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Abstract. The properties of multi-peaked "fitness land- 
scapes" have attracted attention in a wide variety of 
fields, including evolutionary biology. However, rela- 
tively little attention has been paid to the properties of 
the landscapes themselves. Herein, we suggest a frame- 
work for the mathematical treatment of such land- 
scapes, including an explicit mathematical model. A 
central role in this discussion is played by the autocor- 
relation of fitnesses obtained from a random walk on 
the landscape. Our ideas about average autocorrela- 
tions allow us to formulate a condition (satisfied by a 
wide class of landscapes we call AR(1) landscapes) 
under which the average autocorrelation approximates 
a decaying exponential. We then show how our mathe- 
matical model can be used to estimate both the globally 
optimal fitnesses of AR(1) landscapes and their local 
structure. We illustrate some aspects of our method 
with computer experiments based on a single family of 
landscapes (Kauffman's "N-k model"), that is shown 
to be a generic AR(I)  landscape. We close by discussing 
how these ideas might be useful in the "tuning" of 
combinatorial optimization algorithms, and in mod- 
elling in the experimental sciences. 

Introduction 

There has been considerable recent interest in consider- 
ing evolution as a combinatorial optimization problem, 
that is, a problem in finding the best of a large, but 
finite number of possibilities. Biologists, such as Kauff- 
man and Levin (1987), have embraced this paradigm in 
the hope that they might learn something new about 
evolution, and computer scientists, such as Holland 
(1981) and Brady (1985), hope to use evolutionary 
strategies in developing new methods of solving combi- 
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natorial optimization problems. Similar issues have also 
attracted the attention of physicists, such as Palmer 
(1989) and Stein (1989). They speculate that the ther- 
modynamics of glassy systems, such as polymers and 
other more or less random covalent networks, is inti- 
mately related to the complex structure of the barrier 
heights present in the potential surface. The common 
denominator in all of this work is a notion that Kauff- 
man and Levin have called a "rugged landscape.". If 
one is a biologist, such a landscape can be interpreted 
as a fitness landscape; if one is a computer scientist, the 
landscape is the set of allowable configurations in some 
optimization problem; and if one is a physicist/chemist, 
it is a glass and/or spin glass. 

To the biologist, the notion of an adaptive land- 
scape is not new, having been proposed in 1932 by 
Scwell Wright (Wright 1932). Subsequent developments 
in biological thinking have only reinforced the power of 
this idea. Molecular biology has made clear the essen- 
tial discreteness of the genome, and thus the finitude of 
the number of possible organisms. It is, perhaps, easier 
to make sense of the concept of an adaptive land- 
scape if one considers the evolution of individual 
molecules, rather than entire organisms; hence, Smith's 
notion of a "peptide space" (Smith 1970). In such a 
space, one arranges all peptides of a specified length 
in such a way that nearest neighbors differ by a 
single amino acid substitution at a single site. One 
might then define the fitness of the peptide as its 
ability to bind to a particular substrate, to catalyze a 
specific reaction, etc. The lethal nature of the sickle cell 
anemia mutation in humans emphasizes the fact that 
even a single point mutation can result in a dramatic 
change in fitness. Furthermore, the selection of an 
optimal enzyme to catalyze a particular reaction in- 
volves a host of complex tradeoffs: the enzyme must 
bind the substrate tightly enough so that the reaction 
will proceed, but not so tightly that it will not be 
released when the reaction is completed, the enzyme 
must not also catalyze competing reactions, and, of 
course, the enzyme must not interfere with the action of 
other enzymes. 
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It was these considerations that inspired Kauffman 
and Levin (1987) to draw the analogy between biologi- 
cal constraints and those imposed by the combinatorial 
optimization problems that have received much recent 
attention in computer science (see, for example, Garey 
and Johnson 1979). Perhaps the most famous example 
of this class of problems is the travelling salesman 
problem (TSP), which is to find the shortest tour 
through N cities from an initial city, visiting each city 
once, and returning at the end to the initial city. For as 
few as 11 cities, the number of possible tours is in the 
millions, growing as ((N - 1 )  /2) !. This is typical of 
combinatorial optimization: out of a finite, but ex- 
tremely large set of entities, one would like to find one 
that is, in some well defined sense, the "fittest". For a 
large class of such problems (e.g. the class of NP-com- 
plete problems), it is thought that even the most 
efficient algorithms that solve them must require a 
computational effort that grows at least exponentially 
with some measure of the "size" of the problem (such 
as the number of cities that the traveling salesman must 
visit). Indeed, the only known method of finding the 
optimal traveling salesman tour is to exhaustively 
search through the list of possible tours, checking each 
to see if each is shorter (and therefore "fitter") than all 
of those previously encountered. Because of the extreme 
amounts of time required for such a search, which can 
easily exceed the age of the universe for even moderate 
N on the largest of computers, algorithms that settle for 
sub-optimal tours are used in practice. The effective 
intractability of other combinatorial optimization prob- 
lems places a similar constraint on algorithms to solve 
these problems, as well. Typically, these algorithms use 
a generalization of the fact that tours that visit the cities 
in more or less the same order have more or less the 
same length. It is therefore profitable to search the 
vicinity of a good solution in the hopes of finding a 
better solution. This heuristic is incorporated into the 
algorithms by explicitly defining "neighborhoods", and 
searching from neighbor to neighbor. 

Essential features of the above discussion of the 
travelling salesman problem are also present in our 
evolutionary paradigm. In the case of a 20 amino acid 
peptide space, there are 20 N possible proteins of length 
N which would need to be searched to find the "fittest" 
protein for a particular function. How can an evolving 
biological system search through such a vast number of 
possibilities? Obviously, it can't. Instead, it would seem 
that evolution, like practical combinatorial optimiza- 
tion algorithms, makes do with sub-optimal solutions. 
Indeed, it has been shown previously (Weinberger 
1987a, b) that there is a detailed analogy between evolu- 
tionary optimization and the combinatorial optimiza- 
tion technique known as simulated annealing 
(Kirkpatrick et al. 1983). The "local hill climbing" 
heuristic described above, which, in the context of 
combinatorial optimization, involves transitions to ran- 
domly selected fitter neighbors, is one of the simplest of 
combinatorial optimization schemes. 

It is useful to consider a rugged landscape as an 
abstract mathematical object, both because some im- 

portant considerations emerge immediately, and be- 
cause a framework will be provided for subsequent 
discussion. This we do in the next two sections, moti- 
vating our remarks by considering the two concrete 
examples of combinatorial optimization problems men- 
tioned previously, the travelling salesman problem and 
optimization on peptide space. The second of these 
secions rigorously defines the notion of a "correlation 
length", and, more generally, an autocorrelation func- 
tion for such combinatorial landscapes. We will see that 
this autocorrelation function is indeed a decaying expo- 
nential, as implied by the existence of a single correla- 
tion length, for the wide class of landscapes that we call 
AR(1) landscapes. We then use these theoretical tools 
to explain why the two most obvious methods of opti- 
mization on combinatorial landscapes, random search 
and local hill climbing, do remarkably badly in finding 
the point on the landscape with the globally optimal 
fitnesses. The next section shows how our theoretical 
framework can be used to predict aspects of the local 
structure of a landscape, illustrating our method with 
computer experiments based on a simple family of two 
amino acid peptide landscapes (the "N-k model") pro- 
posed in Kauffman et al. In this section, we also 
demonstrate the intriguing fact that N-k landscapes are 
generic members of the class of AR(1) landscapes. The 
final section of the paper discusses the significance of 
our results. 

Some Thoughts about the Abstract Structure of 
Fitness Landscapes 

In all of the applications mentioned above, one would 
like to know the details of specific landscapes. Unfortu- 
nately, this "best of all possible worlds" scenario is 
unrealistic, due to the enormous amount of experimen- 
tal data required. A more realistic goal would be to 
gather a moderate amount of data about the landscape 
and infer likely statistical properties of the ensemble of 
landscapes that might fit the data. It is therefore appro- 
priate to begin a mathematical description of rugged 
fitness landscapes by assuming that the fitnesses of its 
points are random variables, and inferring properties of 
their moments. Although this program can be carried 
out if the random variables have essentially any distri- 
bution, our results will be most useful if the random 
fitness values have a joint Gaussian distribution. In that 
case, the distribution is completely specified by a vector 
of mean fitness values and a matrix specifying the 
covariance of the fitnesses. It is also useful to note that 
any linear combination of jointly Gaussian variables is, 
itself, Gaussian. 

There are both theoretical and simulation results 
showing that the marginal fitness distributions are, in 
fact, Gaussian for a wide class of landscapes of practi- 
cal interest. (Of course, the fact that all of the marginal 
distributions are Gaussian is necessary, but not suffi- 
cient to conclude that a collection of random variables 
is jointly Gaussian. See Feller (1972) for counter-exam- 
pies. However, Karlin and Taylor (1975) note that the 



variables are indeed jointly Gaussian if the marginal 
distributions of all linear combinations of the variables 
are Gaussian.) In many cases, fitnesses are likely to be 
determined by a large number of relatively independent 
factors of approximately equal strength. Under surpris- 
ingly general hypothesis (even more general than the 
usual assumption of statistical independence), it can be 
shown that the distribution of the average of a large 
number of random variables tends to a normal distribu- 
tion (see, for example, Breiman 1968). Computer simu- 
lations suggest that this situation actually occurs in a 
wide variety of fields. Kirkpatrick and Toulouse (1985) 
report that intercity distances in numerical simulations 
of the travelling salesman landscape are independently 
distributed, in which case the conditions of the central 
limit theorem are satisfied rigorously. As we will see in 
the discussion of the N-k model, the conditions for the 
central limit theorem are satisfied there, as well. Eigen 
et al. (1988) give examples of fitness landscapes - some 
of which are based on highly detailed mode l s -  in 
which normal distributions are observed. Finally, White 
(1984) shows graphically that "fitness" for a problem in 
computer design is also normally distributed, and he 
observes that the normal distribution is, to varying 
degrees of approximation, applicable to a wide class of 
such problems. 

Kauffman and Levin studied the case in which the 
fitness of each point in the landscape was chosen inde- 
pendently from each of the others, but they noted that, 
in general, fitnesses of nearby points are usually corre- 
lated. Clearly, any quantification of this dependence 
would also imply a quantification of the "correlation 
structure" of the landscape. One way of thinking about 
these questions is to designate a starting configuration 
and consider the set of operations that transforms this 
configuration to each of the other possible configura- 
tions (assuming that such transformations exist). It is 
easy to verify that this set of transformations forms a 
mathematical group (Herstein 1964 is one of the many 
texts that discuss the elements of group theory). An 
important aspect of this theory is the decomposition of 
the elements of the group into combinations of a rela- 
tively small number of generators. The relevance of this 
idea to the study of our transformations is that it is 
usually possible to express arbitrary transformations as 
a succession of a few simple transformations. We can 
then take these transformations as the generators of the 
relevant group, thus exploiting regularities in the group 
structure. Kauffman and Levin's uncorrelated fitness 
landscape, which is an idealized version of peptide 
space, provide a particularly simple example of these 
ideas. They assume that only two amino acids, say, 
glycene and alanine, are the only possible residues of a 
peptide of length N. The 2 N possible sequences are then 
the points in the rugged landscape. It is convenient to 
label the amino acids with the values "1" and "0". The 
sequences can then be interpreted as the verticies of an 
N dimensional hypercube. Clearly, any sequence can be 
obtained from any other in this model by a finite 
sequence of point mutations (single bit flips), so that 
the group of all possible transformations is the collec- 
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tion of all possible point mutations. This group is 
generated by the N mutations that involve flipping 
single bits. Kauffman and Levin define sequences that 
differ by a single bit as "neighbors", and, in general, it 
is natural to identify the configurations that can be 
reached by a single application of a generator transfor- 
mation as the "neighborhood" of the starting configu- 
ration. We will also call the set of generator 
transformations the move set, following a personal com- 
munication by Steve R. White. 

It is possible to generalize the paradigm given above 
to the travelling salesman problem. One way to repre- 
sent a TSP tour of N cities is with an N x N array of 
bits, ~ = [B#], such that B# = 1 if and only if city j 
follows city i in the tour. However, the move set here 
must preserve the special characteristics of the ~ ma- 
trix, which must always have exactly one "1" in every 
row and in every column. In contrast to Kauffman and 
Levin's model of peptide space, the order in which the 
generator transformations are applied to a starting 
travelling salesman configuration determines which of 
several possible configurations result. For example, sup- 
pose we start with a tour that visits Chicago first, 
London next, and New York third. Suppose further 
that our move set involves the two transformations 
"visit the second city first and the first city second" and 
"visit the thrid city first and the first city third". One 
way of composing the transformations leads to the tour 
"New York, Chicago, London", but the other leads to 
the tour "London, New York, Chicago". This phe- 
nomenon is well known to group theorists, who call 
transformations that can be interchanged commutative, 
and groups where all transformations commute Abelian 
groups. 

There are several biological implications of these 
observations. First of all, we note that Kauffman and 
Levin's choice of move set is by no means the only 
possible choice. It is also possible to move from one 
vertex to another by transposing bit orderings, just as 
city orderings were transposed above. For example, 
starting with the vertex 000001, one might imagine 
interchanging the fifth and sixth bit, to obtain the 
vertex 000010. Mutation via transposition is well 
known, even if it does not occur as frequently as point 
mutation. These remarks also apply to the various 
mutations, such as insertions and deletions, that result 
in frame shifts. Non-commutativity of mutational move 
sets may also drastically reduce the number of possible 
sequences of mutations leading from the starting state 
to a desirable final state. The argument here is easiest to 
see if we assume the Kauffman/Levin model, but with 
transpositions added to the move set. There, a locally 
optimum sequence must be fitter than each of its N 
neighbors reachable by a single bit flip, and each of its 
neighbors reachable by interchanging any pair of bits. 
Although the number of these neighbors depends on 
the number and distribution of "1" bits in the configu- 
ration, it is clear that, for large N, the probability that 
a randomly chosen configuration is a local optimum is 
low. Thus, if a particular sequence of moves leads from 
the starting sequence to a local optimum, and if there is 
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any non-commutativity in the sequence, any reordering 
of  the moves that leads to a different configuration will 
usually lead to some non-optimal configuration. 

Returning to the purely theoretical, we observe that 
the notion of  group generators allows us to define a 
metric on fitness landscapes in a natural way: the 
"distance" between two points on the landscape is 
simply the smallest number of  generators ("steps") 
needed to move from one point to the other. This 
definition is a natural extension of the more familiar 
notion of  the Hamming distance between two bit 
strings. This connection can be seen most easily when 
the generators commute (so that the entire group is 
abelian). Such a group is isomorphic to the direct 
product of cyclic groups; that is, each of its elements 
can be treated as an ordered "tuple" of N integers, with 
the group operation defined as componentwise modular 
addition, possible with a different modulus for each 
component. One set of generators is then the set of 
"unit vectors": ( 1, 0 . . . .  ,0), (0, 1 . . . . .  0), etc. Another 
is the set of all vectors with exactly n l 's and N - n O's, 
provided that N and n are mutually prime. The point of 
all this, of  course, is that any discussion of which nodes 
are adjacent, and therefore any discussion of the corre- 
lation between neighboring nodes, is based on the 
choice of which generators are used for the transforma- 
tion group. 

Measuring Correlation 

Given the theoretical framework in the previous sec- 
tion, we can now turn to the question of  how to 
measure correlation precisely for a given move set. We 
now make an important additional assumption; 
namely, that the landscape is statistically isotropic. To 
attach a heuristic meaning to this term, consider the 
sequence of fitnesses obtained by starting at a randomly 
chosen configuration and moving to a randomly chosen 
neighbor, then a randomly chosen neighbor of that 
neighbor, etc. A statistically isotropic landscape is one 
in which the statistics of this sequence of  fitnesses are 
the same, regardless of the starting point chosen. More 
formally, consider a stationary random process generat- 
ing a sequence of  transitions between neighboring 
configurations in which the transitions to each of the 
neighbors is equiprobable. Statistically isotropic land- 
scapes are those in which the fitness values assigned to 
the configurations also form a stationary random pro- 
cess for the assumed joint distribution of fitnesses. 
(Both the travelling salesman problem and the protein 
space problem given above satisfy this condition.) The 
significance of the assumption of statistical isotropy is 
that we can apply the powerful results of the theory of 
stationary random processes to the study of random 
walks on fitness landscapes, as will be discussed next. 

I f  we assume such a landscape, each component of 
the vector of mean fitness values must have the same 
value, which is the average fitness of a randomly chosen 
configuration, and which is therefore easily estimated in 
practice. Without loss of  generality but with a gain in 

simplicity, we assume for the rest of  this section that 
this mean value is zero. The correlation matrix of  the 
fitnesses, (g, can also be estimated from the autocovari- 
ance function of the fitness sequence if we describe 
more precisely the nature of  the random walk involved. 
We assume that steps are made from configuration i to 
neighboring configuration j according to a Markov 
chain with stationary transition probabilities Po that are 
independent o f  the landscape fitnesses. (To make this 
crucial assumption absolutely clear, we restate our 
paradigm in the language of  physics. The walks are 
now on "energy", rather than "fitness" landscapes, and 
the random dynamics of the walk arise from thermal 
motion, rather than mutation. The assumption is now 
that walks take place at infinite temperature, so that all 
energy barriers are ignored.) We further assume that 
the Markov chain is ergodic (i.e. that each configura- 
tion has a positive probability of being reached in finite 
time starting from any other configuration), so that the 
chain has a unique equilibrium distribution, the com- 
ponents of  which we denote 7q, ~2 . . . .  7t u ,  where M is 
the number of points on the landscape (e.g. 2 N for the 
N dimensional boolean hypercube). The autocovariance 
function, r(s), of a sequence of n fitness values 
FI, F 2 . . .  F, obtained by such a random walk is then 
approximately 

r(s) = E E r:,., 
i j 

if we ignore the sample mean fitnesses, ~ i  lr;Fi, which 
tend to zero as N tends to infinity. Note that the 
function r(s) depends only on s, the number of steps 
since the beginning of the walk, because of the statisti- 
cal isotropy assumption. If  we average over all land- 
scapes in the ensemble of  possible landscapes, we have 

e[r(s)] = E E 
i j 

= E s)R(a) 
i d=O 

= ~. ~p(d, s)R(d), (1) 
d=O 

where ~b(d, s) is the probability that the Hamming dis- 
tance between configurations i and j is d after s steps 
and 

R(d) = E[FcFc + a] - E[Fc]E[Fc + d] . (2) 

for c, d >/0. We can make sense of  the subscripts by 
choosing some point as the "zero state" and using the 
"generator mettle" defined in the previous section, to 
assign distances to everything else. Assuming statistical 
isotropy, the only thing that matters, on average, is this 
distance. In fact, the only thing that matters is the 
relative distance between points, so that the choice of 
the zero state doesn't matter, and R(d) is indeed inde- 
pendent of  c. Although it is possible for d to be strictly 
smaller than s, the probabifty that d = s  is 
M!/[MS(M-s ) ! ] ,  which is extremely close to 1 if s is 
significantly smaller than 0(N1/2). Furthermore, it fol- 
lows from our definition of statistical isotropy that the 



full correlation matrix, if, of the n points we have 
sampled is given by 

c~,y = R(li - j l )  , (3) 

where I i - j [  is the distance between point i and point j. 
The power of the theory of stationary time series 

(and therefore its utility in the present context) follows 
from the special form of qr We now proceed to list some 
of the major results of this theory and discuss their 
applicability to fitness landscapes. Following Priestley 
(1981), we first extend and modify the definition of R(d) 
in (2) above by replacing the index c + d on the right 
hand side of the definition with the index c + d mod n. 
Call the new function R'(d). It is then easy to check 
that R'(s) = R'(n - s ) .  Because qr the correspondingly 
modified version of ~, must commute with cyclic permu- 
tation matrices, the eigenvalues of ~ '  are the compo- 
nents of the discrete Fourier transform, H(k), of R'(s), 
given by 

n - - 1  

H(k) = E R'(s) e -i'~ , 
s = O  

where COk =2nk/n.  High values of H(k) represent 
high correlations between points n/k steps apart be- 
cause of high amplitudes of the corresponding spatial 
frequencies. 

The theory of stationary time series also includes a 
well developed theory of prediction, which is also at our 
disposal. One aspect of this theory involves estimating 
the value of F, from linear combinations of previous 
values of F. If the F distribution is jointly Gaussian, it 
can be shown that the optimal linear predictor is also the 
optimal non-linear predictor. Even in the general case, 
the predictor 

ff~ = ~lF, -  1 + ct2F,- : + " "  + 0tpF,_p 

is optimal over all such linear combinations of the F's, 
provided that the ct's satisfy the Yule-Walker equations, 

R(1) = ~iR(0) + o~2R(l ) + 0~3R(2 ) +-.. + otpR(p - I) 

R(2) = aiR(l)  + ~2R(0) + ~3R(1) + . . .  + % R ( p  - 2) 

R(3) = ~R(2)  + ~2R(1) + ~3R(0) + . . .  + ~pR(p - 3) 

R(p) = oqR(p - I) + o~2R(p - 2) + oqR(p - 3) 

+ - - .  + %R(O). 

(Karlin and Taylor 1975). The last of the above equa- 
tions can also be interpreted as recurrence relation for 
the values of R(s), thus implicitly specifying the class of 
autocovariance functions, R(s), for which the estimator 
works well. It is easy to verify that the general solution 
to the recurrence is of the form 

R(s) = c~z~ + c2z~ +" �9 �9 + q,z~ , 

where the c's are determined from the initial conditions 
and the z's are the roots of the characteristic equation 

z p  - -  O~ 1 z p -  I . . . . .  Os 2 Z 2 - -  O~p- 1Z - -  O~p -~- 0 

In most cases, each of the p roots to this equation will 
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be distinct, with Izl< 1, and the c's will be non-zero. 
The magnitudes of the z's determine the rate at which 
different local features of the landscape are forgotten as 
the walk moves away from its starting point. Of partic- 
ular interest is the root with the largest magnitude, 
which we denote zL. The behavior of R(s) for large s 
will be similar to that of cLz~ = cLe -sn, where x = 

- 1/ln zL. Because of the rapid decay of the exponential 
function, points that are significantly further apart than 
T steps are effectively uncorrelated and all local proper- 
ties of the landscape due to proximity to the starting 
point are effectively forgotten. Thus, z is the effective 
"correlation length" of such a landscape. Furthermore, 
for large s, the dynamics of the process simplify to that 
of the so-called AR(1) or first order autoregressive 
process, which defined by the equation 

X t = z L X t _ I + N , ,  

where Art is a stationary sequence of uncorrelated ran- 
dom variables. 

There are good reasons to think that the AR(1) 
process captures the statistics of walks on a wide class 
of landscapes, including both the N-k  model and the 
travelling salesman problem, even when s is small. We 
defer an explicit calculation of the autocorrelation func- 
tion for the N-k  model to the section that discusses the 
model itself in more detail and focus now on the more 
general situation. Yet another theorem in the theory of 
stationary stochastic processes asserts that a stationary 
process that is both Gaussian and Markov must, like the 
AR(1) process with Gaussian Art, have a decaying 
exponential as its autocorrelation function. Further- 
more, because a Gaussian process is completely charac- 
terized by its mean and autocorrelation function, a// 
such Markov processes must be AR(I). Both the ran- 
dom walks associated with the N-k model and the 
travelling salesman problem, as well as many other 
problems, are "effectively Markov" in the following 
sense: In each of these problems, the fitness of a succes- 
sive point on the walk is typically a linear combination 
of the fitness of the previous point and a small perturba- 
tion. If successive perturbations were strictly uncorre- 
lated with each other, then the AR(1) model would be 
strictly applicable. Instead, there is some small correla- 
tion between the perturbations, if only because there is 
a small probability of returning to the same place in the 
landscape and retracing at least one step in the walk. If 
the landscape is large, the AR(1) model might still 
approximate the dynamics involved. Of course, the 
validity of this approximation must be checked for each 
specific case, which is why we include the N-k  autocor- 
relation calculation described above as a prototype of 
how such a verification is performed. 

The foregoing implies that, if the AR(1) process is 
not a good approximation for the statistics of the 
random walk, then the sequence of fitnesses induced by 
the random walk process is non-Markovian. This, in 
fact, will be the generic situation if the transition prob- 
abilities in the random walk are allowed to depend on 
the fitness values in the landscape. Although (1) is 
invalid in this case, the theory of stationary processes 



330 

still applies. An intriguing example of such a walk is the 
sequence of travelling salesman tour lengths obtained 
by running the simulated annealing algorithm at a finite 
temperature. There, the non-Markovian nature of the 
process is evident from the fact that regions of "tour 
space" associated with relatively short tours are prefer- 
entially populated. 

In the extreme non-Markovian case, p is large, and 
the magnitude of the roots of the characteristic equa- 
tion may cluster about 1. In this case, the autocorrela- 
tion function becomes effectively non-exponential, and, 
in an important special case, may decay as some inverse 
power of s. This case is an equivalent condition to 
statistical self-similarity. Heuristically, self-similarity 
means that every piece of the landscape has the same 
statistical properties as the whole. (Although the dis- 
creteness of the landscape guarantess that self-similarity 
must break down when the pieces are sufficiently small, 
landscapes of practical interest have sufficiently many 
points that approximate self-similarity can hold over a 
wide range of partitions.) We make the notion of 
self-similarity precise by assuming that R is "self-affine" 
in a sense suggested by Mandelbrot (1982). The mathe- 
matical statement of this version of self-affinity is 

R(x) = ySR(xy) 

for some constant s > 0 and all rescaling parameters, 
y > 0. If  we set x = 1 in this equation, we see that 

R(1) = ySR(y) 

so that 

R(x) = constant x x-~ 

for some constant s > 0. 
We now return to the general case and discuss 

briefly how a knowledge of the statistical properties of  
a random walk on the landscape can be used to infer its 
other features. In principal, any property of the land- 
scape should be recoverable from a sufficiently long 
random walk. Indeed, as shown in the theoretical dis- 
cussion of landscapes given above, a landscape is spe- 
cified uniquely by the distribution of fitnesses on it and 
by allowable transitions between configurations. The 
distribution of fitnesses can be obtained trivially from 
the random walk, and, because fitnesses are almost 
surely unique, allowable transitions can be inferred 
from the presence or absence of the relevant pairs of 
fitnesses. What is, perhaps, more to the point is that a 
knowledge of R(s) and the assumptions of our model 
allow us to predict important local features of the 
landscape. For example, if the fitness of a given 
configuration ~r is x, the distribution of fitnesses, y, for 
a neighboring point, qr on the landscape is the condi- 
tional distribution of y, given x. Papoulis (1965) has 
shown that this last distribution is also normal, with 
mean and variance given by 

E[y[fitness of ~r = x] = # + R(1)(x -- #) 

and 

Var[ylfitness of  c~ = x] = tr2[ 1 - R2( 1)], 

where # and a 2 are the marginal means and variances 
for both ~ and ~ (The marginal fitness distribution for 
every point on the landscape must be the same, by the 
hypothesis of statistical isotropy). 

Why Combinatorial Optimization Problems are Difficult 

In this section, we use the results of  our previous 
discussion to study two of the most obvious adaptation 
strategies, namely keeping the best of  many randomly 
chosen fitness values and "local hill climbing". We start 
by presenting some mathematical results that show just 
how badly one does if one tries to find optima by 
picking points at random from the landscape and re- 
taining the best one found so far. These results consti- 
tute a rigorous discussion of Kauffman and Levin's 
"long jump adaptation", in which landscape correla- 
tions are ignored. They list several ways that long 
jumps can arise from mutation. The most obvious of 
these is that even a single frame shift mutation often 
causes almost all of the codons downstream of the 
mutation to be misread and code for different amino 
acids. We have already argued that the randomly cho- 
sen fitnesses likely to be generated by a sequence of 
long jump mutations are likely to be independent Gaus- 
sian random variables. It is therefore natural to ask 
how the maximum of a sequence of these random 
variables grows as a function of the number considered. 
A precise answer to this question is given by the 
following 

Theorem 1. I f  XN, with N = 1, 2, 3 . . . .  are independent 
Gaussian random variables with mean zero and variance 
tr 2, where ~ 2  doesn't depend on N, then 

Pr ~lim inf ( 2~21n N) - l/2 max Xk >1 1 } = 1  
N---, oo k <~ N 

and 

Pr~l imsup(2a21nN)-l /2maxXk ~< x/~} = 1. 
N ~  k ~ N  

Although this result seems to be well known to at 
least some probabil is ts-  as per the acknowledge- 
ments - a published proof does not seem to be readily 
available, so we provide one in Appendix I. In less 
formal terms, the theorem states that the maximum of 
a sequence of N independently chosen Gaussian ran- 
dom variables will almost surely grow roughly as 
v/~n--~--2~ 2. We note that. for N = l 0  3, ~ ~ , ~  3.71, 

6 : ~  and, for N = 10, ~ , , ,  5.25. This shows how 
remarkably slowly the maximum of the N samples 
grows with N. We also note that the general subject of 
this theorem, that of "large deviations" of  a random 
variable from its mean value, has received much atten- 
tion over the years. The interested reader is referred to 
David (1970) and Gumbel (1958). 

We can use variants of  this result to compare what 
happens to the "typical" change in fitness between 



neighbors as compared with the global maximum of a 
landscape as the size, N, of the problem increases. 
Typically, the fitness will be the sum of  N approxi- 
mately independent components of  approximately con- 
stant magnitude, so that the mean fitness is roughly 
proportional to N. We divide each component by N to 
ensure that the mean of the scaled fitnesses is indepen- 
dent of N. This rescaling also changes the variance of 
the fitnesses by the factor 1/N. We can then estimate the 
change in fitness between neighboring configurations 
and @ by writing 

F~, = R( 1)F~r + AF,  

where AF is a normally distributed random variable 
with zero mean and variance a2[1-R2(1)] /N.  As we 
saw in the previous section, it is reasonable to take the 
dF 's  for different pairs of neighbors to be independent. 
The largest improvement we can expect from a single 
step is then the maximum of N independent copies of 
AF, which we estimate via 

Corollary 1. I f  N Gaussian random variables have zero 
mean and variance a2/N, then 

Pr~lim inf (2tr21n N / N ) - l / 2 m a x  Xk >1 1 } = 1  
N--* oo k <~ N 

and 

Pr ~lim sup ( 2a21n N/N)  - l/2 max Xk >~ X/~} = 1. 
N ~ o o  k>~N 

The proofs of both Corollary 1 and Corollary 2 
(stated below) are intimately related to that of Theorem 
1, so that the are also discussed in the Appendix. 

Thus, with the normalization described above, 
the fitness of  typical single step improvements is 
O ( ~ / N ) ,  which recedes to zero as the size of the 
landscape increases. 

We note that roughly 2 N- ~ points on the landscape 
are effectively uncorrelated so that we can study the 
behavior of  the global maximum by using the same 
methods as above. Of particular interest is the following 

Corollary 2. I f  the Gaussian random variables have zero 
mean and variance aZ/N, then 

Pr l imin f  21n2a  2 max Xk>11 =1 
N ~ o O  k<<.2 N - ~  

and 

N } 
Pr . l imsup .21n2a2-~- -~_~ I max Xk ~ < , ~  

( N 2 ~ 1 7 6  \ k<~2 N - ~  

Although this estimation technique can be applied 
to any landscape in which a correlation length can be 
defined as above (even landscapes with non-commuting 
transformation groups, such as the travelling salesman 
problem), these bounds are directly applicable to land- 
scapes such as peptide space, in which there are 2 N 
points. There, we can conclude that, even in correlated 
peptide landscapes with fitnesses scaled as above, the 
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fitness of the global optimum stays roughly constant, 
but the typical improvement per step decreases to zero 
as N increases whenever a correlation length can be 
defined. Of course, Kauffman and Levin's uncorrelated 
version of  peptide space is included as a special case in 
which we can take ~ = 0. It then follows that the 
globally maximal fitness in such a space, assuming that 
fitnesses are sampled from a normal distribution with 
zero mean and variance t72/N, must  lie between 
2~/~-~ 2a ~ 1.177a and 2 lnx/i-n-~ ~ 1.665a. 

Application to the N-k Model 

In this section, we apply our theory to the N-k  model, 
a simple mathematical model of a class of  rugged 
landscapes introduced in Kauffman et al. (1988). This 
model assigns a fitness to an N residue peptide in 
protein space by first assigning a "fitness contribution", 
f .  ~ [0, 1], to the ith amino acid in the chain. Each 
amino acid fitness assignment depends, not just on the 
value of the ith amino acid, but also k < N other amino 
acids. Once more, we make the simplifying assumption 
that each residue is one of only two possible amino 
acids, so that the N residue peptide can be treated as a 
string of N boolean bits. Thus, the fitness contribution 
of each residue, a function of k + 1 of the bits, can have 
2 T M  possible values, one for each of  the possible 
combinations of  the k + 1 bits. The fitness contribu- 
tions associated with each of these combinations is 
assigned by selecting an independent random variable 
from the uniform distribution on [0, 1]; that is, a "ran- 
domly chosen" number between zero and one. This 
generates a "fitness table" for the ith amino acid. There 
is a different, independently generated table for each of 
the N amino acids. Then, given any "string" of N 
amino acids, the total fitness of the string, F, is defined 
as the average of  the fitness contributions of  each part, 
(i.e. each of the f ' s )  each in the context of the k others 
which impinge upon it. The use of  the uniform distribu- 
tion in assigning the fitness contributions can be inter- 
preted as either an admission of ignorance of the true 
nature of the complex couplings between residues or as 
an attempt to capture the typical statistical properties 
of  a wide class of landscapes with k interconnections 
per residue. 

One other aspect of the N-k  model must be spe- 
cified; namely, which amino acid residues are coupled 
to which. (For the purpose of the model, two residues 
are coupled if one of them appears in the other's fitness 
table.) The simplest - but not the only - coupling is to 
take the k amino acid residues that affect residue i to be 
its nearest neighbors; that is, if k is even, the amino 
acids in residues i - k/2.thru residues i + k/2. We must 
then assign couplings for sites at the ends of the string, 
that is, sites i with i <~ k/2 and i >1 N - k/2. One way to 
do this is to introduce periodic boundary conditions. In 
other words, we assume that the rites are arranged in a 
circle, such that site N is next to site 1. Under this 
assumption, if k = 2, site N has neighbors N - 1 and 1, 
site 1 has neighbors N and 2, and the general site i has 
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neighbors N - i - k /2 mod N . �9 �9 N + i - k /2 mod N. 
This assignment of the coupling gives rise to a class of 
statistical mechanical models known as short range spin 
glasses. (See Binder and Young (1986) for a general 
discussion of spin glasses.) Alternatively, we could as- 
sign the coupling by randomly selecting, for each site 
i, k other sites on the peptide to be used in forming the 
index to the ith fitness table. This assignment of cou- 
plings makes the model similar to a long range, dilute 
spin glass. 

The N-k model affords a "tuneably rugged" fitness 
landscape, since tuning k alters how rugged the land- 
scape is. This can be seen from the following discussion: 
For k = 0, each site is independent of all other sites. 
Either the bit value 0 or the bit value 1 is almost surely 
"fitter" than the other; hence, a single specific sequence 
comprised of the fitter bit value in each position is 
almost surely the single, global optimum in the fitness 
landscape. Any other string is suboptimal, and lies on a 
connected walk via 1-mutant fitter variants to the 
global optimum by flipping bits from less fit to more fit 
values. The length of the walk is just the Hamming 
distance from the initial string to the global optimum. 
For a randomly chosen initial string, half the bits will 
be in their less fit state, hence the expected walk length 
is just N/2. A transition to a one mutant neighbor (i.e. 
the flip of a single bit) typically alters fitness by an 
amount O(1/N). In contrast, the fully connected N-k  
model yields a completely random fitness landscape. 
For k = N -  1, the fitness contribution of each site 
depends on all of the other sites because the "context" 
for each of the N -  1 other bits is changed when even 
a single bit is flipped. In this case, therefore, the fitness 
of each N bit string is assigned a fitness that is statisti- 
cally independent of its neighbors. As was shown in 
Kauffman and Levin (1987); Weinberger (1988); and 
Macken and Perelson (1989), such random landscapes 
have very many local optima, walks to optima are short 
(O(ln N)), and only a small fraction of local optima are 
accessible from any initial string. Thus adaptive walks 
vary dramatically as the ruggedness of the landscape 
varies. 

We now show that the sequence of fitnesses gener- 
ated by a random walk on the N-k  landscape can be 
approximated by an AR(l)  process, as claimed above. 
We let f j,  with - oo < s < ~ ,  be the site fitness of the 
j th site at step s, so that 

1 
F~ = ~ E f }  (4) 

J 

is the fitness at step s. In the process of making step s, 
and thus flipping one of the bits in the N bit string, we 
change the context of other bits in the string, and thus 
the values of the site fitnesses associated with these bits. 
When neighborhoods are chosen via physical adjacency 
along the bit string, a single bit flip changes exactly 
k + 1 site fitnesses. When the neighbors for each bit are 
randomly chosen sites along the string, the number of 
site fitnesses changed is a random variable with expecta- 
tion k + 1 and fluctuations of O(x/~ ). We therefore 

expect that our conclusions do not depend on whether 
adjacent or random neighborhoods are chosen, and 
thus we denote the set of site fitnesses that are changed 
at step s as vs in both cases. It is easy to check that the 
correlation between neighboring points in the landscape 
is z = (N - (k + 1)/N), motivating the representation 

F~=zF~_I + AFs, 

where 

1 
AF~ =~[j~v ( f ]  _ f ; - 1  + Fs_l)  " 

s 

What needs to be verified is that correlations in AF, are 
sufficiently small that zS.~ R(s). To do this, we repeat 
the same steps used in Karlin and Taylor (1975) in 
deriving R(s) = z" in the strict AR(1) case and estimate 
the error introduced by the small correlations in the 
AF's. The first part of their derivation can be carried 
through verbatim, to conclude that 

l - - I  t - - I  

E[F~Ft+~] = z t +  lim ~ ~, z~+~E[AF~_rAF~+,_~I, 
l ~ o o  y = 0  i S = 0  

(5) 

assuming that the f ' s  have zero mean and unit vari- 
ance. We continue to make this simplifying assumption 
throughout this derivation, because the same results 
obtain in the general case. If the dF's  are strictly 
uncorrelated, the sum vanishes, and Karlin and Tay- 
lor's result follows. In the present case, the sum does 
not vanish, but does remain small, as we will now 
verify. We have 

E[AF~_ ~AF~ +,_ a] 

' ) = - ~ E  ( f ] - ,  _f~-,-l.j +F~_,)  
j ~  --y 

(k + 1) 2 
- N--------T-- E[F~ _ ~F~ + t  - -  t$] 

1 + - - ~ 1 5  F~_, 2 ,JJr --fi~+t-6-') 
j~iVs + t - - 6  

+-gr- F, ( f ; - ' - f ; - ' - ' )  
J E V s - - y  

+ - ~  E ( f j  -y _ f ] - y  - 1) 

The first term is O(kZ/N 3) because 
E[F~_~F~+,_o] <E[F~] = 1/N. For the next term, we 
see that 

EIFS-~L y~v~+,_~E xJj( l's+t--6 _f]s+t-6- 1)] 



because ~-~ is statistically independent of the terms 
in parentheses if k C vs+t-~. Thus, this term is 
O(k2/N3), and, by a similar simplification, so is the next 
term. Finally, the last term is O(k2/N3), because vs_~ 
and L +,-~ overlap with probability (2k + I)/N. If they 
fail to overlap, the last term is zero. If they do overlap, 
the expectation is at most k + 1. Armed with these 
estimates, we have, for the sum in (5), 

I - - 1  t - - I  

lim E E z~+aEtAFs-~AF~+,-~] 
l---* oo ~ = 0 6 = 0 

~O(k2/N3) (y~=oZY)2 
( ' /  = O ( k 2 / N  3) 

= O ( 1 / N )  

Figure 1 shows the r(s) function for 2048 step 
unbiased random walks on N-k landscapes. Here, 
N = 96, and k = 2, 8, and 48, and the "neighbors" 
upon which each site fitness depends are chosen ran- 
domly. These autocorrelations are estimated using the 
standard estimation techniques described in Priestley 
(1981). We chose to present semilog plots to emphasize 
the roughly exponential decay of the autocorrelation 
function in all cases. Furthermore, the autocorrelation 
function drops off more rapidly as k increases. This 
figure, as well as similar results obtained by choosing 
adjacent sites as neighbors, provides clear confirmation, 
both of the intuition behind our definition of correla- 
tion and the prediction that N-k landscapes should 
have exponentially decaying autocorrelation functions 
independent of the details of neighborhood assignment. 
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Furthermore, the measured correlation lengths from 
both adjacent and random landscapes, 25, 11, and 1.4, 
for k = 2, 8, and 48, are in general agreement with 
the correlation length prediction made above, T = 
- 1 / l n ( l - ( k  + 1)/N), which yields predictions of 31, 
11, and 1.4 for the respective k values. Note that 
agreement is excellent except when k = 2, when two of 
the approximations used in estimating �9 break kown: 
the AF's are no longer roughly Gaussian, and the 
correlation length is longer than x / ~  thus invalidating 
the approximation r(s) ~ R(s). As the k = 48 case sug- 
gests, the autocorrelation function for the k = 95 case, 
one of Kauffman and Levin's "uncorrelated" land- 
scapes (simulated, but not shown), is approximately a 6 
function, as we would expect. 

With these results in hand, it is now a simple matter 
to substantiate the claim made above that N-k land- 
scapes are generic members of the class of AR(1) 
landscapes: it is clear that such a landscape is com- 
pletely characterized by the joint probability distribu- 
tion of the fitnesses of each of its points. For AR(1) 
landscapes, this must be a multivariate Gaussian distri- 
bution with a covariance matrix given by (3), where 
R(s) is determined by (2). The only free parameters in 
an AR(1) landscape are therefore the mean and vari- 
ance of each of its points, which, by the assumption of 
statistical isotropy, must be the same for all points, and 
the rate at which R(s) decays. It is clear that the 
parameters of the N-k landscape - k and the mean and 
variance of the site fitnesses - can be chosen such that 
the free parameters of the AR(1) landscape can assume 
arbitrary values. 

In the previous section, we estimated the distribu- 
tion of fitter neighbors of a configuration with fitness x. 

6 8 . 0 0  0.00 

- 1 . 3 C ~  

0 . 0 0  STEP NUMBER (s) 4 8 . 0 0  

Fig. I. Semi-log plot of autocorrelations of random walks on N-k 
landscapes for N = 96 and k = 2, 8, and 48. "Neighbors"  of  each site 
are chosen randomly with equal probability for all of  the sites on the 
string 

m 

0 . 0 1  

Q6 I 

g 
~ O  

o .45  F i t n e s s  l.O0 
Fig. 2. Number  of  neighboring configurations that  are fitter than an 
N-k configuration with a specified fitness. Points along the solid fine 
are analytical predictions; unconnected points are from computer  
simulations 
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As a crude check of these results, we compare our 
estimates of the mean number of fitter neighbors of 
various configurations with computer simulation data, 
shown in Fig. 2. The simulations randomly selected a 
starting configuration, and then "walked uphill", by 
randomly selecting a fitter neighbor of the starting 
configuration, randomly selecting a fitter neighbor of 
the neighbor, etc. until a local optimum was attained. 
The coordinates of the dots in the figures represent the 
number of fitter neighbors as a function of the fitness 
attained, as compared with the predicted values indi- 
cated by the solid line. For k ~ N and for larger values 
of k and relatively low fitness values, excellent agree- 
ment obtains. For k = 48, the k value shown in the 
figure, some deviation at high fitness values is expected 
because the Gaussian approximation to the distribution 
of fitnesses itself breaks down for the high fitnesses 
involved. 

Conclusions and Directions for Future Research 

In this last section, we discuss some intriguing implica- 
tions of our notion of correlation. Perhaps the most 
obvious of these is the importance of corrleation in 
determining significant features of AR(1) landscapes. 
Besides the explicit results obtained above, our conclu- 
sion that N-k landscapes are generic members of the 
class of AR(1) landscapes strongly suggests that prop- 
erties of N-k landscapes will generalize to this larger 
class. This is fortunate, because N-k landscapes are 
relatively easy to study, at least in the case of adjacent 
neighborhoods. We should note here that a relatively 
complete characterization of the local properties of N-k 
landscapes for fixed k and asymptotically large N has 
been accomplished by Isopi et al. who show that the 
expected number of loal optima in an N-k landscape 
grows exponentially with N, that there average length 
of uphill walks from a randomly chosen starting point 
grows linearly with N, that the expected fitnesses of 
local optima are asymptotically constant, and that the 
fluctuation about this average as N increases is O(l/N). 

Another structural feature of landscapes is the de- 
gree to which one can, in Kauffman and Levin's words, 
"jump beyond the correlation length of the landscape." 
For example, consider the N-k landscape for k = 2 and 
N = 96. Our previous results show that the smallest 
correlation between two configurations is approxi- 
mately .13. This suggests that the landscape has a 
relatively few peaks of high fitness embedded in a 
massif central, a conclusion that has been confirmed by 
other means (Kauffman 1989). 

We speculate that correlation is also likely to play a 
role in the study of diffusion on rugged landscapes, a 
topic that includes not only physical diffusion, but also 
"diffusion" due to the stochastic effects of mutations in 
evolutionary landscapes, and combinatorial optimiza- 
tion algorithms that simulate either physical diffusion 
or evolution. Up until now, we have focussed on the 
properties of random walks in which the transition 
probabilities are independent of the fitness differences 

between neighbors. In contrast, diffusion processes in- 
volve biased random walks in which the transition 
probabilities explicitly depend on these fitness differ- 
ences, giving rise to diffusive barriers that are crossed 
with probability e -#he, where AF is the fitness differ- 
ence between neighbors, and fl is a parameter that 
determines the strength of the stochastic component of 
the motion. Our results allow us to make the estimate 

A F , ~ a x / 1  - -  R 2 ( 1 )  ; 

that is, AF should be on the order of the fluctuations in 
the conditional fitness distribution of the neighbors that 
was discussed in Sect. 3. Much of the computational 
effort involved in an optimization algorithm that is 
based on a diffusive strategy is devoted to crossing these 
barriers. Thus, this formula substantiates Stuart Kauff- 
man's intuition (private communication) that it is 
difficult to optimize on a landscape with a short correla- 
tion length, because each point contains relatively little 
information regarding the fitness of surrounding points. 
Furthermore, this formula quantifies the degree to 
which evolution or a human algorithm designer can 
increase the speed of optimization by choosing among 
various possible neighborhood definitions. 

Although it would seem that AR(1) landscapes 
represent a large class of fitness landscapes, we mention 
in passing that a still more general class of landscapes 
can be generated by specifying the whole of R(s), rather 
than merely the decay parameter of an assumed decay- 
ing exponential R(s). Indeed, we have already seen that, 
if the landscape is self-similar in the sense described 
previously, R(s) is polynomial. This more general 
model, like the AR(1) model, uses easily measured, 
global properties of the landscape to estimate various 
local properties. 

From a scientific, as opposed to a mathematical 
point of view, our efforts have three benefits. First, for 
those landscapes that are well approximated by the 
Gaussian model, the model drastically reduces the 
amount of experimental data that needs to be collected. 
Second, measurements of the autocorrelation function, 
as described above, should serve as a means of classify- 
ing different types of landscapes as a prelude to a 
theory of which optimization strategies work best on 
which of these types. Finally, and perhaps most inter- 
esting, is the possibility of inferring something of the 
detailed structure of the landscape in the form of a 
Fourier-like decomposition, as follows: Suppose each 
point on the landscape can be represented as a string of 
the form B = b i b  2 �9 �9 �9 bN, where b i is either 0 or 1. The 
fitness at each point can then be interpreted as a 
mapping F(B) from N bit strings to real numbers. It is 
easy to shown that any such function can be written as 

F ( B )  = o~ o + ~ olib i + ~ o~ubib j + ~ cr 
i i j  i j k  

+ "  "" + Otl2. . . N b l b 2  �9 �9 " bN . 

where the ~'s are real numbers and each sum is taken 
over all possible distinct combinations of b's (of which 
there is only one involving b~, b 2 . . . . .  b N ) .  It is possible 
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to use the mean and autocorrelation function of the 
landscape to estimate the mean and correlation matrix 
of the ~t's, but this is properly the subject of another 
paper. 

Another direction for future research is the possibil- 
ity of a connection between the ideas presented in this 
paper and the theory of NP-completeness. Consider 
first the problem of optimization on an N-k  landscape 
(e.g. Can a bit string be found with a fitness above a 
certain value?), which, for fixed k, random neighbor- 
hoods, and increasing N is probably NP-complete. 
However, our results make clear why N-k optimization 
cannot be accomplished in polynomial time: if k is 
sufficiently large, there are exponentially many configu- 
rations whose fitnesses are almost completely uncorel- 
lated, so that N-k  optimization is essentially 
optimization on a list of exponentially many, indepen- 
dently distributed random real numbers. Presumably, 
any algorithm that would compute any property of the 
maximum of this list would have to examine each of the 
exponentially many numbers on the list. 
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A p p e n d i x  I 

The theorem is proven by an appeal to the first Borel- 
Cantelli lemma, which states that events from an infi- 
nite list of possibilities can occur only finitely often if 
the probabilities of the different events on the list have 
a finite sum. We also need the fact that 

< x } =  i 
e -  x2/(2a 2 ) 

_ ~ ~ d x  

e - x2/(2a2) 
=1 ~ ( l+o (x - I ) ) .  

Both the Borel-eantelli lemma and the estimate of the 
integral above are proven in Feller (1965). 

The proof of the first result proceeds by showing 
first that the sequence of probabilities 

~ m a x  Xk (k~N < (1 -- 6 ) ~ }  

has a finite sum for all 6 such that 0 < 6 < 1. It will 
then follow from the first Borel-Cantelli lemma that 
event maxk ,~ NXk ~< ( 1 -- 6) 2~,/2-~ 7 In N will almost surely 
occur only finitely many times. The first result follows 
upon observing that 6 can be chosen to be arbitrarily 
close to zero. 

Because the Xk'S are independent and identically 
distributed, the probability of the event 
maxk ~ NXk <<- ( 1 -- 6 ) ~  N is the Nth power of the 

probability that any one of the X's satisfies the inequal- 
ity, so that 

~ ' m a x  X k t k<~N ...< (1 - 6 ) ~ }  

-- ~ ) ~  e-X21(2~ 

[ (1 e(l-6)21nN~ I N  
= 1 _ 6 ) . ~ ( l + o ( 1 / l ~ )  

[ 1 
= 1 (1 _ 6)N1_ 26 + 62x//~--~ in N 

• ( 1 + o( 
I i I  

~<exp - ( l _ 6 ) N  ~ - 2 6 §  ( 1 + ~  

< expr - N 2 ~ _  ~2 

~/47r(-1 ----~ In N ]  L 
o 

The first inequality simply reflects the fact that 
1 - y < e-Y for small positive y, and the second reflects 
the fact that, for sufficiently large N, 

(1 + o(1 /x /~  N))(1 -- 6) < x/1 -- 6 

Because 
N2~ - 62 

> 2 1 n N  
x/4 (1 - 6) In N 

for fixed 6 and sufficiently large N, the sequence of 
probabilities must eventually become bounded above 
by a constant multiple of 1/N 2, and must therefore have 
a finite sum. 

The second result follows by showing that the se- 
quence of probabilities 

~ m a x  Xk(k<~N ~ 2(1 + 6)a 1 ~ }  

= 1 -  ~ m a x  Xk(K,N <~ 2(1 + 6)0" 1 1 ~ }  

has a finite sum for all 6 such that 0 < 6 < 1. Once 
more, 

+/5)2 In N 

= --  1 I / _ _ N ) )  
1 ( 1 + 6 )  

[ (1 + 6)N 2(1 1 v ~ ' - ' - - "  ]~ = 1 - -  + 6 ) 2 ~ ( 1  + o ( 1 / l ~ / i - n - N ) )  

N f . . i  

> exp -- (1 + 6)N 2t' + 6)2. ~ (1 + ~ N)) ' 

where the inequality follows from the fact that 
e -X< 1 -X/2 .  The fact that 1 - e - X <  x allows us to 
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conclude that the sequence of  probabilities is at most 
O(1/(N1 § 2~ + 262 1 ~  ' which has a convergent sum. 

The corollaries also follow immediately from the 
above, when it is observed that the argument above 
holds when a 2 is replaced by tr2/N and N is replaced by 
2 N-~ in the appropriate places. 
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