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Abstract. The Volterra series is a well-known method of 
describing non-linear dynamic systems. A major limita- 
tion of this technique is the difficulty involved in the 
calculation of the kernels. More recently, artificial neural 
networks have been used to produce black box models of 
non-linear dynamic systems. In this paper we show how 
a certain class of artificial neural networks are equivalent 
to Volterra series and give the equation for the nth order 
Volterra kernel in terms of the internal parameters of the 
network. The technique is then illustrated using a specific 
non-linear system. The kernels obtained by the method 
described in the paper are compared with those obtained 
by a Toeplitz matrix inversion technique. 

1 Introduction 

Many non-linear systems exist within the realms of 
biology. However, due to the nature of some of these 
systems, it has proved difficult to produce and solve 
analytic equations which describe them. An alternative to 
mathematical analysis (which produces analytic equa- 
tions describing the workings of a system) is to take 
a general black box model and obtain the specific para- 
meters which enable the model to describe a system. Two 
such methods, which are closely related to each other, are 
the Volterra and Wiener series (Marmarelis and Marma- 
relis 1978; Schetzen 1980; Rugh 1981). These functional 
approaches to system identification have found many 
applications in neurobiology. For example, the Volterra 
series has been used to characterise the receptive fields of 
auditory neurones (Aertsen and Johannesma 1981), in 
the modelling of movement detection (Poggio and 
Reichardt 1973) and in the analysis of network models of 
lateral inhibition (Nabet and Pinter 1992). The Wiener 
series has been used in the analysis of neurone chains 
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(Marmarelis and Naka 1972), in the determination of the 
non-linear properties of cells in the visual cortex (Emer- 
son et al. 1992) and in the investigation of the dynamics 
of cockroach ocellar neurones (Mizunami et al. 1986). 
The Volterra series can be shown to be a general solution 
of non-linear differential equations using differential 
algebraic approaches (Fliess et al. 1983). However, at 
present no general methods exist to calculate the Vol- 
terra kernels for non-linear dynamic systems, although 
they can be calculated for systems whose order is known 
and finite (Schetzen 1965). This method is not generally 
applicable since the order of a system is not typically 
known a priori. Conversely, general methods do exist 
to calculate the Wiener kernels, although these can be 
highly inaccurate (Palm and Poggio 1977). This paper 
tackles the problem of Volterra kernel calculation for 
systems of unknown order. First, Volterra and Wiener 
series modelling is introduced in detail, and some asso- 
ciated problems are discussed. A method is developed to 
calculate the Volterra kernels for non-linear systems of 
unknown order, via a proof demonstrating the equiva- 
lence between a certain neural network architecture and 
the finite memory, discrete, Volterra series. The method 
is compared to the currently most accurate method of 
Wiener kernel production: Toeplitz matrix inversion 
(Korenberg and Hunter 1990). The comparison is effec- 
ted by using both methods to calculate the kernels for 
a system that can be described purely by its second-order 
kernel. The Wiener and Volterra kernels for such a 
system are identical (Marmarelis and Marmarelis 1978). 
The new method produces a substantial improvement 
in accuracy, judged both by comparison of the kernels 
and by the kernels' ability to predict the system response 
to new stimuli. 

2 Volterra and Wiener modelling 

The Volterra approach characterises a system as a map- 
ping between two function spaces, which represent the 
input and output spaces of that system. The Volterra 
series is an extension of the Taylor series representation 
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to cover dynamic systems and has the general form 

y(t) = ho + S hl(zl)u(t  - zl) dzl 
- o o  

+ ~ ~ h2(zl, z 2 ) u ( t - - z l ) u ( t - -  rE)dzl dr2 
- -  c t 3  - -  o 0  
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- oo  - oo  

u ( t -  z , )dzx  . .  �9 dz, + . . .  (1) 

where y(t) is the output of the system at time t, u(t) is the 
input at time t, and h , ( z l , . . .  ,z,) is the nth order 
Volterra kernel. Equation (1) has an alternative func- 
tional form, 

y(t) = ~l[u( t ) ]  + ~z[u( t ) ]  + ' " +  aCe,[u(t)] + . . .  (2) 

where 

9r176 = ~ . . .  ; h.(z, . . . . .  z . ) u ( t - z , ) . . .  
- oo  - oo  

u( t - -  z,) dzl �9 �9 �9 dr, 

and is known as the nth order Volterra operator. 
Volterra (1959) showed that such a series is capable of 

representing any analytic, time-invariant system. How- 
ever, two major problems exist with this approach to 
system identification. The first is due to the fact that the 
Volterra series is a polynomial approximation to a sys- 
tem. It is a direct extension of the Taylor series to systems 
with memory, so the well-known limitations of the 
Taylor series apply equally to the Volterra series. The 
second problem relates to calculating the kernels for 
a specific system. The work of Wiener (1958) was seen as 
a way to overcome these problems. In function approx- 
imation a standard technique (Cheney 1982) is to use 
sums of orthogonal polynomials of different orders. This 
method overcomes two of the major problems associated 
with Taylor series approximation. First, it allows the 
approximation of non-analytic functions, which is not 
possible with a Taylor series since to calculate the series 
coefficients, the function to be approximated needs to be 
analytic. Second, it overcomes the problem of trunc- 
ation. It can be shown (Cheney 1982) that the sum of 
Chebyshev polynomials, up to degree n, provides the best 
approximation, in terms of the Chebyshev norm, of de- 
gree n. This is not the case for a Taylor series where 
truncation to degree n will not, in general, give the best 
approximation of degree n. Wiener extended the use of 
orthogonal polynomials to functional analysis by modifi- 
cation of the Volterra series to give an expansion made 
up of orthogonal functionals. This extension produced 
the Wiener series in which every functional is orthogonal 
to each other when the input signal is Gaussian white 
noise. Orthogonality of the functionals means the Wiener 
series of a specific order is the best possible approxima- 
tion of the system to that order. In addition, functional 
orthogonality implies that the kernels can be calculated 
independently. The method of Wiener has since been 

improved, and other techniques of Wiener kernel extrac- 
tion have been developed (Lee and Schetzen 1965; de 
Boer and Kuyper 1968; Korenberg and Hunter 1990). 

A number of limitations of the Wiener approach and 
the kernel extraction techniques have been reported. One 
of the most obvious problems is that ideal white noise 
cannot be generated since it has infinite power, meaning 
that coloured or band-limited noise has to be used in any 
practical situation (Marmarelis and Marmarelis 1978). 
This deviation from the ideal leads to errors in the ker- 
nels. Another problem (Palm and Poggio 1977) is that 
kernel calculation techniques cannot be extended to ker- 
nels of degree 3 and above, due to delta functions being 
produced of the kernels. In addition, errors in kernel 
calculation occur due to the use of finite length input and 
output signals (Korenberg and Hunter 1990). 

As well as these problems of kernel calculation, the 
superiority of the Wiener series over the Volterra series 
has been questioned. In a practical situation finite Wiener 
series must be used (Korenberg and Hunter 1990), and 
since every finite Wiener series has an equivalent Vol- 
terra series (Palm and Poggio 1977), Wiener series offer 
no advantage in terms of approximation ability. In addi- 
tion, the ability of the Wiener series to approximate 
a larger class of functions than a Volterra series is due 
solely to weakening of the error criterion from a quad- 
ratic norm to a Chebyshev norm (Palm and P6ppel 
1985). For these reasons the Wiener series is, in principle, 
no better in a practical situation than a Volterra series. 
The only practical advantage of the Wiener series is that 
methods exist to calculate the kernels. In a Volterra series 
the functionals are not independent, and so to enable 
their calculation, the order of the system has to be known 
in advance (Schetzen 1965). In this paper a method for 
calculating the Volterra kernels for systems of unknown 
order is presented. This is achieved by effectively calcu- 
lating them all simultaneously. 

One advantage the Volterra series has over the 
Wiener series lies in the interpretation of the system 
kernels. The Volterra kernels are a direct extension of the 
impulse response concept from linear system theory to 
multiple dimensions. Thus, just as the impulse response 
of a linear system can be used to describe that system, the 
kernels, which are a multidimensional analogue of the 
impulse response, can be used to characterise a non- 
linear system. 

This section introduced Volterra and Wiener series 
and mentioned some problems that exist in the kernel 
calculation and the subsequent use of the series in model- 
ling. In the next section we show how an artificial neural 
network of a certain class is equivalent to a finite memory 
Volterra series, and we produce the equations necessary 
to calculate the Volterra kernels from a network. To 
work in discrete time, the discrete Volterra series needs to 
be introduced, and is given by 

y(t) = ho + ~ hl(zx)u(t - zl) 
r l=O 

+ ~ ~, h2(zl, z2)u(t- Zl)U(t--c2) 
1:1~0 "~2=0 
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+ . . .  + ~f . . .  ~.. hn(z 1 . . . . .  % ) u ( t - T 1 )  
t t = O  t . = O  

. . .  u( t  --  r . )  + . . .  (3) 

where u(t)  and y(t)  are the input and output at time t, 
respectively, and h , ( z l  . . .  z,) is the nth order Volterra 
kernel. It is assumed in this equation that the system is 
causal and so the delay indicies z~ start at zero. For 
a practical system with finite memory the equation be- 
comes 

T 

y(t)  = ho + ~ h l ( z l ) u ( t  -- z l )  
t s = O  

T T 

+ ~ ~ h2(z,, z2)u(t -- Zl)U(t - -  "r 
~1=0 t2=O 

T T 

+ . . .  + y '  . . .  ~ h . ( z , , . . . , z , ) u ( t - z , )  

. . .  u ( t - -  %) + . . .  (4) 

where T is the memory of the system (i.e. the number of 
time sampled values needed to describe the dynamics of 
the system). 

3 Artificial neural networks 

Artificial neural networks are collections of processing 
nodes connected together in a network in such a way as 
to be able to perform a function. One such network, 
termed a feed-forward network or multilayer perceptron, 
is shown in Fig. 1. Such a network is trained to perform 
a certain mapping between its input layer (on the left) and 
its output by altering the weights associated with each 
internal connection. These weights are altered by a train- 
ing algorithm which takes pairs of ideal input/output 
data and changes the weights to make the network repro- 
duce the mapping described by the data pairs. Many such 
algorithms exist, but they all attempt to solve the same 
problem: to find the optimal minimum of a surface in 
weight space, whose height is given by the total error 
between the network's actual output and its required 
output, for all the training pairs. An introduction to 
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neural networks can be found in many texts (Lippmann 
1987; Hertz et al. 1990). 

In recent years artificial neural networks have been 
considered in terms of their function approximation abil- 
ity, following the theoretical result of a number of 
authors (Cybenko 1989; Funahashi 1989; Hornik et al. 
1989) proving that a feed-forward network with one 
hidden layer can approximate any continuous function, 
to any degree of accuracy. One specific architecture, 
shown in Fig. la, has been used in many applications to 
model non-linear dynamic systems (Hudson et al. 1990; 
Weigend et al. 1990; Chakraborty et al. 1992). This net- 
work is a specific, one-input-variable example of a so- 
called time-delay neural network (Waibel et al. 1989). 
The output node of the network represents the current 
output of the system, and the input nodes represent the 
inputs to the system sampled in time. 

A typical nodal processing function is 

op~ = ai bi w j iu ( t  - j )  
, =  

(5) 

where op~ is the output from hidden unit i, o i is the output 
function of hidden unit i, wj~ is the weight connecting 
input unitj  to hidden unit i, u(t  - j )  is the input u at delay 
j, bi is the bias input to unit i, and N + 1 is the number of 
input units. A typical output function, a, is of sigmoidal 
shape such as the hyperbolic tangent (tanh x). Figure lb 
shows a block diagram of the processing described by (5), 
occurring at the hidden nodes of the network in Fig. la. 

In a previous paper (Wray and Green 1991) we have 
shown how, by considering the output function, such as 
tanh (x), in terms of its Taylor series equivalent, the bias 
input to a node acts to change the output function. Thus, 
if the hidden nodes have different bias inputs, as is gener- 
ally the case, we can consider each hidden node as having 
a different polynomial output function, p~(x). This can be 
written as 

pi(x)  = aoi + a l i x  + a 2 i x  2 + " " " + a,ix" + �9 �9 �9 (6) 

From Fig. 1 if the output unit has no non-linearity, the 
output of the network can be expressed as 

M 

y(t)  = ~ c ip , (x i )  (7) 
i = l  

where ci is the weight from hidden unit i to the output 
unit, M is the number of hidden units, and x~ is the 
weighted sum of inputs into hidden unit i given by 

N 

xi  = ~,  w j i u ( t - - j )  (8) 
j=o 

If (6) and (7) are combined, we get 

y(t)  = cl(aot + a l l x l  + a z l x ~  + " "  ) 

+c2(a02 + a12x2 + a22 X2 + . . . ) 

Fig. 1. a A neural network architecture for time series prediction. 
b A block diagram of one hidden node of the network shown in a + C M ( a O M  + a lMX M + a2MX 2 + " " �9 ) (9) 
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now substituting for xi and gathering like terms we get 

y(t) = claol +c2a02 + �9 �9 �9 +CMaOM 

N IV 

+ c l a , ,  ~, WjlU(t - j )  +c2a12 ~ wj2u(t - j )  
j = O  j = O  

N 

+ ' ' "  +cMaxM ~, WjMU(t -- j) 
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.o, 

= c~aol -t-c2ao2 + " " �9 -t- CMaOM 

N 

+ Y'. (c~allwjl +cza12wjz 
j = O  

+ " "  +cMalMWjM)u(t-- j )  

N N 

+ ~ ~ (c~a~wjlw~l +c2a22wj2w~ 
j = O k = O  

+ . ' '  +CMaEMWiMWkM)U(t - - j )u ( t  -- k) + . . .  (11) 

Comparing (4) and (11) they are seen to be equivalent, 
demonstrating that a network of the architecture shown 
in Fig. 1 is equivalent to a finite memory, discrete infinite 
Volterra series. The Volterra kernels are given by 

M 

ho = ~ ciaoi (12) 
i = 1  

M 

hx(j) = ~ claliwji (13) 
i = 1  

M 

h2(j, k ) =  ~' ClaEiWjiWkl (14) 
i = 1  

and so the general nth order kernel is given by 

M 

h.(va, v2 . . . . .  v,) = ~ cla.iwv,iwv2i. �9 �9 wv.i (15) 
i = 1  

Thus, if a network of the architecture shown in Fig. 1 can 
be trained to adequately represent the system under 
study, then the Volterra kernels of all dimensions of that 
system can be extracted. 

Note that the discussion so far has concentrated on 
single-input Volterra series. The Volterra series repres- 
entation has been extended to multiple dimensions 
(Poggio and Reichardt 1973), and similarly the neural 
network representation can be extended to multiple in- 
puts. Wray (1992) showed how the above derivation can 
be extended to multiple input variables to allow the 
calculation of the kernels for multiple-input systems. 

3.1 Calculation o f  hidden node polynomials 

One problem of this technique, which is not obvious from 
the above derivation, is the calculation of the coefficients 
aii in the polynomial expansion of the hidden node out- 
put functions Pi. 

Let the output function of the hidden nodes be 
tanh(x), although this argument can be developed 
equally well to apply to any output function. The hyper- 
bolic tangent has the following Maclaurin expansion 

~, (-1)"+XB,(24" - 2 2 n ) x  2 n - 1  

tanh(x) ,=1 (2n)! (16) 

where B, are the Bernoulli numbers given by 

2(2n)! ~ 1 
B , -  (2rc)2" m 2n 

m = l  

When this is expanded, the following polynomial is ob- 
tained 

tanh(x) = x - ~x3 + 2 x S  - ~-~xT + " " " (17) 

If instead of considering the bias as part of the activation 
function it is considered part of the output function, then 
it has the effect of 'shifting' the output function along the 
x-axis (Wray and Green 1991). The output of each hidden 
node then becomes 

pi(x) = (x +bl) - ~(x  +bl) 3 + (x +bi) 5 

3•5(x +bi) 7 + . . .  (18) 

This has the effect of altering the coefficients of each 
power term, which includes making the even terms non- 
zero. Thus, the coefficients aii in (6) depend on the expan- 
sion of (18). In fact, they are given by 

aji = ~ kCflkbk- i  (19) 
k = j  

where kCj is the combination given by kc  i = k!/(k - j)!j!, 
and d k is the coefficient of the kth power in the original, 
non-biased polynomial of the hidden node output func- 
tion. Thus, the ability to calculate the values of a~i, 
essential for the calculation of the kernels, depends on the 
convergence of the series given in (19). The critical factor 
in the convergence of this series is the bias value bi. Since 
the radius of convergence of the Taylor series of tanh x is 
n/2, if the bias value goes outside the range [-re/2, n/2], 
then (19) diverges. Although typical the values of the 
weights in a network are less than ~/2, this is not always 
the case, resulting in a serious problem. 

Two possible solutions of this problem are described 
in the following paragraphs. One is an alternative 
method of calculating the coefficients of the final biased 
nodal output functions, and the other involves the use of 
an alternative function on the output of the hidden 
nodes. 



3.1.1 Alternative calculation method. The alternative cal- 
culation method uses the fact that (17) is the Taylor series 
expansion of tanh (x) around zero. If instead of taking 
this expansion and using the bias values to alter the 
coefficients the Taylor series for tanh (x) is evaluated 
around the bias values, then the polynomials are gener- 
ated directly, and this problem is overcome. The consid- 
eration then becomes the calculation of the Taylor series 
around the different bias values. This calculation is per- 
formed by substituting the values of the individual biases 
into the equation for the Taylor expansion around an 
arbitrary point. For example, if hyperbolic tangent out- 
put functions are used, then the coefficient aji of the jth 
power in the equivalent polynomial for the hidden node 
output function Pi is given by 

1 
asi = - tanh<S)(bi) (20) 

1 

where tanht~)(x) is the jth derivative of tanh(x). 
Thus, the calculation of the asi values requires the 

higher derivatives of the output function used, and these 
must be calculated analytically. The calculation of these 
higher derivatives is cumbersome, and if the nodal output 
functions are changed, to another sigmoid say, then all 
the derivatives will have to be recalculated. One solution 
is to use a symbolic manipulation package, such as 
Mathematica (Wolfram 1988), which has built-in algo- 
rithms to produce the power series of any function 
around a given point. Using these tools, the practical 
considerations of analytically working out the higher 
derivatives are removed. 

3.1.2 Alternative nodal function. The other solution to 
this problem is to use an alternative output function in 
the hidden layers. In a previous paper (Wray and Green 
19911 we discussed the use of finite polynomial output 
functions in the hidden layer to produce a finite poly- 
nomial approximation to the training data. The use of 
finite polynomial output functions can be extended to the 
architecture of the network given in Fig. 1. If the sig- 
moidal output function, of whichever form, is replaced by 
a finite function, such as eo + e l x  + e2 X2 q- e3 X3 "l- e4 X4, 
and no bias inputs are used, then the coefficients asi in (6) 
are known immediately. The disadvantage of this tech- 
nique is that a finite order nodal function means that 
only a limited order Volterra series can be produced, i.e. 
if a fourth-order nodal function is used, then only 
a fourth-order Volterra series can be produced. This need 
not be a problem. If the network, using the alternative 
functions, learns the training data, and the training data 
adequately represents the system, then a finite order 
Volterra series can be used to describe the system. 

4 Illustration of kernel extraction 

The previous section showed that a neural network with 
a specific architecture is equivalent to a Volterra series. 
Equations for the kernels were produced. Thus, if a net- 
work can be trained to represent the dynamic behaviour 
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of a system, then the Volterra kernels of that system can 
be calculated. 

To illustrate this technique, and to enable compari- 
son with other methods, the non-linear system used by 
Korenberg and Hunter (1990) to illustrate their method 
of kernel extraction using Toeplitz matrix inversion will 
be used. The system they used was a Wiener cascade 
model, which consists of a linear dynamic stage followed 
by a static non-linear stage, as illustrated in Fig. 2. 

Korenberg and Hunter chose the linear dynamic 
stage to be low-pass, underdamped and second order and 
the static non-linear stage to be a squarer. They do not, 
however, give any specific details of the linear dynamic 
system. Consequently, parameters of the system imple- 
mented were chosen to give an impulse response that 
looked like that of the system used by Korenberg and 
Hunter. The system used has the impulse response given 
by 

#(t) = a exp(-kt)sin mt (21) 
m 

where a = 2, m = 0.3 and k = 0.08 (shown graphically in 
Fig. 3). 

One major advantage of using this Wiener cascade as 
a test system is that its output can be written analytically 
in terms of the input 

y(t) = S ~(t)u(t -- z) dz 
- o o  

= I /'/(T1)/I('C2)U(t --  ~l)U(t -- "r2) dz l  dz2 (22) 

This is a second-order Volterra functional of the input u, 
and so the system can be described totally by its 

u(t) .~ Linear Dynamic ] 
I Stag~ I ; 

Fig. 2. A Wiener cascade model 
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Fig. 3. Impulse response of the linear stage of the Wiener cascade 
model 
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second-order kernel which is given by 

h2(zl, z2) =/~(zl)#('r2) 

a 2 
= ---vexp(-k(rl + z2))sin mr1 sin m z  2 

m" 
(23) 

The function described by (23) is shown graphically in 
Fig. 4. Comparison to this ideal, analytic kernel will 
determine the relative accuracy of the kernel extraction 
techniques. 

4.1 Experimental details 

For both kernel calculation techniques an input time 
series and a corresponding output time series are re- 
quired. For the Toeplitz matrix technique of Korenberg 
and Hunter, an input signal of Gaussian coloured noise is 
required. Such a signal was generated using the Box- 
Muller method of random number generation (Knuth 
1981). Repeated calls to this algorithm produces a signal 
whose amplitude is random and Gaussianly distributed, 
with a mean of zero and a variance of one. The signal so 
produced was applied to the non-linear system described 
above, generating an output time series. In the specific 
experiment described here, an input time series of 4000 
points and the corresponding output signal of 4000 
points were used to calculate the Volterra kernels of the 
Wiener cascade using Toeplitz matrix inversion and the 
neural network method. The same two 4000-point time 
series were used in both calculation methods. 

The Toeplitz matrix method was implemented using 
the procedure given by Korenberg and Hunter (1990). 
The essence of the technique is the solution of a set of 
linear simultaneous equations relating the autocorrela- 
tion function of the input time series to the cross-correla- 
tion functions of various orders between the input and 
output time series. This solution, which involves the 
inversion of a Toeplitz matrix and some vector multipli- 
cation, gives rise to the system kernels. 

As mentioned earlier, an artificial neural network can 
be viewed as an optimisation technique that allows 
a mapping to be learnt between the input and output 
spaces represented by the network. This learning is 

achieved by minimising the error between the network's 
actual output and its required output over a range of 
training examples. In this specific case the network, of the 
form shown in Fig. 1, is required to learn the mapping 
that predicts the current system (y(t)) given the last 50 
inputs to the system (u(t). . .  u ( t -  50)). The training 
examples used in this experiment are obtained from the 
input and output time series given to, and obtained 
from, the system under investigation. A window of 50 
successive points of the input trace (u(t). . .  u(t-50)) 
and the corresponding output value (y(t)) comprise one 
training example. A set of these training examples was 
constructed by considering all possible windows of 50 
points over the whole input trace, producing a total of 
3950 training examples. Only 3950 training examples 
are produced since the initial 50 output points 
cannot be used because the previous 50 inputs are not 
known. 

In the results presented here the network was trained 
with the training data set described above, using the 
back-propagation algorithm with momentum (Rumel- 
hart et al. 1986) with a learn rate /~ = 0.05 and a 
momentum scale factor of ~ = 0.5. The network was 
presented with examples, drawn at random from the 
whole training set, many times until the sum squared 
error between the network's required output and its 
actual response stopped reducing. This typically took 
between 1000 and 2000 cycles. After the network training 
procedure had converged, the first- and second-order 
Volterra kernels were calculated using (13) and (14). Since 
in this experiment hyperbolic tangent output functions 
were used, the aji values in (13) and (14) were calculated 
using (20). 

4.2 Experimental results 

The first-order kernels, which should be identically zero, 
are shown in Fig. 5. Note that since a theoretical system 
has been used for the experiment, the system's input and 
output have no units, and hence the kernels have no 
units. In a real system, however, the kernels do have 
units, and so all the kernel graphs shown have the ordi- 
nate labelled 'kernel units'. The second-order kernels are 
shown in Figs. 6 and 7. These figures clearly show the 

Fig. 4. Ideal second-order kernel for the Wiener cascade model 
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Fig. 5. First-order kernels of the Wiener cascade model calculated 
using Toeplitz matrix inversion ([3) and the neural network method 
(�9 
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Fig. 6. Second-order kernel for the Wiener cascade model calculated 
using Toeplitz matrix inversion 

improved accuracy of the neural network technique over 
the Toeplitz matrix technique for this specific example. 

Although the kernels shown in Figs. 5-7 could be 
numerically compared to the analytic kernels, a more 
useful and acid test of the relative accuracy of the kernel 
calculation techniques is to use the second-order kernels 
to predict the system's response to a novel stimulus. 
Figures 8 and 9 show the predicted output for an unseen 
input using kernels calculated using Toeplitz matrix in- 
version and the neural network method, respectively. In 
addition, both graphs show the actual system output (e) 
for the same input. Clearly, the neural network produces 
the better prediction, which hardly differs from the actual 
system output, as seen by the high coincidence of the two 
graphs in Fig. 9. 

5 Discussion 

Fig. 7. Second-order kernel for the Wiener cascade calculated using 
the neural network-based method 
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Fig. 8. The output from the system (g )  and the kernel calculated using 
Toeplitz matrix inversion (line) 
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Fig. 9. The output from the system (0 )  and the kernel calculated using 
the neural network-based technique (line). The two graphs are highly 
coincident, although slight differences can be detected at some minima 
and maxima 

This paper is concerned with the Volterra series repres- 
entation of non-linear systems. Volterra series are able to 
represent any analytic, time invariant system (Volterra 
1959) and are the general solution of non-linear differen- 
tial equation models of dynamic systems (Fliess et al. 
1983). However, no general methods exist for either con- 
structing differential equation models of non-linear sys- 
tems or for numerically obtaining the Volterra kernels if 
the order of the system is unknown a priori. 

Artificial neural networks of a certain architecture 
(depicted in Fig. 1) have been shown to possess general 
approximation abilities (Cybenko 1989; Funahashi 1989; 
Hornik et al. 1989) and have been used to model dynamic 
non-linear systems (Hudson et al. 1990; Weigend et al. 
1990; Chakraborty et al. 1992). Neural networks can be 
viewed as approximation techniques in which an error 
between the required network output (defined by a num- 
ber of training examples) and its actual output is mini- 
mised by alteration of the network's internal parameters. 
This paper proves how a network of a certain architec- 
ture is equivalent to finite memory, discrete Volterra 
series. This proof leads directly to equations for the 
Volterra kernels in terms of network parameters and 
hence to a method of calculating the Volterra kernels of 
a system of unknown order. 

The technique is illustrated and compared to another 
kernel calculation technique (Toeplitz matrix inversion 
of Korenberg and Hunter 1990) by using both methods 
to calculate the Volterra kernels for a non-linear dynamic 
system described by a Wiener cascade. An advantage of 
using such a test system is that it enables the analytic 
kernels to be calculated. In the original paper describing 
the Toeplitz matrix technique, the method was shown to 
be far superior, in terms of accuracy, than the cross- 
correlation method of Lee and Schetzen (1965). The ex- 
periment reported in this paper demonstrates, for the 
specific system studied, the greater accuracy of the neural 
network method over the Toeplitz matrix technique, and 
hence over the cross-correlation-based method of Lee 
and Schetzen. 

There are two possible reasons for this improvement 
in accuracy. First, the equations for the kernels (12-15) 
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can be evaluated exactly. Thus, if a network can be 
trained using the available data to produce an adequate 
approximation to the systems input-output mapping, 
then an approximation to the Volterra kernels can be 
calculated exactly. Any errors in the calculation of the 
kernels are not due to assumptions made in the deriv- 
ation of the kernel formula being violated but rather to 
either a poor approximation being produced or the train- 
ing data not covering the whole space of possible in- 
put-output relationships, i.e. the trained network does 
not adequately represent the systems' behavior. Con- 
versely, the Wiener calculation techniques assume fre- 
quently violated statistical properties of the input signal 
in the derivation of the kernel formula. For example, with 
the cross-correlation technique (Lee and Schetzen 1965) 
the equations for the kernels assume that the input signal 
is infinitely long white noise. This signal is not realisable, 
and so errors are introduced into the kernels when they 
are calculated in this way. The second reason for im- 
proved accuracy is due to the weakening of the error 
criteria with the Wiener representation (Palm and P6p- 
pel 1985). The neural network training algorithm mini- 
mises the error on a point-by-point basis (L2 norm), 
whereas the Wiener representation produces an approx- 
imation based on the average error (L~o norm). Thus, 
a more accurate approximation to the system can be 
generated by the neural network than by a Wiener series. 

The experiment described in this paper compares the 
newly developed neural network technique with that of 
Toeplitz matrix inversion. In general, however, this com- 
parison is not possible since the Toeplitz matrix method 
produces the Wiener kernels of a system, whereas the 
neural network method produces the Volterra kernels. 
The comparison was only possible because the system 
used was of second order, which means the Volterra and 
Wiener kernels are identical (Marmarelis and Marma- 
relis 1978). Thus, the comparative statements made 
above concerning accuracy cannot be generalised to sys- 
tems of higher order. However, the method derived in 
this paper allows the calculation of the Volterra kernels 
of systems of any, unknown order, and the experimental 
results presented demonstrate the technique's accuracy 
when applied to a specific system. In addition, the tech- 
nique has been applied successfully to real and modelled 
neurobiological systems of higher order (Hearne et al. 
1993), with close agreement being shown between kernels 
obtained analytically and numerically (Hearne et al. 
1994). 

The analysis presented in this paper has been for 
feed-forward networks with sigmoidal output functions 
in their hidden nodes. This is only a specific example of 
the more general case. It can be shown (Wray 1992) that 
radial basis function networks can be considered equiva- 
lent to producing polynomials in their inputs. This is, in 
fact, true of networks using any analytic function as 
output functions of their hidden nodes. This means that 
such networks are equivalent to discrete, finite memory 
Volterra series and that equations for the Volterra ker- 
nels can be derived in terms of the network parameters. 
This may have implications in overcoming a drawback 
of this technique: its computational expense. Network 

training algorithms are error minimisation techniques 
and as such can take a long time to converge. It has been 
shown (Moody and Darken 1989) that the use of radial 
basis function networks for time series prediction leads to 
an improvement in training speed over sigmoidal-based 
networks trained by back-propagation. Since radial basis 
function networks can be shown to be equivalent to 
Volterra series, the use of such networks may reduce the 
computational overheads of this kernel calculation tech- 
nique. It has also been shown (Hartman and Keeler 1991) 
that the use of semi-local units in the hidden layer of 
a network leads to an improvement in accuracy over 
radial basis function networks when used for time series 
prediction. Since these semi-local units have analytic 
output functions, networks using such units are also 
equivalent to a Volterra series. The use of these networks 
may lead to a lower error after training and hence to 
more accurate kernels. 

With correlation-based techniques, such as those pre- 
sented by Lee and Schetzen (1965) and Korenberg and 
Hunter (1990), some form of noise is used as an input 
signal. The statistical properties of the input noise allow 
derivation of the formula for the Wiener kernels. With 
the neural network technique presented here, this is not 
the case since the kernel formula does not depend upon 
any property of the input signal used. As long as data can 
be obtained that represent the input-output mapping of 
the system, the network training algorithm will be able to 
produce a trained network that approximates the dy- 
namic behaviour of the system. This network behaviour 
has been achieved (Lambert and Hecht-Nielsen 1991) by 
training networks on data rich in transients, on the 
assumption that enough different transients will repres- 
ent the overall dynamic behaviour of the system. Thus, 
the technique can be applied in situations where noise 
input may be impractical. 

Although this paper has presented a method for cal- 
culating the Volterra kernels for an arbitrary system, 
a number of problems inherent to the Volterra and 
Wiener series still exist. The first concerns the Volterra 
series and its range of applicability. The method pres- 
ented in this paper does not remove the constraint that 
the Volterra approximation cannot be applied to non- 
analytic systems. The second problem concerns the 
convergence and truncation of the Volterra series. Since 
the Volterra functionals are not independent of each 
other, truncation can affect the approximation ability of 
the Volterra series quite badly, especially if the conver- 
gence properties of the underlying polynomial approx- 
imation are not known. A third problem is inherent to 
both Volterra and Wiener series approximations, and 
indeed to all methods of system identification, and is 
concerned with the test signal used. Even though the 
method presented in this paper does not require a test 
signal of Gaussian noise, the signal (or signals) used must 
be such that the input-output mapping of the system 
under investigation can be adequately described by the 
data obtained using those inputs. Even if noise is used as 
an input signal, inferences about system behaviour can 
only be made over the bandwidth of the noise used. 
A fourth problem, again inherent to both functional 



techniques, is that they require the system to be time- 
invariant. This requires the time scale of the system 
investigation to be chosen carefully, to ensure stationar- 
ity, although an extension of the Volterra formulation to 
include kernels that vary in time has been provided by 
Schetzen (1980) and Rugh (1981). A fifth problem which 
is implicit to both the Volterra and Wiener series is that 
they can only be used for system identification. Although 
they can give insight into system dynamics, they reveal 
nothing about the underlying mechanisms leading to the 
observed behaviour. The upshot of these limitations is 
that the Volterra and Wiener techniques cannot be used 
blindly; properties such as analyticity, time invariance 
and system bandwidth all have to be considered before 
application of the functional approaches to biological 
system identification. 
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