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Abstract. Evolutionary optimization has been proposed 
as a method to generate machine learning through 
automated discovery. Specific genetic operations (e.g. 
crossover and inversion) have been proposed to mutate 
the structure that encodes expressed behavior. The 
efficiency of these operations is evaluated in a series of 
experiments aimed at solving linear systems of equa- 
tions. The results indicate that these genetic operators 
do not compare favorably with more simple random 
mutation. 

1 Introduction 

The common view of evolutionary processes is a succes- 
sive selection of the best of a sequence of variants 
produced by random mutation. Holland (1975) has 
proposed this process to be equivalent to an enumera- 
tion of all possible coding structures. To be success- 
ful, adaptive plans require the use of specific sophisti- 
cated genetic operators, such as crossover and inver- 
sion. However, in several evolutionary simulations 
(Fogel 1964; Foget et al. 1966; Atmar 1976; Fogel and 
Fogel 1986; Fogel 1988) rapid convergence toward 
optimal behavior was observed, even when using the 
slightest of mutations. Further, simulating crossover 
explicitly has resulted in poor overall performance in a 
variety of studies (Grefenstette et al. 1985; Fogel and 
Fogel t986; Fogel 1988). It is of interest to quantify the 
benefits, if any, of using crossover and inversion as 
opposed to simple random mutation in a variety of 
environments. 

2 Background 

Some of the first simulations of evolutionary processes 
were conducted by Fogel (1962, 1964; and Fogel et al. 

1966) where the task of predicting any stationary or 
nonstationary environment with respect to an arbitrary 
payoff function was chosen. Iterative mutation and 
selection was used to evolve a logic most suitable for 
resolving the problem at hand. The behavior of each 
"organism" was portrayed by a finite state machine, a 
general representation that does not constrain the stim- 
ulus/response transduction to be linear, passive, or 
without hysteresis. 

This evolutionary programming was conducted as 
follows: original finite state machines were measured in 
their ability to predict each next event in their experi- 
ence with respect to whatever payoff function had been 
prescribed. Progeny were then created through random 
mutation of these "parent" machines. Their predictive 
ability was scored in a similar manner to their parents. 
Those finite state machines judged to be superior sur- 
vived to become the new parents. An actual prediction 
was made when the predictive fit score demonstrated 
that a sufficient level of credibility has been achieved. 
The surviving machines generated the prediction, indi- 
cated the logic of this prediction and became the pro- 
genitors for the next sequence of progeny. The 
sequence of predictor machines demonstrated phyletic 
learning, the inductive generation of hypotheses con- 
cerning the relevant regularities found within the expe- 
rienced environment in light of the given payoff 
function. 

Rather than place primary importance on behav- 
ior, others (e.g. Holland 1975; DeJong 1975; Fourman 
1985) emphasize the mutational operations which are 
performed on the given coding structures, specifically 
mimicking the operations on natural chromosomes 
(e.g. crossover and inversion). Simple mutation, ran- 
domly altering a single component of a chosen coding 
structure, is also incorporated but only to assure 
that all possible values have some probability of being 
included. The effectiveness of these genetic operators 
as compared to simple random mutation in linear sys- 
tems of varying degrees of interactivity is quantified 
here. 
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3 Methods and Materials 

Several experiments were conducted to explore these 
hypotheses concerning the importance of  specific ge- 
netic operators. These experiments required solving sys- 
tems of  linear equations by evolutionary optimization. 
Consider a system of linear equations of n dimensions: 

bi = ~ aij(xj), i = l . . . . .  n .  
j = l  

Let the vector xj represent the coding structure of n 
"gene" products, the vector b~ represent n phenotypic 
behavioral responses, and the coefficients a U represent 
the respective contribution of each xj component to 
each bi response. Any such system will be pleiotropic 
(single genes expressing themselves through multiple 
effects) unless a;j = 0 for all i ~ j .  

A fitness function measures the quality of the 
evolved behavioral responses aijxj to the required re- 
sponse vector bi. Unless the matrix a~j is singular, there 
exists an ideal behavioral response (aijXideal). The fitness 
criterion is: 

E =  ~'~ Ei, 
i ~ l  

where 

Ei = ~ ]aij(xj)-bit, i =  1 . . . . .  n.  
j = l  

E, the total amount  of  behavioral error will equal zero 
when xj = X i d e a  I . 

For the purposes of  this comparison, the adaptive 
process is simulated with an arbitrary coefficient matrix 
a~ of  rank 10 and a randomly chosen desired response 
vector bi. An initial population of  150 vectors xj (geno- 
types) is taken at random with components distributed 
normally with zero mean and a standard deviation of  
30. These vectors are randomly assigned to be one of  
three types. The first is subject to mutation only by 
random alteration of  each of  its components by a 
standard normally distributed random variable (i.e. 
zero mean and unit variance). The second is mutated by 
crossover (80% chance per offspring) and inversion 
(50% chance per offspring) operators, double muta- 
tions being allowed. The third is mutated by crossover, 
inversion and also given a 1% chance per offspring of  
random mutation by altering components by a stan- 
dard normal random variable. This mutation rate is 
typical in the experiments conducted by DeJong (1975); 
Fourman (1985); and Davis (1985). 

Each vector is assigned a fitness score according to 
the above fitness function and is then mutated yielding 
offspring vectors. Rather than simply selecting the best 
150 vectors to serve as new parents, each vector is given 
a probability of  survival based on the ratio of  its error 
score relative to other scores in the population of  trial 
vectors. During the course of  one generation, each 
genotype (trial vector) must directly compete with ten 
other genotypes. The probability of attaining a "win" is 
equal to the opponent 's fitness score divided by the sum 

of  both vector's fitness scores. For  example, should a 
vector with a fitness score of 8.0 compete against a 
vector having a fitness score of  10.0, the probability of  
the first vector obtaining a victory is 10/18 or 0.556. 
Once competition has been completed, the 150 geno- 
typic vectors with the most "wins" become the basis set 
of the next generation. If  the crossover and inversion 
operators were to provide an advantage over simple 
random mutation alone, it would be expected that those 
vectors which undergo such operations would quickly 
dominate the population. 

4 Experimental Findings 

Linear systems of equations provide a convenient mech- 
anism for examining the effects of  these operators in 
domains of varying degrees of  interactivity. Five sets of 
trials were conducted. Each varied the degree of inter- 
activity of  the a U matrix by setting the probability of  an 
off-diagonal entry being non-zero to 0.0, 0.25, 0.5, 0.75 
and 1.0, respectively. When this probability is zero, the 
domain is minimally pleiotropic; each independent 
"gene product" contributes only to the fitness of its 
respective component. When the probability is 1.0, the 
domain is fully pleiotropic. That is, each "gene 
product" contributes to the total behavioral error 
summed over all behavioral responses. Each experiment 
consisted of 100 randomly chosen systems. In each 
system, evolution was halted after 5000 offspring had 
been evaluated. The results are presented in Table 1. 

Advantage quickly accrued to those genotypes 
which were altered by random mutation alone. The 
observed number of trials in which simple random 
mutation dominated the population is significantly 
greater than would be expected under a null hypothesis 
of the behavior of the evolutionary process being inde- 
pendent of  the utilized mutation operation (P < 0.0001, 
using nonparametric chi-square test). Further, insuffi- 
cient evidence exists to suggest that the degree of  inter- 
activity of  the linear system of equations is associated 
with the degree to which those genotypes undergoing 
random mutation alone will overtake the population 
(P > 0.12). 

In light of  these results, a second experiment was 
conducted to investigate the difference in efficiency be- 
tween systems using crossover and those not using 
crossover with varying rates of  mutation. Again, a 
system of  ten linear equations was used. The matrix a;j 
was chosen by setting the entries to random integers 
between 0 and 9. The bi vector was chosen so as to 
make all of  the components of  xideal = 1. Initially, the 
population was composed of  100 vectors, with each 
component normally distributed with zero mean and a 
standard deviation of 30. After 10,000 offspring, the 
size of  the population was limited to 75 vectors. All 
other conditions were retained. 

In the first set of  ten trials, each parent vector was 
mutated by crossover (80% chance/parent) and by a 
standard normal random variable to any compon- 
ent (1% chance/parent). The second set of  ten trials 
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Table 1 

Degree of interactivity Percentage of trials when more than 50% 
of the population consisted of the given type 

0 Random Mutation Alone 78% (70%) a 
Crossover/Inversion 9% (5%) 
Crossover/Inversion/Mutation 13% (4%) 

25 Random Mutation Alone 75% (72%) 
Crossover/Inversion 10% (3%) 
Crossover/Inversion/Mutation 15% (3%) 

50 Random Mutation Alone 83% (83%) 
Crossover/Inversion 9% (7%) 
Crossover/Inversion/Mutation 8% (4%) 

75 Random Mutation Alone 88% (86%) 
Crossover/Inversion 2% (0%) 
Crossover/Inversion/Mutation 10% (6%) 

100 Random Mutation Alone 76% (73%) 
Crossover/Inversion 10% (6%) 
Crossover/Inversion/Mutation 14% (6%) 

a The values in parentheses indicate the percentage of trials in which the given type had completely taken over 100% of the population 

Table 2. Using a sign-test on the differences between the best evolved solution to each of the ten trials, no significant evidence existed to suggest 
that Method # 2 was superior to Method # 3. In fact, Method # 3 discovered a superior solution in six of the 10 trials. No solutions discovered 
by Method # 1 were superior. The values in parentheses indicate the standard deviations 

METHOD # 1 METHOD # 2 METHOD # 3 

AFTER 10,000 OFFSPRING 

Mean Population Score 
Mean Population Variance 
Mean Best Score in Population 

P(Crossover) = 0.8 
P(Mutation) = 0.01 

54.19 (+24.404) 
4.582 (+6.125) 
52.365 (+22.690) 

P(Crossover) = 0.8 
P(Mutation) = 1.0 

21.808 (+3.468) 
141.725 (+40.372) 
11.451 (+2.847) 

P(Crossover) = 0.0 
/'(Mutation) = 1.0 

28.697 ( _ 12.118) 
170.694 (+203.548) 
15.176 (+7.084) 

retained all of  the previous conditions, except the 
chance of  a simple random mutation was increased to 
100%. The third set of  ten trials did not utilize 
crossover; each parent was mutated only by simple 
random mutation. Ten thousand offspring were gener- 
ated in each trial. As seen in Table 2, no advantage was 
realized by optimization using crossover. 

5 C o n c l u s i o n s  

The experimental evidence suggests the claim that so- 
phisticated genetic operators are required to ensure 
successful adaptation is in error. In any positively en- 
tropic system, mutability is guaranteed. There will be 
errors in informational transcription. Competition is 
likewise guaranteed in any finite arena. Selection is the 
consequence of  competition. Evolution toward optimal- 
ity becomes inevitable, even when using only very small 
mutations. But more to the point, a sequence of vari- 
ants produced by mutation and competition is not 
equivalent to an enumeration of  structures. Only a 
small portion of  the state space is searched under the 
search techniques described here. 

Successful adaptive procedures must retain a suffi- 
cient link between parent and offspring to ensure that 
advances are maintained. Evolution succeeds not by 
random sampling, which is doomed to failure, but by 

incorporating through successive stages those behaviors 
which are appropriate. The crossover and inversion 
operators do not always maintain this behavioral link, 
no more than do other macromutations. A large 
shuffling of  information takes place each generation. In 
pleiotropic systems with information structures of  large 
size, the use of  such mutation operations forces the 
evolution to approach a random search, where the 
behavior of  each offspring becomes only minimally 
related to the behavior of  the parent. The experimental 
results generated here are similar to those obtained by 
Reed et al. (1967) where "under conditions simulating 
polygenic control of  quantitative characters, crossing 
[did] not enhance the speed of  selective adaptation." 

Further, the crossover and inversion operations 
common to "genetic algorithms" provided no signifi- 
cant benefit, irrespective of  the degree of  interactivity of  
the "gene products" involved in the linear systems of  
equations. Rather, random mutation consistently gener- 
ated more efficient searches. If  a specific algorithm were 
to show promise over a general algorithm, it would be 
expected to do so under special circumstances. Intu- 
itively, here that special circumstance would occur 
when the degree of  interactivity is zero. While specific 
circumstances (other than linear equations) may well 
exist for which crossover and inversion operations are 
especially appropriate, those conditions cannot be the 
hallmark of  a broadly useful algorithm. 
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"Gene t i c  a lgo r i thms , "  which rely on crossover  and 
invers ion,  have been a lmos t  universal ly  descr ibed by 
their  s tudents  (e.g.,  H o l l a n d  1975; Bethke 1981) as 
being fundamen ta l ly  different  than  "evo lu t iona ry  p ro-  
g r a m m i n g  techniques,  which rely on r a n d o m  m u t a t i o n  
and  h i l l -c l imbing"  (Gre fens te t t e  1986). Tha t  c laim is in 
error .  As  long as selection occurs  between individual  
con tend ing  so lu t ions  based  on  a popu la t i on  o f  "f i tness" 
values m a p p e d  into an  e r ror  scoring a lgor i thm,  opt i -  
miza t ion  will occur  au toma t i ca l ly  as a hill c l imbing 
technique.  Indeed,  all op t imiza t ion  techniques ei ther  
c l imb hills (max imiz ing  appropr ia teness )  or  descend to 
the b o t t o m  o f  t roughs  (min imiz ing  funct ional  error) ,  
dependen t  upon  the obse rver ' s  choice o f  perspective.  
"Gene t i c  a lgo r i t hms"  are  based  on specific mechanis t ic  
muta t ions ,  mimick ing  only  a very few a t t r ibutes  o f  
na tu ra l  genet ical  systems. Ra the r  than  being fundamen-  
ta l ly  different  f rom r a n d o m  muta t ion ,  as c laimed,  
c rossover  and  invers ion are  merely a subset  o f  all 
r a n d o m  muta t ions .  As  in all subsets,  their  appl icabi l i ty  
will be s t rongly  p r o b l e m  dependent ,  i f  advan tageous  at  
all. 
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