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Abstract. Certain premotor neurons of the oculomotor 
system fire at a rate proportional to desired eye veloc- 
ity. Their output is integrated by a network of neurons 
to supply an eye positon command to the motoneurons 
of the extraocular muscles. This network, known as the 
neural integrator, is calibrated during infancy and then 
maintained through development and trauma with re- 
markable precision. We have modeled this system with 
a self-organizing neural network that learns to integrate 
vestibular velocity commands to generate appropriate 
eye movements. It learns by using current eye move- 
ment on any given trial to calculate the amount of 
retinal image slip and this is used as the error signal. 
The synaptic weights are then changed using a straight- 
forward algorithm that is independent of the network 
configuration and does not necessitate backwards prop- 
agation of information. Minimization of the error in 
this fashion causes the network to develop multiple 
positive feedback loops that enable it to integrate a 
push-pull signal without integrating the background 
rate on which it rides. The network is also capable of 
recovering from various lesions and of generating more 
complicated signals to simulate induced postsaccadic 
drift and compensation for eye muscle mechanics. 

Introduction 

Eye-movement commands are encoded in certain pre- 
motor neurons projecting to the caudal pons as eye- 
velocity commands. The most obvious of these is the 
signal from a push-pull pair of semicircular canals that 
sense angular head velocity and use it as an eye-velocity 
command to execute the vestibulo-ocular reflex. The 
discharge rates of eye-muscle motoneurons, however, 
modulate with eye position as well as velocity. This 
prompted Robinson (1968) to postulate the existence of 
a network of neurons capable of temporal integration 
in the sense of Newtonian calculus. For horizontal 
deviations of the eyes this network was found to reside 
in the rostral medial vestibular nuclei and the nuclei 

prepositus hypoglossi (NPH). See Robinson (1989) for 
a review. 

Several models have been put forward to explain 
how a group of neurons could perform temporal inte- 
gration using positive feedback. This task is compli- 
cated because eye velocity signals ride on top of a 
constant background firing rate that is not integrated. 
In addition, the time constant of an individual neuron, 
roughly 5 ms, must be increased four orders of magni- 
tude for the network to have the experimentally ob- 
served time constant (about 20s). This could be 
accomplished, by using very precise amounts of positive 
feedback (Kamath and Keller 1976), however this made 
the models extremely sensitive to perturbations. 

Cannon et al. (1983) and Cannon and Robinson 
(1985) developed a hard-wired, lateral inhibitory net- 
work, that could integrate a push-pull input signal 
without integrating the background rates and, by dis- 
tributing feedback over hundreds of synapses, was rela- 
tively impervious to small perturbations. This network 
also had the appealing property that localized lesions 
produced a decrease in the time constant of the entire 
network. This is a phenomenon that is observed clini- 
cally and can only be produced with a model where 
integration occurs as a process distributed over many 
neurons. 

The main limitation of this model, referred to subse- 
quently as the Cannon model, is that its synaptic 
weights were explicitly specified; it was not designed for 
synaptic learning. There is ample physiological evidence 
that the neural integrator is capable of learning. Devel- 
opmental studies by Weissman et al. (1989) showed 
that the integrator calibrates itself during the first 
months of life. It also participates in compensating for 
a hemilabyrinthectomy (Fetter and Zee 1988). In addi- 
tion, the integrator can be altered through learning to 
produce post-saccadic ocular drift in humans (Kapoula 
et al. 1989). Another drawback to the hardwired model 
is that it does not lend itself easily to producing the 
great variety of signal strengths seen in individual neu- 
rons in physiological experiments. Learning networks, 
on the other hand, naturally produce the sort of vari- 



448 

ability one sees in single cell recordings. Finally, al- 
though  Cannon ' s  model  was relatively impervious to 
changes in individual synaptic weights, it still required 
the network to hold global  parameters  very precisely, 
which seems unrealistic wi thout  some means o f  self- 
correction. Consequent ly ,  we modeled the neural inte- 
gra tor  with a neural ne twork  capable o f  learning. 

Methods 

Configuration o f  the network 

The basic network consists of a push-pull input from 
two canals, a variable number of interneurons, and two 
motoneurons (Fig. 1). One of the inputs to each in- 
terneuron, with membrane potential y~(t), is the sum of 
the activities of each of the interneurons, including 
itself, f ( y j ) ,  weighted by the appropriate synaptic 
strength w~j (Fig. 2). Each interneuron also receives 
both canal input signals, uk, k = 1, 2, weighted by the 
synaptic strengths Vik. Finally, each receives a tonic 
input equivalent to 100 spikes/s to correspond to the 
typical value seen experimentally. 

The weighted sum of  all these inputs is then passed 
through a first-order lag. Thus, 

j = N  k = 2  

Yi X 7: + Yi = ~ Wij x f ( y j )  + ~ Vik X Uk(t ) 71- 100 (1) 
j = l  k = l  

where N is the number of  interneurons. The membrane 
time constant, z, is 5 ms. The activity of each neuron, 
f ( Y i ) ,  is a linear function of  the membrane potential, 
Yi, except that it is not allowed to go negative: 

f ( y e ) = y ,  if y ; ->0 (2) 

f ( y t ) = 0  if y i < O  

A linear function was chosen because vestibulo-ocular 
interneurons are remarkable for their linear behavior. 

The input to each motoneuron, m,., i = 1, 2, is the 
weighted sum of the activity of each interneuron, f (y j), 
with strength z;j and each has a tonic input of  100. 

j = N  

mi = ~ zij x f (y j )  + 100 (3) 
j = l  

The activity of each motoneuron is equal to its input. 
Finally, in early versions the plant dynamics (muscles 
and orbital tissues) are ignored so that the network is 
asked only to integrate. Accordingly, eye position, eb(t), 
is taken to be the difference between the firing rates of 
the two motoneurons. 

eb(t) = ml (t) - m2(t ) (4) 

This will be called the basic network. 
In a later version, the oculomotor plant is included. 

Orbital mechanics are simulated by passing the differ- 
ence between the outputs of the two motoneurons 
through a first-order lag with a time constant, Zm, of 
200 ms (Fig. 1). 

era(t) x z,, + era(t) = mr(t) -- m2(t) (5) 

This will be called the modified network. In both cases 
the resulting eye position, e(t), is used to calculate the 
error. In our study we simplify the plant to one cy- 
clopean eye driven by bilateral motor nuclei. 

300 

o e 100 --~ . . . . . . . .  ~,( 

. . . . . .  , , . . . . . . . . .  . . . .  I 1 " 

0 1Of?me,Ore% ) 500 1 1 I ,  ' 

300 ~ ----~i ~ ~ 
_~200 
r - .  

8~oo I 

. . . . . . .  J_._~{ 

.... i ' " ' 1 ' " ' 1 ' " ' 1 ' " ' 1  
1 O0 300 5 0 0  

time (ms) 

.~ 10 

% ~ e,. "=-10 

0 0 , 0 0  ' '5 o 

time (ms) 

Fig. 1. Configuration of the basic and modified networks. Two canal 
inputs consisting of a rectangular pulse superimposed on a constant 
background rate project to each interneuron (n 1-4). Each interneu- 
ron projects back to itself, to every other interneuron, and to both 
motoneurons. Eye position for the basic network, (eb(t)), is the 

difference between the outputs of the two motoneurons. Eye position 
for the modified network (era(t)) is obtained by passing the difference 
between the outputs of the motoneurons through a first order lag 
with a time constant, rm, of 200 ms. Dashed input and output 
connections are inhibitory 
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Fig. 2. The transfer function o f  a neuron. Each neuron receives the 
weighted sum of  the outputs  of  every neuron projecting to it, as well 
as a tonic input o f  100 spikes/s. This sum is passed through a first 
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order lag with a time constant  of  5 ms to give the membrane  potential 
Yl, and then through a rectifying function to give the activity o f  the 
neuron, f(Yi) 

Learing algorithm 

Clearly, a network capable of  integrating a time-vary- 
ing signal must have recurrent connections. This pre- 
cludes the use of  the traditional back-propagation 
algorithm of  Rumelhart et al. (1986). Although, recur- 
rent algorithms based on back-propagation do exist 
(e.g. Pearlmutter 1989), we chose to use a simpler 
algorithm that will work with any network configura- 
tion and does not require information to travel across 
synapses in two directions. 

Our input signals were time-varying canal afferent 
responses to head movements (Fig. 1). We chose 
rectangular velocity pulses superimposed on a back- 
ground rate of  100 spikes/s. For  the basic network the 
rectangular pulses were 100 spikes/s in magnitude, 
40 ms in duration, and began 60 ms into the trial period 
of  500 ms. To accommodate the 200 ms time constant 
of  the plant, the periods for the modified network were 
increased to 700 ms in length and had rectangular 
pulses of  50 spikes/s which began at 500 ms and lasted 
100 ms. These inputs were presented to the network 
which produced a time-varying eye position trace, e(t) 
from (4) or (5). The velocity of  the eye with respect to 
the world, or gaze velocity g(t), was then calculated by 
adding the eye velocity to the head velocity. Since the 
world is taken to be stationary, g(t) equals the rate at 
which images slip across the retina. This is the physio- 
logical error signal believed to set up and recalibrate 
brainstem oculomotor circuits. It is seen in the retina of  
subprimates as direction-selective neurons as well as in 
the accessory optic system, inferior olive, and flocculus 
of  most vertebrates. 

The error, E, was calculated as the root mean 
square of  the gaze velocity over the period of  interest. 

(t]t ,  (g(t))2dt)'/2 (6) 
E = V = ,o 

basic network: to = 50 ms, tl = 500 ms 

modified network: to = 400 ms, tl = 700 ms 

The period 0- to  allowed the system to settle into steady 
state from its initial conditions. 

The network started with small random weights 
(between -0 .01  and 0.01 for the basic network and be- 
tween - 0 . 1  and 0.1 for the modified network, although 

the exact range is not critical). The initial error, E, was 
calculated with the random weights. One of  the weights, 
w,.j was then changed by a small amount, Awo., and the 
corresponding error, E(wij + Aw~j), was calculated. The 
partial derivative of  the error with respect to that 
weight was approximated by: 

dE E(w~j + Awo. ) - E 
- -  ~ ( 7 )  
Owi: Aw U 
This evaluation was repeated for each weight in the 
network (including the v and z weights). The weights 
were then simultaneously updated using the following 
delta rule: 

dE 

Ow~ (8) w u = w u - k ( E )  • dE 

~W/j  n lax 
dE 

where - -  is the maximum magnitude of  all the 
law,jl.,a+ 

partial derwattves found in this iteration and w~j are the 
updated weights. 

Normalization by the denominator allows k(E) to 
determine the maximum value by which any weight can 
be changed, which prevents unanticipated large changes 
that can lead to instability. Initially k(E) was set to 
0.015 for the basic network and 0.050 for the modified 
network and was updated after each iteration as fol- 
lows: 

E2 k ' ( E ) = ~ •  if  E 2 < E ]  (9) 

k'(E) =k(E) if E2 > E] 

where k(E) is the value of  k before the weights are 
updated when the error is El ,  and k'(E) is the value of  
k after the weights have been updated when the error is 
E2. Throughout,  Aw~j was assigned half the value of  
k(E). 

This cycle of presentation of the input and calcula- 
tion of  the new weights was repeated until the error was 
below 0.02, because such a network generally had a 
time constant greater than 20 s. The time constant was 
calculated by measuring the eye position just after the 
velocity pulse, ep, and then letting the simulation run 
for 20 s at which time a second measurement of  eye 
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position, e20, was taken. These two measurements gave 
the time constant via, 

20 

T = / !  lnfep-~-~ (10) 

\e2o/  

Results 

Trials with four interneurons 

The first experiments were done using only four in- 
terneurons. In early trials each weight was allowed to 
be excitatory or inhibitory and it was found that the 
resulting configurations had random distributions of  
excitatory and inhibitory weights. This is contradicted 
by experimental results of  Baker and Berthoz (1975), 
who found that stimulation of  the vestibular nerve 
produces inhibition of  the ipsilateral N P H  and excita- 
tion of  the contralateral  NPH.  Thus, in later trials, we 
separated the interneurons into two equal bilateral 
groups and required ipsilateral input weights to be 
inhibitory, contralateral  input weights to be excitatory 
and vice-versa for output  weights. This was done by 
setting a weight to zero if it had the wrong polarity 
after updating. 

This network generally converged to an acceptable 
solution in about  500 iterations. The initial and final 
configurations of  a typical network are shown in Table 
1. The final networks integrate by using positive feed- 
back, because that is the only mechanism available to 
them. There are so many  pathways through which a 
unit can excite itself it is difficult to attach significance 
to each individual weight; however, one general pattern 

can be discerned: the connections between interneurons, 
which could be either excitatory or inhibitory, ended up 
in a "push-pull" configuration. That  is, in 20 trained 
networks, each ipsilateral w weight ended up excitatory 
and each contralateral w weight ended up inhibitory. 
Interestingly, this lateral inihibitory configuration is 
reminiscent of  the Cannon network. 

A typical input waveform and the corresponding 
output waveform of  a trained network are shown in Fig. 
3A and B. Figure 3C-F shows the responses of  the 
interneurons, each of which reflects the output of  the 
network, the integrated signal, with only a difference in 
background rate and gain (change in unit output/change 
in eye position). Neurophysiological experiments have 
revealed similar behaviour in the region of  the neural 
integrator. Cells either carry the integrated (eye posi- 
tion) signal or they do not; no cells carry partially 
integrated signals. It  is interesting to note that it is only 
the output  of  the motoneurons  that is used to calculate 
the error. There is, consequently, no obvious reason for 
each interneuron to carry nothing but the fully inte- 
grated signal and yet in every trial this was the case. 

Although the network was trained on only one 
input waveform, because its defining equations (1 to 5) 
are linear (as long as the membrane  potential is posi- 
tive) it will integrate any time-varying signal. For  in- 
stance, we showed that the network will produce a 
cosine wave in response to a sine wave. 

Recovery from lesions 

The purpose of this study was to create a model that 
was capable of  self-organization. Evidence that  the real 

Table 1, Initial and final weights of a basic network. Input weights correspond to connections 
between the two canals (c 1 and c2) and the four interneurons (n 1 -n4). Each ipsilateral weight is 
inhibitory, while each contralateral weight is excitatory. Recurrent weights correspond to connec- 
tions between interneurons (n l-n4). Although initially each weight has an equal chance of being 
excitatory or inhibitory, the final ipsilateral weights are all excitatory, while the final contralateral 
weights are all inhibitory. Output weights correspond to connections between interneurons and 
the two motoneurons (ml and m2). Each ipsilateral output weight is excitatory, while each 
contralateral output weight is inhibitory 
Input weights 

to nl n2 n3 n4 

initial final initial final initial final initial final 
from cl -0.0099 --0.026 --0.0099 --0.029 0.0026 0.0048 0.0062 0.0039 

c2 0.0028 0.0055 0.0098 0.0062 -0.0071 -0.023 --0.0028 --0.017 
Recurrent weights 

to nl n2 n3 n4 

initial final 
from nl --0.0066 0.16 

n2 --0.0022 0.24 
n3 0.0029 --0.24 
n4 -0.0037 --0.22 

Output weights 

initial final initial final initial final 
0.0057 0.25 0.0051 --0.20 0.0039 -0.19 
0.0016 0.35 0.0051 -0.20 -0.0054 -0.27 

-0.0007 --0.35 -0.0050 0.22 --0.0020 0.20 
--0.0018 --0.32 --0.001 0.20 0.0093 0.19 

from n I n2 n3 n4 

initial final initial final initial final initial final 
to ml 0.0029 0 .018  0.0098 0.045 -0.0074 -0.050 -0.0044 -0.048 

m2 -0.0008 -0.039 -0.053 --0.066 0.0035 0.024 -0.0084 0.029 
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Fig. 3 A-F .  Response of a four interneuron basic network to a 
rectangular pulse of head velocity. A One of the push-pull canal 
afferent input signals. B Eye position generated in response to the 
input signals. C-F The responses of the interneurons to the input 
signals, where f r  is firing rate in spikes/s are n l - n 4  are the interneu- 
rons 1-4 

neural integrator has this property is partly based on 
the fact that it is able to recover from certain lesions 
(Fetter and Zee 1988). To demonstrate that our net- 
work also had this ability several lesions were simulated 
from which the network recovered. The first such simu- 
lation involved "killing" one neuron by zeroeing all its 
output weights. A network with 16 interneurons was 
used for this, because eliminating one neuron in a 
four-neuron model would obviously have a devastating 
effect. In its original random configuration the network 
had a time constant of  15 ms which grew to 20 s after 
500 iterations (see Fig. 4). Killing a neuron reduced the 
time constant to 150 ms. The network then recovered 
after 500 more iterations. 

The decrease in time constant due to the lesion is 
surprisingly large and is at odds with the results of  a 
similar lesion in the model of  Cannon et al. (1983). 
That  model was hard-wired and achieved positive feed- 
back by lateral inhibition similar to the present model. 
Removal of  one cell out of  32 caused only a minor 
deterioration in integrator performance. The reason is 
that in their model lateral inhibition was largely 
confined only to neighboring cells. Thus, loss of  a cell 
caused less integrator action in only a small section of  
the model leaving the rest of  it to behave normally. In 
our model, all cells are allowed to, and do, project 
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Fig. 4. Time constant of a 16 interneuron network during learning 
starting from a random configuration and after a lesion to one of the 
interneurons at 500 iterations 

significantly to all other cells in the model so that loss 
of  one cell interrupts many of  the loops by which all 
cells in the model feed back upon themselves. Although 
our model can repair itself and so achieve robustness, 
its sensitivity to lesions suggests that the network is too 
distributed and possibly could be improved by requir- 
ing cells to give stronger synaptic inputs to, in some 
sense, nearby cells and less to more remote cells. 

Hemilabyrinthectomy was simulated with four in- 
terneurons by removing the inputs from one of  the 
canals. As can be seen in Fig. 5A, the outputs of  the 
interneurons became grossly imbalanced. If  the network 
were able to make saccades to reset the eye position, the 
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Fig. 5 A, B. Firing rates, f i ,  of interneurons n2 and n4 before and 
after hemilabyrinthectomy. A Hemilabyrinthcctomy was simulated by 
zeroing the input from one of the canals. Half of the internvurons 
responded by firing at an unnaturally high rate, while the other half 
went into cut-off. B After 750 iterations the network learned to 
integrate with only a single canal input 



452 

neurons would have produced a nystagmus similar to 
that seen clinically. The network was then asked to 
learn to integrate with only a single canal input. Despite 
this gross insult, the system recovered in 750 iterations 
and had a final normal gain and time constant (Fig. 
5B). One should recall that interneurons receive a tonic 
input that remains during re-learning. We feel that 
recovery would not have occurred without this input, 
but this conclusion is clouded by the fact that the 
network could not have learned initially without it. 

Induction of post-saccadic drift 

Recent experiments (Kapoula  et al. 1989) have shown 
that it is possible to induce post-saccadic drift in hu- 
mans. This was done by having a subject watch a 
random dot pattern while making spontaneous sac- 
cades. After each saccade the entire pattern slid briefly 
in the direction opposite to the saccade. After several 
hours the subjects' eyes would spontaneously drift 
backwards after making a saccade in the dark. This 
illustrates the ability of  the neural integrator to perform 
signal processing more complex than just integration in 
order to reduce retinal slip. To simulate an analogous 
situation with our model, we started with a four-in- 
terneuron network trained to integrate. Then we asked 
that the desired eye velocity, after an eye movement, be 
negative at 5 deg/s, rather than zero. The network 
responded by learning, in only 200 iterations, to pro- 
duce the appropriate drift in the opposite direction after 
making an eye movement. While our model receives 
vestibular, rather than saccadic inputs, we only wanted 
to show that it really should be thought of as a function 
generator that can produce whatever output signal is 
necessary (within reason) to reduce retinal slip. 

Compensation for eye muscle plant 

Using the modified network configuration shown in 
Fig. 1 we wished to show that the model could produce 
an output waveform that would compensate for plant 
mechanics (muscles plus passive orbital tissues) as well 
as integrate. The first network we tried had no con- 
straints on the polarity of  the weights. The learning 
algorithm was identical to that of  the basic network, 
except for the following changes. The error was not 
evaluated during a 15 ms interval immediately after the 
onset of  the velocity pulse and the 15 ms after its return 
to the background level. These intervals were excluded, 
because the network, if successful, must produce the 
sum of  the integrated signal (eye position) and the 
original signal (eye velocity) as shown in (5). Since 
individual neurons had time constants of  5 ms, it was 
impossible for the network to respond to instantaneous 
changes in the input and this would create large, spuri- 
ous errors. In addition, the error for a given set of  
weights (6) was evaluated for two input sequences with 
velocity pulses in opposite directions. The sum of  these 
two errors was then used to calculate the partial deriva- 
tives and update the weights (7-9) .  This was done 
because the background rates of  half the neurons 
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Fig. 6 A-F.  Eye position, firing rate, fr, of a motoneuron, and 
activity of interneurons of a modified network in response to a 
rectangular pulse of head velocity. A Eye position B Firing rate of a 
motoneuron (m2) that encodes eye velocity and eye position C Firing 
rate of an interneuron (n 1) with eye velocity and eye position signals 
in opposite directions. D and E Firing rate of interneurons (n2 and 
n3) with eye velocity and eye position signals in the same direction. F 
Firing rate of an interneuron (n4) which encodes only eye position 

tended to go negative while the other half got very large 
during learning if only a single input was used. 

After approximately 1000 iterations the error was 
reduced to the tolerance level. Eye position, motoneu- 
ron firing rate, and firing rate of the interneurons after 
learning for a typical network are shown in Fig. 6. The 
motoneuron carries the sum of  the eye position and eye 
velocity signals in accordance with (5). Three of  the 
four interneurons have an output proportional to eye 
velocity as well as eye position. The fourth (n4) re- 
sponds primarily to eye position. In n 1, the eye position 
and eye velocity signals are in opposite directions. 
Studies of  the NPH in cats (Lopez-Barneo et al. 1982) 
have also noted that neurons tend to be either sensitive 
to eye velocity as well as eye position (burst-tonic) or to 
eye position alone (tonic). One characteristic of  certain 
neurons in this model, that has been noted only rarely 
in monkeys (S.G. Lisberger, personal communication), 
is the presence of  position and velocity signals in oppo- 
site direction. This phenomenon occurred in about  25% 
of the neurons in the ten simulations that we made. 

As with the basic network the inputs and outputs of 
the network were not in a "push-pull" configuration 



after the network had learned (i.e. each weight had an 
equal probability of  being excitatory or inhibitory). 
Consequently, to make the network conform to experi- 
mental observations, we required the ipsilateral input 
weights to be inhibitory and the contralateral input 
weights to be excitatory. This resulted in the network 
developing an inhibitory commisural system. It also 
had the effect of eliminating the spurious neurons, 
leaving interneurons with either position and velocity 
signals in the same direction or with only position 
signals. 

Discussion 

The intent of  this project is to mimic a developing 
oculomotor system where synapses are forming and 
undergoing modification. Through the minimization of 
retinal slip the model learns to process signals in a 
manner similar to the vestibulo-ocular reflex. The re- 
suiting behaviour and underlying structure can then be 
compared with observations from electrophysiological 
experiments. The oculomotor system, and particularly 
the neural integrator is extraordinarily well suited for 
neural network modeling. Unlike practically any other 
system in the brain, the signals encoded by brainstem 
neurons subserving eye movements have been very well 
characterized. The inputs and outputs of  the neural 
integrator have been well-defined, and retinal slip is 
known to act as the external teacher. The only element 
of  the system which remains completely unknown is the 
actual learning algorithm that is used by the brain to 
eliminate retinal slip. 

It is assumed that the brain has some way of 
knowing how to modify individual synapses in order to 
reduce retinal slip. Our model accomplished this by 
changing each synapse a test amount  in order to assess 
its contribution to the production of  retinal slip, and 
then modifying that synapse accordingly. This was in- 
corporated into a gradient descent algorithm that con- 
verged in most situations. The formation of  partial 
derivatives and the use of  gradient descent is somewhat 
artificial; simpler learning rules would have worked as 
well, but would have taken too long to converge. Our 
algorithm was approximately as efficient as that of  
other gradient descent algorithms, for example that of  
Williams and Zipser (1989), in that each iteration re- 
quires the order of N 4 operations, where N is the 
number of neurons. Nonetheless, when the number of  
neurons becomes large the network taken an unreason- 
able amount  of time to converge. This problem might 
be solved by using a Hebbian type algorithm that could 
simultaneously update each of the synaptic weights 
based on a directional retinal slip signal. 

One problem with retinal slip alone as an error 
signal is that it is the output eye velocity that is being 
optimized and so the background rates of  the neurons 
cannot be controlled by learning. Consequently, we set 
the neuronal background rates at 100 spikes/s originally 
and in most cases they remained nearby during learn- 
ing. In the case of  the modified network this stability 
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was only achieved when each error was evaluated for 
two different sequences with head movements in oppo- 
site direction. The question of how neuronal back- 
ground rates in the brainstem arise and are controlled 
remains an intriguing one that was beyond the scope of 
this model. 

It should also be noted that in the real oculomotor 
system, neurons in the nucleus prepositus hypoglossi 
and medial vestibular nucleus that comprise the neural 
integrator are actually third-order cells that receive 
inputs from second-order cells in the vestibular nucleus. 
In our model integrator, cells received inputs directly 
from the canal afferents. However, it is not hard to see 
that inclusion of  relay neurons corresponding to sec- 
ond-order vestibular cells would have resulted in an 
equivalent circuit. 

Recent three dimensional models of  the oculomotor 
system (Tweed and Vilis 1987) have shown that correct 
calculation of  eye position during an eye movement 
requires the integrator to consider initial eye position as 
well as the angular velocity. While this is a small effect 
unless the eye is considerably deviated from the center, 
it underlines our contention that the integrator is capa- 
ble of  signal processing that is more complicated than 
simple integration. Although it is beyond the scope of  
this study, we feel that given the appropriate learning 
sequences our network would be able to develop a 
vertical integrator and couple it to the horizontal inte- 
grator in such a way as to calculate eye position in 
three dimensions. 

Our network was able to simulate the behaviour of 
the neural integrator in many physiological and patho- 
logical situations. It was able to learn to integrate, to 
recover from lesions, and to perform the more compli- 
cated signal processing tasks of  the real neural integra- 
tor. The network, however, with no constraints on 
synaptic sign, did not come up with the push-pull 
configuration that the real integrator has been shown to 
have. This implies that constraints, most likely in the 
form of genetic hard-wiring, are imposed on the real 
neural integrator that restrict its final configuration. 
When the inputs and outputs of our network were 
forced to obey push-pull it invariably developed an 
inhibitory commissural system between the interneu- 
rons. Integration took place as the result of  positive 
feedback that was distributed throughout  the network. 
Nonetheless, each interneuron in our network carried a 
position signal (sometimes in combination with a veloc- 
ity signal), and no partially integrated signals were seen. 

In summary, we have shown that error-driven 
learning based on retinal slip can produce a network 
that has many characteristics similar to the neural 
integrator of the oculomotor system. It remains to 
develop a learning rule which can produce a network 
with similar qualities that is more efficient and biologi- 
cally plausible. 
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