is a 
scale factor. This nonlinearity was included so that the 
system would oscillate and yet remain stable (Hostet- 
ter et al. 1982). By appropriate choice of T~c and 
nominal k values or of k, and nominal k~ values, the 
oscillation frequency could be made to equal the 
typical oscillation frequency of PAN, i.e. about 
0.005 Hz. The location of the parameter combinations 
used to simulate PAN are shown as filled circles in 
Fig. 5. A simulation of the slow component eye velocity 
during PAN using the model shown in Fig. 4 is shown 
in Fig. 7b. 

Model Comparison 

The models shown in Figs. 3 and 4 are characterized by 
third order and second order VOR transfer functions 
respectively. However, when using parameter values 
that enable the model to simulate the responses of 
normal subjects (see Fig. 5), the responses of these two 
models are virtually indistinguishable except at low 
frequencies of stimulation, i.e. in the range of 0.01 Hz 
or below. 

The difference between the two models can best be 
appreciated by considering OKAN dynamics. The 

model in Fig. 4 predicts that a prolonged optokinetic 
stimulus will result in a non-zero steady state charging 
of the central vestibulo-optokinetic system. Such a 
prolonged stimulus to the model of Fig. 3 will result in 
a zero steady state condition (although steady state eye 
velocity will be non-zero if the pursuit system is 
considered). Data from both man and rhesus monkey 
suggest that a prolonged (several minute) optokinetic 
stimulus causes OKAN of short duration and reduced 
velocity followed by OKAN II (Brandt et al. 1974; 
Biittner et al. 1976). This finding supports the validity 
of the models in Figs. 3 and 4, both of which predict 
such a reduction in OKAN velocity and duration as 
the stimulus duration is increased. However, the model 
in Fig. 3 predicts that the onset of OKAN II will occur 
immediately upon the cessation of a prolonged opto- 
kinetic stimulus, a behavior that has only been re- 
ported in labyrinthine defective humans (Zee et al. 
1976) and subjects exposed to 15min of constant 
velocity optokinetic stimulation with the eyes kept 
stationary by fixation (Brandt et al. 1974). Neither 
model includes the nonlinearities that could account 
for saturation of optokinetic responses or the non- 
linearities that could account for the increase in 
OKAN II following brief exposure to a stationary full 
field visual surround (Waespe et al. 1978). 

A difference in the two models' ability to store 
central vestibulo-optokinetic activity would be ex- 
pected for any constant central input sueh as that 
which may be produced by a prolonged caloric 
irrigation (Baertschi et al. 1975; Bock et al. 1979). The 
continuous nystagmus produced by prolonged caloric 
irrigation supports the validity of the model in Fig. 4, 
which predicts a non-zero steady state eye velocity. 

Both models suggest that persons should exist 
whose post-rotatory responses are a damped oscilla- 
tion rather than simply an exponential decay with an 
undershoot. Hood (1981) and Jung and Kornhuber 
(1964), in fact, have reported patients who had such 
underdamped responses. A simulation of one of these 
patients' responses is shown in Fig. 7a. Using large 
amplitude rotational stimuli, more of these individuals 
may be identified. 

Both models can be written as containing either 
double or single loop central vestibulo-optokinetic 
structures. That is, "block reduced" equivalents of the 
central circuitry can be drawn. Although the form in 
which a model is written does not have any implication 
regarding its correctness mathematically, any attempt 
to attach structural neurophysiological significance to 
a model may depend on the form in which it is written. 
In this sense, the double loop models suggest the 
existence of a central negative feedback loop in ad- 
dition to the positive feedback loop postulated in 
previous models (Robinson 1977; Leigh et al. 1981). 
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T h e  s ing le  l o o p  m o d e l s  sugges t  t h a t  a d a p t a t i o n  m a y  
o c c u r  w i t h i n  the  p o s i t i v e  f e e d b a c k  l o o p  itself, for  
e x a m p l e ,  b y  h i g h  p a s s  f i l t e r ing  effects o c c u r r i n g  in  the  
v e s t i b u l a r  nuc le i  a t  e i t h e r  a m e m b r a n e  o r  a s y n a p t i c  
level.  

Conclusion 

W e  h a v e  p r e s e n t e d  t w o  m o d e l s  o f  the  v e s t i bu lo -  
o p t o k i n e t i c  s y s t e m s  t h a t  i n c o r p o r a t e  a c e n t r a l  a d a p t a -  
t i on  o p e r a t o r  in  a d d i t i o n  to  the  well  e s t a b l i s h e d  a n d  
a n a l o g o u s  p e r i p h e r a l  a d a p t a t i o n  o p e r a t o r .  T h e s e  
a d a p t a t i o n  o p e r a t o r s  a c c o u n t  for  b o t h  the  r e s p o n s e  
d e c a y  in  p e r i p h e r a l  n e u r o n s  to  c o n s t a n t  s t i m u l a t i o n ,  
r e s p o n s e  d e c a y  in  c e n t r a l  n e u r o n s  to  c o n s t a n t  cen t r a l  
s t i m u l a t i o n ,  as  wel l  as o s c i l l a t o r y  b e h a v i o r s  such  as  
P A N  a n d  the  r e v e r s a l  p h a s e s  of  O K A N .  

Appendix 

Figure 8 is a simplified feedback control system representing the 
optokinetic reflex, where the reference input is the velocity of the 
optokinetic stimulus, IV; the output is eye velocity,/~; and the 
error signal, k, equals retinal slip velocity, when switch S1 is 
closed. For  a step input of optokinetic stimulus velocity, i.e. 
W(s) = IV. 1/s with S1 closed, where s is the Laplace operator, the 
slow component optokinetic eye velocity, EOKN(t), is character- 
ized by 

G s) .l IAI) 
T '  + GisU, 

where s denotes the inverse Laplace transform and G(s) 
denotes the open loop optokinetic transfer function. Extinguish- 
ing the optokinetic stimulus to generate OKAN is equivalent to 
opening the switch S1, i.e. setting the error, ~(t), to zero. The slow 
component OKAN eye velocity, /~OKAN(t), can be calculated by 
including non-zero initial conditions in the analysis of the open 
loop optokinetic system with a zero error velocity as input. This 
is accomplished by first determining the differential equation that 
relates/~(t) to ~(t) from the inverse Laplace transform of the open 
loop optokinetic transfer function G(s). Then, this differential 
equation is Laplace transformed using the initial conditions 
/~(0-) and ~(0-) and the constraint that ~(s)= 0./~OKAN(t) is then 
calculated using inverse Laplace transforms. 

For  the model shown in Fig. 3, the open loop optokinetic 
reflex transfer function G(s) is given by 

g, sT~ 
G(s) = To" T.r s 2 + 2(to.s + 0 .  2'  (A2) 

< 

~v (s)>, +-" " > ~(s) 

Fig. 8. Simplified diagram of the optokinetic system. Note that 
the contribution of the pursuit system is not included. G(s) 
represents the open loop optokinetic reflex transfer function. 
Designations as in Figs. 1 and 2 

where 

= (To + T~r [1 - k])/(2 �9 [T O �9 T j  1/2) (A2a) 

and 

0 .  = 1/(T 0 �9 T J  1/2 . (A2b) 

Thus, for a step input, IV- 1/s, of the optokinetic stimulus, using 
(AI), the slow component optokinetic eye velocity, /~OKN(t), is 
characterized by 

/~OZN(t) = ~ -  1 " To s z + 2r + to z ' (A3) 

where 

ff'=(To + T~c' [1 + g , - k ] ) / ( 2 .  [To" T~c] ~/2) (A3a) 

and 

0 .  = 1/(T o �9 T J  x/2 . (A3b) 

At steady state, using the final value theorem, the slow compo- 
nent optokinetic eye velocity,/~OKN(t), will have a value of zero, 
and the steady state error velocity, ~(t), will thus equal the 
stimulus velocity ~ If the optokinetic stimulus is extinguished at 
some time t prior to reaching steady state, the dynamics of the 
resulting output depends on that time t, and it is impractical to 
generate analytically an expression for/~OK.An(t). However, if the 
optokinetic stimulus is extinguished after EOKN(t) has attained a 
value of zero, the slow component OKAN eye velocity/~OKAN(t), 
for the model in Fig. 3, will equal 

[ iv 1 1 
- -  g" +2 o;.s+o j /~OKAN(t) = ~ - '  m To sZ (A4) 

where ( and on, are as in (A2). 
Note that this OKAN response, /~OKAN(t), depends on the 

value of (. For ( >  1, G(s) has real poles and the OKAN eye 
velocity/~OZAN(t) is given by 

/~OKAN(t)= 1~. g, 1 ,  [ e x p ( - a t ) - e x p ( - b t ) ] ,  (A5) 
T o b - a  

where ( and co x are as in (A2), and 

a = co,- (( + [(2 _ 1 ] 1/2), (A5a) 

b = co,. ( ( -  [(2 _ 1 ] 1/2). (A5b) 

For ( <  1, G(s) has complex conjugate poles and the eye velocity 
/~OZAr~(t) is given by 

-- Iv.g,  
/~OKAN(t)-- To.cO." (1 _(2)1/2 ' e x p ( - - ( o j )  

• SIN[to. .  (1 _(2)1/2. t ] ,  (A6) 

where ( and o~ are as in (A2). 
Note that the initial optokinetic eye velocity will be negative 

following a prolonged optokinetic stimulus to the model of 
Fig. 3. 

For the model shown in Fig. 4, the open loop optokinetic 
reflex transfer function G(s) is given by 

g, sT,+ 1 
G(s) = To .~-~, " s 2 + 2(o~s + to2, (A7) 

where 

(=(To- [1 +k,]  + T,. [1 - ko])/(2 - [To. T,' (1 - k ~ + k , ) ]  1/2) (A7a) 



and 

co, = ([1 - k~ + k,] l[T o �9 T,]) ~:2 . (A7b) 

Thus, for a step input, W. 1/s, of the optokinetic stimulus, using 
(A1), the slow component optokinetic eye velocity, /~OKN(t), is 
characterized by 

sTrff- 1 -I 
�9 1 g, / 

EOKN(t) = s I V '  To: T~" s 2 + 2('co;,s-~+ co.2j, 

where 

(A8) 

~'--(To. [1 +k,] 

+ T,. [1 + g , -  kv])/(2 �9 [To. T,. (1 + g , -  k. + k,)] 1/2) (A8a) 

and 

o9',=([1 + g , - k o + k , ] / [ T  o �9 T~]) 1/2 . (A8b) 

/~orN(t), at steady state, using the final value theorem, will have a 
nonzero value of l;V.g,/(1 + g , - k ~ + k , ) .  The steady state error 
velocity, ~(t), will thus equal 1~. (1 -- kv + k,)/(1 + g , -  kv + k,). 
Therefore, if the optokinetic stimulus is extinguished after a 
steady state condition is reached, using the method described 
above, the slow component OKAN eye velocity,/~OKAN(t), for the 
model in Fig. 4, is given by: 

[ /~OKAN(t)-----"~-I l + g , - - k v + k ,  S2 d-2~COn S-Fco2 -l' (A9) 

where ( and co, are as in (A7). 
Now, the OKAN response,/~OKAN(t), depends on the value of 

(. For ( > 1, G(s) has real poles and the slow component OKAN 
eye velocity /~OKAN(t) is given by 

/~OKAN(I ) ~-. gr" l~ 
I + g , - k o + k ,  

! 1 - a .  T.). b 
x b - a  exp( -a t )  

where ( and co. are as in (A7), and, 

a = co.. (( + [ (2_  111/2), 

b = co.- (( - [~2 _ 111/2). 

( l - b -  T.).a 

b - a  
e x p ( -  bt) l ,  

(A10) 

(A10a) 

(A10b) 

For ~<1, G(s) has complex conjugate poles and the slow 
component OKAN eye velocity /~OKAN(t) is given by 

/~OKAN(t ) gr" 1~-(1-2-co," T,. ~ + T," co,) 
(1 + g , - k ~ + k , ) "  (1 _(2)1t2 

x exp(--(co.t)- COS(cod" t+  ~), (All) 

where ( and co. are as in (A7), and 

COd=CO.-(1 __(2)1/2, (A1 la) 

and 

-- TAN- 1 [(T~. co. -- ~)/(1 -- (2)1/2]. (A1 lb) 
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