
Biol. Cybern. 71, 187-195 (1994)

�9 Springer-Verlag 1994

Calculation of the Volterra kernels of non-linear dynamic systems
using an artificial neural network

Jonathan Wray, Gary G. R. Green

Department of Physiological Sciences, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK

Received: 4 June 1993/Accepted in revised form: 2 March 1994

Abstract. The Volterra series is a well-known method of
describing non-linear dynamic systems. A major limita-
tion of this technique is the difficulty involved in the
calculation of the kernels. More recently, artificial neural
networks have been used to produce black box models of
non-linear dynamic systems. In this paper we show how
a certain class of artificial neural networks are equivalent
to Volterra series and give the equation for the nth order
Volterra kernel in terms of the internal parameters of the
network. The technique is then illustrated using a specific
non-linear system. The kernels obtained by the method
described in the paper are compared with those obtained
by a Toeplitz matrix inversion technique.

1 Introduction

Many non-linear systems exist within the realms of
biology. However, due to the nature of some of these
systems, it has proved difficult to produce and solve
analytic equations which describe them. An alternative to
mathematical analysis (which produces analytic equa-
tions describing the workings of a system) is to take
a general black box model and obtain the specific para-
meters which enable the model to describe a system. Two
such methods, which are closely related to each other, are
the Volterra and Wiener series (Marmarelis and Marma-
relis 1978; Schetzen 1980; Rugh 1981). These functional
approaches to system identification have found many
applications in neurobiology. For example, the Volterra
series has been used to characterise the receptive fields of
auditory neurones (Aertsen and Johannesma 1981), in
the modelling of movement detection (Poggio and
Reichardt 1973) and in the analysis of network models of
lateral inhibition (Nabet and Pinter 1992). The Wiener
series has been used in the analysis of neurone chains

Correspondence to: J. Wray, The Neurosciences Institute, 3377 North
Torrey Pines Court, La Jolla, CA 92037, USA

(Marmarelis and Naka 1972), in the determination of the
non-linear properties of cells in the visual cortex (Emer-
son et al. 1992) and in the investigation of the dynamics
of cockroach ocellar neurones (Mizunami et al. 1986).
The Volterra series can be shown to be a general solution
of non-linear differential equations using differential
algebraic approaches (Fliess et al. 1983). However, at
present no general methods exist to calculate the Vol-
terra kernels for non-linear dynamic systems, although
they can be calculated for systems whose order is known
and finite (Schetzen 1965). This method is not generally
applicable since the order of a system is not typically
known a priori. Conversely, general methods do exist
to calculate the Wiener kernels, although these can be
highly inaccurate (Palm and Poggio 1977). This paper
tackles the problem of Volterra kernel calculation for
systems of unknown order. First, Volterra and Wiener
series modelling is introduced in detail, and some asso-
ciated problems are discussed. A method is developed to
calculate the Volterra kernels for non-linear systems of
unknown order, via a proof demonstrating the equiva-
lence between a certain neural network architecture and
the finite memory, discrete, Volterra series. The method
is compared to the currently most accurate method of
Wiener kernel production: Toeplitz matrix inversion
(Korenberg and Hunter 1990). The comparison is effec-
ted by using both methods to calculate the kernels for
a system that can be described purely by its second-order
kernel. The Wiener and Volterra kernels for such a
system are identical (Marmarelis and Marmarelis 1978).
The new method produces a substantial improvement
in accuracy, judged both by comparison of the kernels
and by the kernels' ability to predict the system response
to new stimuli.

2 Volterra and Wiener modelling

The Volterra approach characterises a system as a map-
ping between two function spaces, which represent the
input and output spaces of that system. The Volterra
series is an extension of the Taylor series representation

188

to cover dynamic systems and has the general form

y(t) = ho + S hl(zl)u(t - zl) dzl
- o o

+ ~ ~ h2(zl, z 2) u (t - - z l) u (t - - rE)dzl dr2
- - c t 3 - - o 0

+ ' ' ' § S ' ' ' ~hn(r, , ' L ' n) U (t - - ' g l) - . .
- oo - oo

u (t - z ,)dzx . . �9 dz, + . . . (1)

where y(t) is the output of the system at time t, u(t) is the
input at time t, and h , (z l , . . . ,z,) is the nth order
Volterra kernel. Equation (1) has an alternative func-
tional form,

y(t) = ~l[u(t)] + ~z[u(t)] + ' " + aCe,[u(t)] + . . . (2)

where

9r176 = ~ . . . ; h.(z, z .) u (t - z ,) . . .
- oo - oo

u(t - - z,) dzl �9 �9 �9 dr,

and is known as the nth order Volterra operator.
Volterra (1959) showed that such a series is capable of

representing any analytic, time-invariant system. How-
ever, two major problems exist with this approach to
system identification. The first is due to the fact that the
Volterra series is a polynomial approximation to a sys-
tem. It is a direct extension of the Taylor series to systems
with memory, so the well-known limitations of the
Taylor series apply equally to the Volterra series. The
second problem relates to calculating the kernels for
a specific system. The work of Wiener (1958) was seen as
a way to overcome these problems. In function approx-
imation a standard technique (Cheney 1982) is to use
sums of orthogonal polynomials of different orders. This
method overcomes two of the major problems associated
with Taylor series approximation. First, it allows the
approximation of non-analytic functions, which is not
possible with a Taylor series since to calculate the series
coefficients, the function to be approximated needs to be
analytic. Second, it overcomes the problem of trunc-
ation. It can be shown (Cheney 1982) that the sum of
Chebyshev polynomials, up to degree n, provides the best
approximation, in terms of the Chebyshev norm, of de-
gree n. This is not the case for a Taylor series where
truncation to degree n will not, in general, give the best
approximation of degree n. Wiener extended the use of
orthogonal polynomials to functional analysis by modifi-
cation of the Volterra series to give an expansion made
up of orthogonal functionals. This extension produced
the Wiener series in which every functional is orthogonal
to each other when the input signal is Gaussian white
noise. Orthogonality of the functionals means the Wiener
series of a specific order is the best possible approxima-
tion of the system to that order. In addition, functional
orthogonality implies that the kernels can be calculated
independently. The method of Wiener has since been

improved, and other techniques of Wiener kernel extrac-
tion have been developed (Lee and Schetzen 1965; de
Boer and Kuyper 1968; Korenberg and Hunter 1990).

A number of limitations of the Wiener approach and
the kernel extraction techniques have been reported. One
of the most obvious problems is that ideal white noise
cannot be generated since it has infinite power, meaning
that coloured or band-limited noise has to be used in any
practical situation (Marmarelis and Marmarelis 1978).
This deviation from the ideal leads to errors in the ker-
nels. Another problem (Palm and Poggio 1977) is that
kernel calculation techniques cannot be extended to ker-
nels of degree 3 and above, due to delta functions being
produced of the kernels. In addition, errors in kernel
calculation occur due to the use of finite length input and
output signals (Korenberg and Hunter 1990).

As well as these problems of kernel calculation, the
superiority of the Wiener series over the Volterra series
has been questioned. In a practical situation finite Wiener
series must be used (Korenberg and Hunter 1990), and
since every finite Wiener series has an equivalent Vol-
terra series (Palm and Poggio 1977), Wiener series offer
no advantage in terms of approximation ability. In addi-
tion, the ability of the Wiener series to approximate
a larger class of functions than a Volterra series is due
solely to weakening of the error criterion from a quad-
ratic norm to a Chebyshev norm (Palm and P6ppel
1985). For these reasons the Wiener series is, in principle,
no better in a practical situation than a Volterra series.
The only practical advantage of the Wiener series is that
methods exist to calculate the kernels. In a Volterra series
the functionals are not independent, and so to enable
their calculation, the order of the system has to be known
in advance (Schetzen 1965). In this paper a method for
calculating the Volterra kernels for systems of unknown
order is presented. This is achieved by effectively calcu-
lating them all simultaneously.

One advantage the Volterra series has over the
Wiener series lies in the interpretation of the system
kernels. The Volterra kernels are a direct extension of the
impulse response concept from linear system theory to
multiple dimensions. Thus, just as the impulse response
of a linear system can be used to describe that system, the
kernels, which are a multidimensional analogue of the
impulse response, can be used to characterise a non-
linear system.

This section introduced Volterra and Wiener series
and mentioned some problems that exist in the kernel
calculation and the subsequent use of the series in model-
ling. In the next section we show how an artificial neural
network of a certain class is equivalent to a finite memory
Volterra series, and we produce the equations necessary
to calculate the Volterra kernels from a network. To
work in discrete time, the discrete Volterra series needs to
be introduced, and is given by

y(t) = ho + ~ hl(zx)u(t - zl)
r l=O

+ ~ ~, h2(zl, z2)u(t- Zl)U(t--c2)
1:1~0 "~2=0

189

+ . . . + ~f . . . ~.. hn(z 1 %) u (t - T 1)
t t = O t . = O

. . . u(t -- r .) + . . . (3)

where u(t) and y(t) are the input and output at time t,
respectively, and h , (z l . . . z,) is the nth order Volterra
kernel. It is assumed in this equation that the system is
causal and so the delay indicies z~ start at zero. For
a practical system with finite memory the equation be-
comes

T

y(t) = ho + ~ h l (z l) u (t -- z l)
t s = O

T T

+ ~ ~ h2(z,, z2)u(t -- Zl)U(t - - "r
~1=0 t2=O

T T

+ . . . + y ' . . . ~ h . (z , , . . . , z ,) u (t - z ,)

. . . u (t - - %) + . . . (4)

where T is the memory of the system (i.e. the number of
time sampled values needed to describe the dynamics of
the system).

3 Artificial neural networks

Artificial neural networks are collections of processing
nodes connected together in a network in such a way as
to be able to perform a function. One such network,
termed a feed-forward network or multilayer perceptron,
is shown in Fig. 1. Such a network is trained to perform
a certain mapping between its input layer (on the left) and
its output by altering the weights associated with each
internal connection. These weights are altered by a train-
ing algorithm which takes pairs of ideal input/output
data and changes the weights to make the network repro-
duce the mapping described by the data pairs. Many such
algorithms exist, but they all attempt to solve the same
problem: to find the optimal minimum of a surface in
weight space, whose height is given by the total error
between the network's actual output and its required
output, for all the training pairs. An introduction to

w01
u(t)

Cl

~,(t - 1)

: CM

u(t - N)

v(t)

(a) (b)

neural networks can be found in many texts (Lippmann
1987; Hertz et al. 1990).

In recent years artificial neural networks have been
considered in terms of their function approximation abil-
ity, following the theoretical result of a number of
authors (Cybenko 1989; Funahashi 1989; Hornik et al.
1989) proving that a feed-forward network with one
hidden layer can approximate any continuous function,
to any degree of accuracy. One specific architecture,
shown in Fig. la, has been used in many applications to
model non-linear dynamic systems (Hudson et al. 1990;
Weigend et al. 1990; Chakraborty et al. 1992). This net-
work is a specific, one-input-variable example of a so-
called time-delay neural network (Waibel et al. 1989).
The output node of the network represents the current
output of the system, and the input nodes represent the
inputs to the system sampled in time.

A typical nodal processing function is

op~ = ai bi w j iu (t - j)
, =

(5)

where op~ is the output from hidden unit i, o i is the output
function of hidden unit i, wj~ is the weight connecting
input unitj to hidden unit i, u(t - j) is the input u at delay
j, bi is the bias input to unit i, and N + 1 is the number of
input units. A typical output function, a, is of sigmoidal
shape such as the hyperbolic tangent (tanh x). Figure lb
shows a block diagram of the processing described by (5),
occurring at the hidden nodes of the network in Fig. la.

In a previous paper (Wray and Green 1991) we have
shown how, by considering the output function, such as
tanh (x), in terms of its Taylor series equivalent, the bias
input to a node acts to change the output function. Thus,
if the hidden nodes have different bias inputs, as is gener-
ally the case, we can consider each hidden node as having
a different polynomial output function, p~(x). This can be
written as

pi(x) = aoi + a l i x + a 2 i x 2 + " " " + a,ix" + �9 �9 �9 (6)

From Fig. 1 if the output unit has no non-linearity, the
output of the network can be expressed as

M

y(t) = ~ c ip , (x i) (7)
i = l

where ci is the weight from hidden unit i to the output
unit, M is the number of hidden units, and x~ is the
weighted sum of inputs into hidden unit i given by

N

xi = ~, w j i u (t - - j) (8)
j=o

If (6) and (7) are combined, we get

y(t) = cl(aot + a l l x l + a z l x ~ + " ")

+c2(a02 + a12x2 + a22 X2 + . . .)

Fig. 1. a A neural network architecture for time series prediction.
b A block diagram of one hidden node of the network shown in a + C M (a O M + a lMX M + a2MX 2 + " " �9) (9)

190

now substituting for xi and gathering like terms we get

y(t) = claol +c2a02 + �9 �9 �9 +CMaOM

N IV

+ c l a , , ~, WjlU(t - j) +c2a12 ~ wj2u(t - j)
j = O j = O

N

+ ' ' " +cMaxM ~, WjMU(t -- j)
j=o

-{-clazl(j=~oWjlU(t--J)) 2

.o,

= c~aol -t-c2ao2 + " " �9 -t- CMaOM

N

+ Y'. (c~allwjl +cza12wjz
j = O

+ " " +cMalMWjM)u(t-- j)

N N

+ ~ ~ (c~a~wjlw~l +c2a22wj2w~
j = O k = O

+ . ' ' +CMaEMWiMWkM)U(t - - j)u (t -- k) + . . . (11)

Comparing (4) and (11) they are seen to be equivalent,
demonstrating that a network of the architecture shown
in Fig. 1 is equivalent to a finite memory, discrete infinite
Volterra series. The Volterra kernels are given by

M

ho = ~ ciaoi (12)
i = 1

M

hx(j) = ~ claliwji (13)
i = 1

M

h2(j, k) = ~' ClaEiWjiWkl (14)
i = 1

and so the general nth order kernel is given by

M

h.(va, v2 v,) = ~ cla.iwv,iwv2i. �9 �9 wv.i (15)
i = 1

Thus, if a network of the architecture shown in Fig. 1 can
be trained to adequately represent the system under
study, then the Volterra kernels of all dimensions of that
system can be extracted.

Note that the discussion so far has concentrated on
single-input Volterra series. The Volterra series repres-
entation has been extended to multiple dimensions
(Poggio and Reichardt 1973), and similarly the neural
network representation can be extended to multiple in-
puts. Wray (1992) showed how the above derivation can
be extended to multiple input variables to allow the
calculation of the kernels for multiple-input systems.

3.1 Calculation o f hidden node polynomials

One problem of this technique, which is not obvious from
the above derivation, is the calculation of the coefficients
aii in the polynomial expansion of the hidden node out-
put functions Pi.

Let the output function of the hidden nodes be
tanh(x), although this argument can be developed
equally well to apply to any output function. The hyper-
bolic tangent has the following Maclaurin expansion

~, (-1)"+XB,(24" - 2 2 n) x 2 n - 1

tanh(x) ,=1 (2n)! (16)

where B, are the Bernoulli numbers given by

2(2n)! ~ 1
B , - (2rc)2" m 2n

m = l

When this is expanded, the following polynomial is ob-
tained

tanh(x) = x - ~x3 + 2 x S - ~-~xT + " " " (17)

If instead of considering the bias as part of the activation
function it is considered part of the output function, then
it has the effect of 'shifting' the output function along the
x-axis (Wray and Green 1991). The output of each hidden
node then becomes

pi(x) = (x +bl) - ~(x +bl) 3 + (x +bi) 5

3•5(x +bi) 7 + . . . (18)

This has the effect of altering the coefficients of each
power term, which includes making the even terms non-
zero. Thus, the coefficients aii in (6) depend on the expan-
sion of (18). In fact, they are given by

aji = ~ kCflkbk- i (19)
k = j

where kCj is the combination given by kc i = k!/(k - j)!j!,
and d k is the coefficient of the kth power in the original,
non-biased polynomial of the hidden node output func-
tion. Thus, the ability to calculate the values of a~i,
essential for the calculation of the kernels, depends on the
convergence of the series given in (19). The critical factor
in the convergence of this series is the bias value bi. Since
the radius of convergence of the Taylor series of tanh x is
n/2, if the bias value goes outside the range [-re/2, n/2],
then (19) diverges. Although typical the values of the
weights in a network are less than ~/2, this is not always
the case, resulting in a serious problem.

Two possible solutions of this problem are described
in the following paragraphs. One is an alternative
method of calculating the coefficients of the final biased
nodal output functions, and the other involves the use of
an alternative function on the output of the hidden
nodes.

3.1.1 Alternative calculation method. The alternative cal-
culation method uses the fact that (17) is the Taylor series
expansion of tanh (x) around zero. If instead of taking
this expansion and using the bias values to alter the
coefficients the Taylor series for tanh (x) is evaluated
around the bias values, then the polynomials are gener-
ated directly, and this problem is overcome. The consid-
eration then becomes the calculation of the Taylor series
around the different bias values. This calculation is per-
formed by substituting the values of the individual biases
into the equation for the Taylor expansion around an
arbitrary point. For example, if hyperbolic tangent out-
put functions are used, then the coefficient aji of the jth
power in the equivalent polynomial for the hidden node
output function Pi is given by

1
asi = - tanh<S)(bi) (20)

1

where tanht~)(x) is the jth derivative of tanh(x).
Thus, the calculation of the asi values requires the

higher derivatives of the output function used, and these
must be calculated analytically. The calculation of these
higher derivatives is cumbersome, and if the nodal output
functions are changed, to another sigmoid say, then all
the derivatives will have to be recalculated. One solution
is to use a symbolic manipulation package, such as
Mathematica (Wolfram 1988), which has built-in algo-
rithms to produce the power series of any function
around a given point. Using these tools, the practical
considerations of analytically working out the higher
derivatives are removed.

3.1.2 Alternative nodal function. The other solution to
this problem is to use an alternative output function in
the hidden layers. In a previous paper (Wray and Green
19911 we discussed the use of finite polynomial output
functions in the hidden layer to produce a finite poly-
nomial approximation to the training data. The use of
finite polynomial output functions can be extended to the
architecture of the network given in Fig. 1. If the sig-
moidal output function, of whichever form, is replaced by
a finite function, such as eo + e l x + e2 X2 q- e3 X3 "l- e4 X4,
and no bias inputs are used, then the coefficients asi in (6)
are known immediately. The disadvantage of this tech-
nique is that a finite order nodal function means that
only a limited order Volterra series can be produced, i.e.
if a fourth-order nodal function is used, then only
a fourth-order Volterra series can be produced. This need
not be a problem. If the network, using the alternative
functions, learns the training data, and the training data
adequately represents the system, then a finite order
Volterra series can be used to describe the system.

4 Illustration of kernel extraction

The previous section showed that a neural network with
a specific architecture is equivalent to a Volterra series.
Equations for the kernels were produced. Thus, if a net-
work can be trained to represent the dynamic behaviour

191

of a system, then the Volterra kernels of that system can
be calculated.

To illustrate this technique, and to enable compari-
son with other methods, the non-linear system used by
Korenberg and Hunter (1990) to illustrate their method
of kernel extraction using Toeplitz matrix inversion will
be used. The system they used was a Wiener cascade
model, which consists of a linear dynamic stage followed
by a static non-linear stage, as illustrated in Fig. 2.

Korenberg and Hunter chose the linear dynamic
stage to be low-pass, underdamped and second order and
the static non-linear stage to be a squarer. They do not,
however, give any specific details of the linear dynamic
system. Consequently, parameters of the system imple-
mented were chosen to give an impulse response that
looked like that of the system used by Korenberg and
Hunter. The system used has the impulse response given
by

#(t) = a exp(-kt)sin mt (21)
m

where a = 2, m = 0.3 and k = 0.08 (shown graphically in
Fig. 3).

One major advantage of using this Wiener cascade as
a test system is that its output can be written analytically
in terms of the input

y(t) = S ~(t)u(t -- z) dz
- o o

= I /'/(T1)/I('C2)U(t -- ~l)U(t -- "r2) dz l dz2 (22)

This is a second-order Volterra functional of the input u,
and so the system can be described totally by its

u(t) .~ Linear Dynamic]
I Stag~ I ;

Fig. 2. A Wiener cascade model

I

Nonlinear Static I y(t~
Stage I

6.0

~D

E

4.0

2.0

0.0

-2.0

f\ /
,@

V tirne

Fig. 3. Impulse response of the linear stage of the Wiener cascade
model

192

second-order kernel which is given by

h2(zl, z2) =/~(zl)#('r2)

a 2
= ---vexp(-k(rl + z2))sin mr1 sin m z 2

m"
(23)

The function described by (23) is shown graphically in
Fig. 4. Comparison to this ideal, analytic kernel will
determine the relative accuracy of the kernel extraction
techniques.

4.1 Experimental details

For both kernel calculation techniques an input time
series and a corresponding output time series are re-
quired. For the Toeplitz matrix technique of Korenberg
and Hunter, an input signal of Gaussian coloured noise is
required. Such a signal was generated using the Box-
Muller method of random number generation (Knuth
1981). Repeated calls to this algorithm produces a signal
whose amplitude is random and Gaussianly distributed,
with a mean of zero and a variance of one. The signal so
produced was applied to the non-linear system described
above, generating an output time series. In the specific
experiment described here, an input time series of 4000
points and the corresponding output signal of 4000
points were used to calculate the Volterra kernels of the
Wiener cascade using Toeplitz matrix inversion and the
neural network method. The same two 4000-point time
series were used in both calculation methods.

The Toeplitz matrix method was implemented using
the procedure given by Korenberg and Hunter (1990).
The essence of the technique is the solution of a set of
linear simultaneous equations relating the autocorrela-
tion function of the input time series to the cross-correla-
tion functions of various orders between the input and
output time series. This solution, which involves the
inversion of a Toeplitz matrix and some vector multipli-
cation, gives rise to the system kernels.

As mentioned earlier, an artificial neural network can
be viewed as an optimisation technique that allows
a mapping to be learnt between the input and output
spaces represented by the network. This learning is

achieved by minimising the error between the network's
actual output and its required output over a range of
training examples. In this specific case the network, of the
form shown in Fig. 1, is required to learn the mapping
that predicts the current system (y(t)) given the last 50
inputs to the system (u(t). . . u (t - 50)). The training
examples used in this experiment are obtained from the
input and output time series given to, and obtained
from, the system under investigation. A window of 50
successive points of the input trace (u(t). . . u(t-50))
and the corresponding output value (y(t)) comprise one
training example. A set of these training examples was
constructed by considering all possible windows of 50
points over the whole input trace, producing a total of
3950 training examples. Only 3950 training examples
are produced since the initial 50 output points
cannot be used because the previous 50 inputs are not
known.

In the results presented here the network was trained
with the training data set described above, using the
back-propagation algorithm with momentum (Rumel-
hart et al. 1986) with a learn rate /~ = 0.05 and a
momentum scale factor of ~ = 0.5. The network was
presented with examples, drawn at random from the
whole training set, many times until the sum squared
error between the network's required output and its
actual response stopped reducing. This typically took
between 1000 and 2000 cycles. After the network training
procedure had converged, the first- and second-order
Volterra kernels were calculated using (13) and (14). Since
in this experiment hyperbolic tangent output functions
were used, the aji values in (13) and (14) were calculated
using (20).

4.2 Experimental results

The first-order kernels, which should be identically zero,
are shown in Fig. 5. Note that since a theoretical system
has been used for the experiment, the system's input and
output have no units, and hence the kernels have no
units. In a real system, however, the kernels do have
units, and so all the kernel graphs shown have the ordi-
nate labelled 'kernel units'. The second-order kernels are
shown in Figs. 6 and 7. These figures clearly show the

Fig. 4. Ideal second-order kernel for the Wiener cascade model

8.0

,, 6.0

4.0

(D
E

2.0 t

0.0 (

i l J i

"2'00.0 10.0 20.0 30.0 40.0 50.0

time

Fig. 5. First-order kernels of the Wiener cascade model calculated
using Toeplitz matrix inversion ([3) and the neural network method
(�9

193

Fig. 6. Second-order kernel for the Wiener cascade model calculated
using Toeplitz matrix inversion

improved accuracy of the neural network technique over
the Toeplitz matrix technique for this specific example.

Although the kernels shown in Figs. 5-7 could be
numerically compared to the analytic kernels, a more
useful and acid test of the relative accuracy of the kernel
calculation techniques is to use the second-order kernels
to predict the system's response to a novel stimulus.
Figures 8 and 9 show the predicted output for an unseen
input using kernels calculated using Toeplitz matrix in-
version and the neural network method, respectively. In
addition, both graphs show the actual system output (e)
for the same input. Clearly, the neural network produces
the better prediction, which hardly differs from the actual
system output, as seen by the high coincidence of the two
graphs in Fig. 9.

5 Discussion

Fig. 7. Second-order kernel for the Wiener cascade calculated using
the neural network-based method

500.0 , , ,

400,0

300.0

200.0

100.0

0.0

-100.0
5000.0 5050.0 5100.0 5150.0 5200.0

time

Fig. 8. The output from the system (g) and the kernel calculated using
Toeplitz matrix inversion (line)

500.0

400.0

~. 300.0

200.0

100.0

0.0
5000.0 5050.0 5100.0 5150.0 5200.0

time

Fig. 9. The output from the system (0) and the kernel calculated using
the neural network-based technique (line). The two graphs are highly
coincident, although slight differences can be detected at some minima
and maxima

This paper is concerned with the Volterra series repres-
entation of non-linear systems. Volterra series are able to
represent any analytic, time invariant system (Volterra
1959) and are the general solution of non-linear differen-
tial equation models of dynamic systems (Fliess et al.
1983). However, no general methods exist for either con-
structing differential equation models of non-linear sys-
tems or for numerically obtaining the Volterra kernels if
the order of the system is unknown a priori.

Artificial neural networks of a certain architecture
(depicted in Fig. 1) have been shown to possess general
approximation abilities (Cybenko 1989; Funahashi 1989;
Hornik et al. 1989) and have been used to model dynamic
non-linear systems (Hudson et al. 1990; Weigend et al.
1990; Chakraborty et al. 1992). Neural networks can be
viewed as approximation techniques in which an error
between the required network output (defined by a num-
ber of training examples) and its actual output is mini-
mised by alteration of the network's internal parameters.
This paper proves how a network of a certain architec-
ture is equivalent to finite memory, discrete Volterra
series. This proof leads directly to equations for the
Volterra kernels in terms of network parameters and
hence to a method of calculating the Volterra kernels of
a system of unknown order.

The technique is illustrated and compared to another
kernel calculation technique (Toeplitz matrix inversion
of Korenberg and Hunter 1990) by using both methods
to calculate the Volterra kernels for a non-linear dynamic
system described by a Wiener cascade. An advantage of
using such a test system is that it enables the analytic
kernels to be calculated. In the original paper describing
the Toeplitz matrix technique, the method was shown to
be far superior, in terms of accuracy, than the cross-
correlation method of Lee and Schetzen (1965). The ex-
periment reported in this paper demonstrates, for the
specific system studied, the greater accuracy of the neural
network method over the Toeplitz matrix technique, and
hence over the cross-correlation-based method of Lee
and Schetzen.

There are two possible reasons for this improvement
in accuracy. First, the equations for the kernels (12-15)

194

can be evaluated exactly. Thus, if a network can be
trained using the available data to produce an adequate
approximation to the systems input-output mapping,
then an approximation to the Volterra kernels can be
calculated exactly. Any errors in the calculation of the
kernels are not due to assumptions made in the deriv-
ation of the kernel formula being violated but rather to
either a poor approximation being produced or the train-
ing data not covering the whole space of possible in-
put-output relationships, i.e. the trained network does
not adequately represent the systems' behavior. Con-
versely, the Wiener calculation techniques assume fre-
quently violated statistical properties of the input signal
in the derivation of the kernel formula. For example, with
the cross-correlation technique (Lee and Schetzen 1965)
the equations for the kernels assume that the input signal
is infinitely long white noise. This signal is not realisable,
and so errors are introduced into the kernels when they
are calculated in this way. The second reason for im-
proved accuracy is due to the weakening of the error
criteria with the Wiener representation (Palm and P6p-
pel 1985). The neural network training algorithm mini-
mises the error on a point-by-point basis (L2 norm),
whereas the Wiener representation produces an approx-
imation based on the average error (L~o norm). Thus,
a more accurate approximation to the system can be
generated by the neural network than by a Wiener series.

The experiment described in this paper compares the
newly developed neural network technique with that of
Toeplitz matrix inversion. In general, however, this com-
parison is not possible since the Toeplitz matrix method
produces the Wiener kernels of a system, whereas the
neural network method produces the Volterra kernels.
The comparison was only possible because the system
used was of second order, which means the Volterra and
Wiener kernels are identical (Marmarelis and Marma-
relis 1978). Thus, the comparative statements made
above concerning accuracy cannot be generalised to sys-
tems of higher order. However, the method derived in
this paper allows the calculation of the Volterra kernels
of systems of any, unknown order, and the experimental
results presented demonstrate the technique's accuracy
when applied to a specific system. In addition, the tech-
nique has been applied successfully to real and modelled
neurobiological systems of higher order (Hearne et al.
1993), with close agreement being shown between kernels
obtained analytically and numerically (Hearne et al.
1994).

The analysis presented in this paper has been for
feed-forward networks with sigmoidal output functions
in their hidden nodes. This is only a specific example of
the more general case. It can be shown (Wray 1992) that
radial basis function networks can be considered equiva-
lent to producing polynomials in their inputs. This is, in
fact, true of networks using any analytic function as
output functions of their hidden nodes. This means that
such networks are equivalent to discrete, finite memory
Volterra series and that equations for the Volterra ker-
nels can be derived in terms of the network parameters.
This may have implications in overcoming a drawback
of this technique: its computational expense. Network

training algorithms are error minimisation techniques
and as such can take a long time to converge. It has been
shown (Moody and Darken 1989) that the use of radial
basis function networks for time series prediction leads to
an improvement in training speed over sigmoidal-based
networks trained by back-propagation. Since radial basis
function networks can be shown to be equivalent to
Volterra series, the use of such networks may reduce the
computational overheads of this kernel calculation tech-
nique. It has also been shown (Hartman and Keeler 1991)
that the use of semi-local units in the hidden layer of
a network leads to an improvement in accuracy over
radial basis function networks when used for time series
prediction. Since these semi-local units have analytic
output functions, networks using such units are also
equivalent to a Volterra series. The use of these networks
may lead to a lower error after training and hence to
more accurate kernels.

With correlation-based techniques, such as those pre-
sented by Lee and Schetzen (1965) and Korenberg and
Hunter (1990), some form of noise is used as an input
signal. The statistical properties of the input noise allow
derivation of the formula for the Wiener kernels. With
the neural network technique presented here, this is not
the case since the kernel formula does not depend upon
any property of the input signal used. As long as data can
be obtained that represent the input-output mapping of
the system, the network training algorithm will be able to
produce a trained network that approximates the dy-
namic behaviour of the system. This network behaviour
has been achieved (Lambert and Hecht-Nielsen 1991) by
training networks on data rich in transients, on the
assumption that enough different transients will repres-
ent the overall dynamic behaviour of the system. Thus,
the technique can be applied in situations where noise
input may be impractical.

Although this paper has presented a method for cal-
culating the Volterra kernels for an arbitrary system,
a number of problems inherent to the Volterra and
Wiener series still exist. The first concerns the Volterra
series and its range of applicability. The method pres-
ented in this paper does not remove the constraint that
the Volterra approximation cannot be applied to non-
analytic systems. The second problem concerns the
convergence and truncation of the Volterra series. Since
the Volterra functionals are not independent of each
other, truncation can affect the approximation ability of
the Volterra series quite badly, especially if the conver-
gence properties of the underlying polynomial approx-
imation are not known. A third problem is inherent to
both Volterra and Wiener series approximations, and
indeed to all methods of system identification, and is
concerned with the test signal used. Even though the
method presented in this paper does not require a test
signal of Gaussian noise, the signal (or signals) used must
be such that the input-output mapping of the system
under investigation can be adequately described by the
data obtained using those inputs. Even if noise is used as
an input signal, inferences about system behaviour can
only be made over the bandwidth of the noise used.
A fourth problem, again inherent to both functional

techniques, is that they require the system to be time-
invariant. This requires the time scale of the system
investigation to be chosen carefully, to ensure stationar-
ity, although an extension of the Volterra formulation to
include kernels that vary in time has been provided by
Schetzen (1980) and Rugh (1981). A fifth problem which
is implicit to both the Volterra and Wiener series is that
they can only be used for system identification. Although
they can give insight into system dynamics, they reveal
nothing about the underlying mechanisms leading to the
observed behaviour. The upshot of these limitations is
that the Volterra and Wiener techniques cannot be used
blindly; properties such as analyticity, time invariance
and system bandwidth all have to be considered before
application of the functional approaches to biological
system identification.

Acknowledgements. This work was supported in part by grants from
British Telecom and the Science and Engineering Research Council,
UK. J. Wray was supported by the Hunter Memorial Scholarship
awarded by the Medical Faculty of the University of Newcastle upon
Tyne, UK. We would like to thank Phil Hearne for his many useful
discussions.

References

Aertsen AMHJ, Johannesma PIM (1981) The spectro-temporal recep-
tive field: a functional characteristic of auditory neurons. Biol
Cybern 42:133-143

Boer E de, Kuyper P (1968) Triggered correlation. IEEE Trans Biomed
Eng 15:169-179

Chakraborty K, Mehrotra K, Mohan CK, Ranka S (1992) Forecasting
the behavior of multivariate time series using neural networks.
Neural Networks 5:961-970

Cheney EW (1982) Introduction to approximation theory, 2nd edn.
Chelsea, New York

Cybenko G (1989) Approximation by superpositions of sigmoidal func-
tions. Math Control Signals Syst 2:303-314

Emerson RC, Korenberg M J, Citron MC (1992) Identification of com-
plex-cell intensive nonlinearities in a cascade model of cat visual
cortex. Biol Cybern 66:291-300

Fliess M, Lamnabhi M, Lamnabhi-Lagarrigue F (1983) An algebraic
approach to nonlinear functional expansions. IEEE Trans Circuits
Syst 30:554-570

Funahashi K (1989) On the approximate realization of continuous
mapping by neural networks. Neural Networks 2:183-192

Hartman E, Keeler JD (1991) Predicting the future: advantages of
semilocal units. Neural Comput 3:566-578

Hearne PG, Wray J, Sanders DJ, Agar E, Green GGR (1993) The
neurone as a nonlinear system: a single compartment study. In:
Eeckman FH, Bower JM (eds) Computation and neural systems.
Kluwer, Norwell, pp. 19-23

Hearne PG, Manchanda S, Janahmadi M, Thompson IM, Wray J,
Sanders DJ, Green GGR (1994) Solutions to Hodgkin-Huxley
equations: functional analysis of a molluscan neurone. In: Eeck-
man FH, Bower JM (eds) Computation and neural systems. II.
Kluwer, Norwell

Hertz J, Krogh A, Palmer R (1990) Introduction to the theory of neural
computation. Addison-Wesley, Redwood

195

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward
networks are universal approximators. Neural Networks
2:359-366

Hudson JL, Kube M, Adomatis RA, Kevrekidis IG, Lapedes AS,
Farber RM (1990) Nonlinear signal processing and system identi-
fication: applications to time series from electrochemical reactions.
Chem Eng Sci 45:2075-2081

Knuth DE (1981) Seminumerical algorithms. (Art of computer pro-
gramming, Vol 2). Addison-Wesley, Redwood

Korenberg M J, Hunter IW (1990) The identification of nonlinear biolo-
gical systems: Wiener kernel approaches. Ann Biomed Eng
18:629-654

Lambert JM, Hecht-Nielsen R (1991) Application of feedforward and
recurrent neural networks to chemical plant predictive modeling.
In: Proceedings of International Joint Conference on Neural Net-
works Seattle, pp 1373-1378

Lee YW, Schetzen M (1965) Measurement of the Wiener kernels
of a nonlinear system by cross-correlation. Int J Control
2:237-254

Lippmann RP (1987) An introduction to computing with neural nets.
IEEE ASSP Magazine April:4-22

Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological sys-
tems: the white noise approach. Plenum Press, New York

Marmarelis PZ, Naka K (1972) White-noise analysis of a neurone
chain: an application of the Wiener theory. Science 175:1276-1278

Mizunami M, Tateda H, Naka K (1986) Dynamics of cockroach ocellar
neurons. J Gen Physiol 88:275-292

Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned
processing units. Neural Comput 1:281-294

Nabet B, Pinter RB (1992) Multiplicative inhibition and Volterra series
expansion. In: Pinter RB, Nabet B (eds) Nonlinear vision: deter-
mination of neural receptive fields, function and networks. CRC
Press, Boca Raton, pp 475-492

Palm G, Poggio T (1977) The Volterra representation and the Wiener
expansion: validity and pitfalls. SIAM J Appl Math 33:195-216

Palm G, Prppel B (1985) Volterra representation and Wiener-like
identification of nonlinear systems: scope and limitations. Q Rev
Biophys 18:135-164

Poggio T, Reichardt W (1973) Considerations on models of movement
detection. Kybernetik 13:223-227

Rugh WJ (1981) Nonlinear system theory: the Volterra/Wiener ap-
proach. Johns Hopkins University Press, Baltimore

Rumelhart DE, McCelland JL, PDP Research Group (1986) Parallel
distributed processing: explorations in the microstructure of cogni-
tion, Vol 1. MIT Press, Cambridge, Mass

Schetzen M (1965) Measurement of the kernels of a non-linear system of
finite order. Int J Control 1:251-263

Schetzen M (1980) The Volterra and Wiener theories of nonlinear
systems. Wiley, New York

Volterra V (1959) Theory of functionals and integral and integro-differ-
ential equations. Dover, New York

Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K (1989) Phoneme
recognition using time-delay neural networks. IEEE Trans Acous-
tics Speech Signal Process 37:328-339

Weigend AS, Huberman BA, Rumelhart DE (1990) Predicting the
future: a connectionist approach. Int J Neural Syst 1:193-209

Wiener N (1958) Nonlinear problems in random theory. MIT Press,
Cambridge, Mass

Wolfram S (1988) Mathematica: a system for doing mathematics by
computer. Addison-Wesley, Redwood

Wray J (1992) Theory and applications of neural networks. PhD thesis,
University of Newcastle upon Tyne, UK

Wray J, Green GGR (1991) Analysis of networks that have learnt
control problems. In: Proceedings of IEEE Control-91. Herriot-
Watt, UK, pp 261-265

