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Abstract. Evolutionary strategies such as the evolution 
strategy (Rechenberg 1965, 1973; Schwefel 1977) or 
genetic algorithms (Holland 1975; Goldberg 1989) have 
been widely applied to systems where parameters have to 
be determined according to a particular objective func- 
tion. A necessary demand in all these experiments is that 
the structures of the objects to be optimised are well 
defined, because these structures are part of the objective 
function. With structure evolution the range of applica- 
tions of evolutionary algorithms can now be expanded to 
tasks which are less accurately described, i.e. where the 
structures of the objects are fairly unknown. Heuristical 
effort is reduced first to defining structure components by 
combinations of which the structure space is generated. 
The structure space can be nearly infinitely large. Fur- 
thermore, the mutation procedures for structures have to 
be determined, complying with the demand for strong 
causality. In its computer model the algorithm of struc- 
ture evolution involves the phenomenon of isolation, 
a feature of biological evolution additional to replication, 
mutation, and selection, which have already been imple- 
mented in other strategies. The idea of structure evolu- 
tion is to let different but some what similar structures of 
an object compete in temporarily isolated populations 
where the respective parameter evolution is carried out. 
Thus structure evolution can perform a most effective 
search, both in structure and parameter space. 
The algorithm is demonstrated with two examples: a neu- 
ral filter in a visual system and the topologies of frame- 
works. The first of the examples touches the problem of 
incompletely described tasks, and this paper will show 
that the effect of "overlearning" can be avoided by 
a learning procedure called "incomplete induction", 
which fits best with the algorithm of structure evolution. 

regarded as an optimisation process of both the system's 
structure and its parameters with respect to the condi- 
tions and restrictions given by the task description. By 
means of extensive analytical investigation, the engineer 
usually has a good idea what the system that is expected 
to solve the task should look like. Only the determina- 
tion of some parameters may be a bit uncertain, and he 
will subject the system to a parameter optimisation pro- 
cess. But what can the engineer do if he must admit that 
all analytical approaches to solve a task have failed? He 
will ask for an algorithm capable of systematically devel- 
oping structures. At present the only promising algo- 
rithm for that purpose, seems to be structure evolution 
(Lohmann 1990, 1992). But the engineer is not released 
from all heuristical effort. He still has to define the struc- 
ture components and to formulate rules about how to 
combine the components in order to constitute a suffi- 
ciently large structure space. 

The structure of a system, i.e. an equation that 
describes a certain problem, represents an abstract 
comprehension of the problem to be solved. If the struc- 
ture of the system is concurrently altered as proposed in 
structure evolution, one runs the risk that it focuses 
on the particular description of the task which is part of 
the objective function. This effect is well known as 
"overlearning" in neural networks. A learning procedure 
called "incomplete induction" is proposed to avoid un- 
wanted specialisations in cases of incompletely described 
tasks. It can easily be implemented in the algorithm of 
structure evolution. 

The most convincing proof that biological evolution 
works efficiently has always been its results. It may be 
appropriate, therefore, to report two examples where 
structure evolution has been successfully carried out. 

1 Introduction 

This paper considers the potential for systematically 
developing the design of a system that is asked to solve 
a particular problem. The design includes the system's 
structure and its parameters. It is only natural to begin 
with a discussion of task descriptions. The conclusion 
will be that the process of designing a system has to be 

2 Task description and optimisation 

Discussing task descriptions without using an example 
does not make much sense. Let us, therefore, have a look 
at the patterns in Fig. 1 and ask what the features are 
that enable us to distinguish between the two leaves. 
Although we are far from being able to describe these 
features explicitly in technical terms, we suspect them to 
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Fig. 1. Two leaves and a triangle 

exist, similar to certain common features of the leaf 
patterns that are necessary to distinguish between leaves 
and geometrical patterns. Another feature in Fig. 1 that 
has at least a precise verbal description is the number of 
coherent areas, three in this particular picture. The devel- 
opment of a neural filter that extracts this feature from 
any binary picture will be treated in detail later in this 
paper. Here we discuss only the point of task description. 

The filter in question produces an output signal P if it 
is stimulated by an input picture S. We also have the 
target output T which is the correct number Nc of co- 
herent areas in pictures like those in Fig. 2. For the 
respective set of N different stimuli S,, the quality of 
a filter is defined as the mean square of differences 
between system outputs Pi and their respective target 
outputs T,: 

N 

Q = 1/N y ( T , -  t',) 2 (1) 
i = 1  

We replace the mean square by a more general function 
G which says how Q depends on T~ and P,: 

Q = G(T,, Pi) (2) 

The system output is a particular function P, = F(S,) 
whose value depends on the stimuli S,, while the target 
outputs T~ are some given constants T(S,): 

O = GET(S,), F(S,)] (3) 

The objective obviously is the determination of the 
function F in (3). Regardless of whether this function is 
represented in mathematical terms or graphically as 
a neural network or as electrical circuitry, we can say that 
the function F consists of a structure C and a number of 
parameters W. In mathematical terms the structure C is 
a set of instructions on how to calculate the system 
output from input data, and probably these instructions 
require a number of parameters. Thus the quality Q of 
the system depends on the set of stimuli S, the structure 
C and the parameters W contained by the structure: 

O = G(S, C, W) (4) 

The problem will be solved when the quality Q becomes 
optimal. The objective here is, therefore, minimisation of 

No= 1 Nc= 7 Nc= 4 Kc= 1 Me= 1 Me= 1 

Nc= 1 Me= 1 Nc= Z Me= 2 Nc= Z Nc: Z 

Nc= 2 No= Z Nc= Z No= 1 Nc= l Nc= 3 

Nc: i Nc= Z Nc= ! Nc= 5 Kc= 3 Nc= 0 

Fig. 2. A total of 24 different stimuli that may be representative for the 
task of a filter which should extract the number of coherent areas from 
any binary picture 

Q. As the task is to find a filter that extracts a particular 
feature from any binary picture, which are infinitely 
many, the task is incompletely described because (4) must 
remain executable in a finite time. An algorithm to solve 
the minimisation problem in (4) must take into account 
the variation of all three terms: stimuli S, structure C and 
parameters W. 

We customarily formulate conditions for Q to be- 
come extreme by setting all partial derivatives to zero: 

O/c~ W, = 0 (5) 

The respective conditions according to the discrete terms 
S and C in (6), however, are of no practical use as long as 
an analytical approach is preferred. 

AQ/AC ~ Min; AQ/AS ~ Min (6) 

But these expressions give a hint of what has to be done 
to solve the minimisation problem in (4). Besides the 
parameter optimisation, the algorithm to be used for that 
purpose has to control changes of both C and S, provid- 
ing for an improvement of quality Q. 

3 Evolution strategy 

The evolution strategy (Rechenberg 1973; Schwefel 1977) 
is a model of biological evolution in which the phe- 
nomena of replication, mutation and selection are in- 
volved. The algorithm includes a mechanism for adaptive 
step-size control, and it seems to be preferable to other 
evolutionary strategies (Goldberg 1989; Holland 1975) 
when used in real coded problems (Hoffmeister 1991). 
There is no need to explain evolution strategy in detail in 
this paper since there are a lot of basic publications. 

According to Schwefel (1977) an evolution strategy 
with p parents and 2 offspring is written as in (7), where 
the"  + " o r  "," respectively denotes whether parents take 
part in the selection procedure or not. 

(/z + ,  2) - ES (7) 
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4 Structure evolution 

In structure evolution it is necessary to extend the 
strategy of (7) to a system with many populations which 
are separated from each other during a certain isolation 
time z. Thus the phenomenon of isolation is introduced 
consequently to evolutionary strategies; it has to be con- 
sidered whether "genetic load", proposed by Born (1978) 
and Born and Bellmann (1983), has a similar effect on 
evolution strategies as isolation. Here different structures 
are assigned to the populations in which the parameter 
optimisation is carried out. A set of well-determined 
parameters is necessary for the assessment of structures. 
The formulation of a strategy for/t '  parent structures and 
2' offspring is given in (8). 

[ ' / [ / ' ,  2 ' ( # ,  / ~ ) $ 1 ,  v l l s 2 ,  V 2  - -  E S  (8) 

At the end of isolation time z, selection and mutation 
take place among the different structures on the popula- 
tion level. Obviously the variation procedures V2 for 
structures are different from parameter variations V1 
used within a single population. This is expressed in (8) 
by the indices V1 and V2 assigned to the respective 
strategies. V2 has to be explained explicitly according to 
the particular structure space for each problem, while V1 
is the variation mechanism used in all evolution strat- 
egies. In a similar way we distinguish between selection 
criteria $1 and $2 assigned to the two levels of the 
strategy. They will be discussed in the next section. 

What remains to be done by the user of structure 
evolution is the definition of structure components and 
the determination of a set of appropriate mutation 
procedures which enable passage from one structure to 
another without violating the principle of strong causality. 

5 Incomplete induction 

If the parameters contained by a structure are optimised 
to some extent using a quality Q1, which is calculated 
from a limited set of stimuli S1, tO control the selection, 
the result has the meaning of a first hypothesis concern- 
ing the whole task, which cannot be completely de- 
scribed, as mentioned before. To find out which of the 
different structures works most generally, these prelimi- 
nary results have to be tested with another quality func- 
tion Q2, calculated from a second set of stimuli $2. Both 
sets of stimuli, although different from one another, have 
to some extent to be representative concerning the whole 
task. As in (8) where the quality Q2 controls the selection 
$2 on the population level, there is a permanent selection 
pressure in the algorithm to ensure the preference for 
more generally working structures�9 

We propose to call this implementation of two 
representative but different selection criteria (one used 
to establish a first hypothesis, the other one to verify it) 
the "incomplete induction" procedure, because the rea- 
soning is similar to that in the mathematical technique of 
"complete induction" used to check equations or math- 
ematical sentences�9 

We do not pretend to give any proof concerning 
induction in this paper, but experimental evidence that 
induction works, in the way described above may be 
useful. Figure 3 shows the registered data of Q1 and Q2 
versus time for an experiment carried out according to 
the strategy described in (8). Q1 is calculated from input 
data introduced in Fig. 2, whereas the second quality Q2 
refers to quite different binary pictures, shown in Fig. 4. 

There are two experiments in Fig. 3, the first one 
plotted as " x "  and " + " for Q1 and Q2. Both qualities 
become smaller with the passage of time, as expected. At 
time tl  in Fig. 3 a second experiment branches from the 
first one, Q1 and Q2 now plotted as squares. In this 

l o g ( q u a  1 i t t j )  Q 1  : . . . . . .  

~ Q2 : . . . . . .  
1.o  x 
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+ oa=o~ ~ +,+*+§ +**++%~247 
- o . 5 ]  

oooo~o~ ~ *+ o++% 

Q 11. ~176 
-1 .o  f 

tl t i ~ e  

Fig. 3. Quality functions Q1 and Q2 versus time 
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Fig. 4. Twelve pictures used to calculate Q2; compare with the 24 
stimuli in Fig. 2 
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second experiment the selection $2 is controlled by the 
same quality function QI that is used in S1. Q2 has been 
registered only for the purpose of documentation. We 
observe in the second experiment that Q1 approaches 
a minimum faster than in the first. But the price is that Q2 
in the second experiment stagnates and even becomes 
worse. The result suggests that the faster convergence of 
Q I in the second experiment comes with a higher 
specialisation of the system on the particular set of 
stimuli S1. The result will be comparatively worthless on 
different stimuli. 

6 Example 1: local filter for the feature 
"number of coherent areas" 

In this example we consider the development of a local 
filter that is part of a particular visual system. We have 
already described the task of the filter. The design of the 
visual system is demonstrated in Fig. 5. 

The construction is partly a model of the biological 
design of the retina. It begins on the left side with a layer 
of receptors (RZ) which is followed by a homogeneous 
layer of local processing units (PZ). Each local filter can 
process only input data coming from a small neighbour- 
hood, which is restricted to a 3 * 3 matrix. By means of its 
structure and the respective parameters, the local filter 
calculates from its input data a local contribution to 
a global feature. The global feature (PM) is defined to be 
the sum of all local contributions. 

The global feature here is identical with the system 
output P~ in (1). Target outputs T~ assigned to the stimuli 
used here have been reported in Sect. 2 as correct num- 
bers of coherent areas Nc, written above each picture in 
Figs. 2 and 4. There is no difficulty in calculating quality 
functions according to (1). 

The objective is to determine the structure of the local 
filter as well as the parameters contained by the structure. 
To apply structure evolution to this problem we first 
have to define the structure components. Figure 6 shows 
a graphical representation of a filter. 

The structure is composed of input elements, a 
variable number of units to calculate different binary 
products, and finally a weighted sum. 

000 ~ 

:ii 
~3 0 = 
0 0 

000 .̂ 0000 ~ 

RZ PZ PM SM KL 

Fig. 5. Construction of a visual system (see explanations in the text) 

Fig. 6. Graphical representation of a local filter structure with nine 
input elements al,  a2 . . . .  a9 (top), several units that perform binary 
multiplication (middle) and another unit (bottom) that calculates 
a weighted sum of all binary products 

~ ~ /~r.z-.z-.z-.z-.zj~ 

jl 
> 

Fig. 7. Start configuration of the local filter 

The number of parameters in this structure, called the 
filter length L, is the same as the number of products. If 
the filter length does not exceed L = 20, an estimation 
says that Z = 1035 different structures can be composed 
by the structure elements. 

There are three different variation procedures that 
comply with the demand for strong causality: 

1. Elimination of a product in the structure, preferably 
one to which a parameter with a small absolute value is 
assigned 
2. Duplication of an existing product and removal of one 
of the factors 
3. Duplication of a product and addition of a new factor 

In procedures 2 and 3 the filter length increases by one. 
The new parameter is set to zero when the mutation is 
executed, so the quality does not change. 

The process of structure evolution has been started 
with the most simple configuration given in Fig. 7, and 
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Fig. 8. Test set of 12 stimuli that  never occurred in the evolution process. Above each picture the correct (Nc) and the measured numbers (Nm) of 
coherent areas are written 
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the result has already been reported in Fig. 6. During the 
whole process only 105 different structures have occur- 
red, some of them only for a few generations in parameter 
evolution. Thus we can claim that a most effective search 
in a nearly infinitely large structure space and the re- 
spective parameter spaces has taken place. 

In the end we like to test the filter on a set of pictures 
that have never occurred in the process of structure 
evolution (see Fig. 8). Above each picture one can read 
again the correct number of coherent areas Nc, followed 
by the measured number Nm. As differences between Nm 
and Nc are rather small, we can say that structure evolu- 
tion has worked sufficiently and that incomplete induc- 
tion has taken place. 

7 Example 2: topologies of frameworks 

A convincing example for the development of structures 
is provided by frameworks, because of their comprehen- 
sive graphical representations. Obviously frameworks 
are not dealing with input and output data, and in fact 
this example has been chosen to show that structure 
evolution does not require the reasoning of incomplete 
induction in any case. 

The task of the two-dimensional framework, which is 
not exposed to any internal or external force, is to con- 
nect six fixed points plotted as in the left side of Fig. 9. 
The first restriction is that the framework is non-cinema- 
tic. Furthermore, we want the bars of the framework to 
comply as well as possible with a target length Lt which is 
shown on the left edge in Fig. 9. In order to save re- 
sources the total length of all bars is set to become 
a minimum. The corresponding quality function for 
R bars is given in (9): 

R R 

Q = 1/R ~ ( L , -  L, )2+  ~ L, (9) 
i = 1  i = 1  

The number of variables in the system is Z = 2*(R - 6). 
We recognize that the structure components are the bars 
and the nodes whose numbers may vary. We must admit 

that the number of different structures seems to be rather 
large; we also admit some difficulties in the estimation of 
a lower bound of that number. 

There are four variation procedures for the topologies 
of frameworks. The first one inserts a node on an existing 
bar and connects it with another node in its neighbour- 
hood. The second procedure simply inserts an additional 
bar between two existing nodes that are not too far from 
each other. The third and fourth variation procedures are 
inversions of the first two. 

The strategy used in this experiment worked with 
a ten-population system and an isolation time of 20 
generations. 

[10(1, 2o ES 10) sl, vl]s2, v2 - (lO) 

In order to provide the system with a good variability all 
structures suffer one of the above mutations after 20 
generations of parameter evolution. The selection pro- 
cedure $2 is chosen to be rather weak by replacing only 
the worst structure by the best one in each cycle on the 
population level. There is only one selection criterion, 
quality Q according to (9). 

The best result (right side of Fig. 9) has been achieved 
after 1559 generations on the structure level. It is surpris- 
ing that this framework is not symmetrical, but we under- 
stand that a ring-like framework requires a bigger total 
length of its bars than the "C"-shaped topology in Fig. 9. 
The results of structure evolution in this example are 
only near-optimal, since the strategy is a non-conserva- 
tive one. Continuation of the process sometimes leads to 
worse topologies, as can be recognized in Fig. 10. 

Of some interest may be a brief look at the small 
choice of topologies in Fig. 10, taken from the fossil 
collection due to the evolution process. Note that there 
are only 20 generations of structure evolution between 
structures 4 and 5. Although they look completely differ- 
ent at first glance, their distance in structure space is 
rather small. This observation might explain Darwin's 
great difficulties in finding evidence for his theory of 
biological evolution. He had to rely on the much smaller 
choice of fossils found upto then. 
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tic framework connecting six fixed points. Right :  
The best framework structure occurring in the 
evolution process 



1 G = I  

PM-Nr 100 nodes 7 
Quality 28357,8728 bars 11 
Geu. 1 
Hut. 1 

2 G = 4 0  

FW-Mr i02 nodes 34 
Qual i t  N 3863.5110 bars 65 
Gen. 40 
Mttt. 40 

325 

3 (3 = 279  

FW-Hr 114 nodes 38 
Qualitg 2677.5506 bars 73 
Gen. Z79 
Mut. 259 

3oS- ' 16 / \\ 
4 Z9/3~/ I'~ ~ I 

4 G = 379 

Fkl-Hr 119 
qual itg 2641.3019 
Gen. 379 
Mut, 351 

Z~ 2~ 

nodes 34 
bars 65 

5 G = 399  

Fg-Nr 120 nodes 34 
q u a l i t g  2415.4159 bars 65 
Gen. 399 
Mut. 371 

k4 

,~oz~ z8 

6 G = 1 0 9 9  

FW-Hr 155 nodes 36 
Quali t  g 2388.7058 bars 69 
6en. 1093 
Mut. IOZ8 

%8 

7 G = 1 5 5 9  

~g-Mr 178 nodes 32 
Quali tg  2147.740Z bars 61 
Gen. 1559 
Mut. 1458 

I 

4~~0  15 31 ~ & ~  

8 G = 1999  

FW-Nr 200 nodes 3Z 
Qual Jig 2313.8649 bars 61 Geu. 1999 Mug. 1871 

~'~---.,..9 z= 

- . 5 . 

% 
; ' ~  2o231 Fig. 10. (1-8) A choice from the fossil col lec t ion  

due  to a s t ruc ture  evo lu t ion  of a f ramework.  G is 
the n u m b e r  of genera t ions  run  off on  the popu la -  
t ion level of the s t ra tegy  when  the conf igura t ions  
were s tored 



326 

8 Conclusion 

This paper  presents the a lgor i thm of structure evolut ion 
as a further-developed evolut ion strategy. It benefits from 
model l ing the biological p h e n o m e n o n  of isolation in 
strategies with m a n y  populat ions .  It is capable of devel- 
oping structures inc luding  the parameters  of a system, as 
long as the task is appropr ia te ly  described and the user 
successfully defines s tructure space and  a t t endan t  muta-  
t ion procedures. Tightly connected with the algori thm is 
a learning procedure called incomplete  induct ion,  which 
refers to incompletely  described tasks. Both structure 
evolut ion and  incomple te  induc t ion  seem to open the 
door  to a systematic approach  to developing structures 
of systems. Since there is no t  much theory on structure 
evolut ion to date, one has to be content  with results from 
experiments in which the algori thm worked effectively. 
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