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Abst rac t  Continuous progress has been achieved during 
recent decades in the therapy of metastasizing malignan- 
cies by improving chemotherapeutic strategies and new 
approaches in radiation therapy. Genetic manipulation of 
tumor cells and of  the tumor fighting immune system is 
hoped to add significant contributions to curative inter- 
ventions in disseminated tumors. That we are still far 
from eradicating death by malignant growth is due ulti- 
mately to our limited understanding of the cascade of 
events resulting in metastasis formation, which until re- 
cently was believed to rely on multiple rounds of muta- 
tion and selection processes. This implies an individually 
specific history of each metastatic tumor, which would 
rule out uniform diagnostic and therapeutic concepts. 
When it was noted in a rat tumor model that the transfer 
of cDNA of a single gene, a CD44 variant isoform 
(CD44v) covering the exons v4-v7,  sufficed to initiate 
metastasis formation of a locally growing tumor, hope 
was created that a "metastogene" may have been identi- 
fied. Although the idea of CD44v expression as a unify- 
ing concept for tumor progression was not sustained, the 
discovery of CD44v-initiated metastatic spread allowed a 
conceptually new hypothesis on tumor progression as a 
consequence of the reactivation of genetic programs of 
ontogeny, stem cell differentiation, and/or lymphocyte 
activation. Since distinct CD44 isoforms play an impor- 
tant role in these processes, unraveling the functions of 
this family of molecules can indeed provide a comer- 
stone in the understanding of tumor progression. This ar- 
ticle summarizes briefly the present knowledge on 
known functions of CD44 isoforms with particular focus 
on parallels between physiological programs and tumor 
progression. 
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Introduction 

Tumor progression 

There are excellent reviews in the field of metastasis for- 
mation [1-7], and the attempt to summarize or to add 
anything new is beyond the scope of this review. Let us 
recall intially the metastatic cascade: (a) loss of contact 
with the surrounding tumor cells or neighboring cells, as 
exemplified by the loss of E-cadherin [7, 8]; (b) break- 
through the basement membrane and penetration of ves- 
sel walls [6, 9, 10]; (c) survival of sharing forces in the 
blood stream [11]; (d) adhesion and penetration through 
vessel walls [4, 9, 10]; (e) expansion into foreign tissue 
[12-14]; (f) organization of supply with nutritients by 
vascularization [15-18]. It should be mentioned, finally, 
that the differentiation between hematogenous and lym- 
phatic spread of tumor cells appears to be significant. 
While entering of the lymphatic system and the transport 
therein is less demanding than passing blood vessels and 
surviving the turbulence of the blood stream, "passive" 
metastasis formation by embolus formation within the 
capillary system and breaking through the walls after set- 
tlement of micrometastasis can occur only in hemato- 
geneous metastasis formation. The observation that some 
tumors are known to metastasize exclusively either via 
the lymph or via the blood system reinforces the distinct 
requirements for each pathway [11]. 

Organ-specific metastasis formation 

This metastatic cascade does not take into account the 
organ specificity of metastasis formation. However, from 
the clinical point of view this feature of tumor progres- 
sion has long been common knowledge, and the "seed 
and soil" hypothesis was originally formulated over 100 
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years ago by Paget [19]. This postulates that tumor cells 
("seeds") can grow only when they find the proper sur- 
rounding ("soil"). However, recent experimental findings 
support this view. Carcinoembryonic antigen is one of 
the candidates, which after more than 20 years, could be 
assigned functionally to the preferential homing of colo- 
rectal cancer cells into the liver [20]. The state of current 
knowledge has been comprehensively reviewed by Ra- 
dinsky and Fidler [21], Fidler [22, 23], and other experts 
in the field [4, 13, 19, 24-34]. Interestingly, as with tu- 
mor progression in general, organ-specific homing and 
settlement also appear to be guided largely by adhesion 
molecules expressed in tissue-specific patterns by tumor 
cells and/or endothelial ceils. In addition, growth factors 
produced, for example, by fibroblasts in a defined tissue 
context must also be considered. 

Adhesion molecules and metastasis 

Adhesion molecules are known to guide morphogenesis 
and organogenesis and are involved in the maintenance 
of organ structures [35-41]. Moreover, they are of the ut- 
most importance for most functional activities of the im- 
mune system [42-49] and are thought to be involved in 
tumor progression [4, 12, 13, 30, 32, 50-56]. Their con- 
tinously growing numbers are grouped into five families: 
integrins, selectins, cadherins, the Ig superfamily, and H- 
CAMs, the latter group including CD44 [42, 50, 57-65]. 
Especially integrins, the Ig superfamily, and H-CAMs in- 
clude varying combinations of heterodimers by changes 
in glycosylation and in the protein structure, frequently 
due to alternative splicing of pre-mRNA [38, 42, 57, 
66-70]. This complexity of structures is correlated with 
a multitude of  functions. Cell adhesion molecules medi- 
ate either cell-cell or cell-matrix interactions or both. 
They are frequently also involved in signal transduction 
resulting in altered patterns of gene expression [8, 32, 
36, 38, 42, 56, 57, 71-76]. As mentioned above, the 
metastatic cascade is fundamentally linked to repeated 

changes in tumor cell adhesiveness (recently reviewed in 
[4, 77]). It is therefore not surprising that CD44 is in- 
volved in tumor progression, but it is most surprising 
that variations in the expression of a single gene can cre- 
ate a family of proteins which display the whole array of 
possible functions of adhesion molecules in ontogeny, 
lymphocyte activation, and tumor progression. 

The CD44 family of glycoproteins 

CD44 comprises a family of glycoproteins with variable 
N- and O-linked glycosylation sites [78-86]. The so- 
called standard or hematopoietic form spans a region of 
seven extracellular exons, a transmembrane exon, and a 
cytoplasmic exon [87-89], which can be short (exon 9) 
or long (exon 10) [90]. Between exon 5 and exon 6 up to 
ten additional, so-called variant, exons can be inserted 
[68, 91-94]. Although multiple combinations of variant 
exons have been described, some are expressed differen- 
tially or are at least found predominantly on specific tis- 
sues such as the epithelial form [95], the keratinocyte 
type [96-97], or the reticulocyte type [98] (Fig. 1). 
Translation of the variant exons has been suggested to 
follow the 3"-5" end rule. There are exceptions inasmuch 
as individual cells can express a multitude of combina- 
tions of splice variants, with the individual combinations 
not necessarily containing sequential exons. Finally, de- 
pending on the state of activation, individual cells can re- 
peatedly change the splicing of CD44 pre-mRNA. The 
mechanisms which regulate alternative splicing of CD44 
is unknown, but there are preliminary reports on regula- 
tion of the CD44 promoter by r a s  and of altered splicing 
after hyaluronidase treatment [99-100]. 

CD44 is an adhesion molecule with two binding do- 
mains for hyaluronate (HA) [101-107]. HA binding is 
influenced by the cytoplasmic tail [108-109] while the 
membrane proximal domain does not appear to be in- 
volved [110]. Not all CD44-positive cells bind to HA, 
but HA binding can be induced by cross-linking [111], 

Fig. 1 Protein structure of 
CD44. a, The members of the 
family of CD44 glycoproteins 
are composed of a minimum of 
eight extracellular exons, one 
transmembrane spanning, and 
one short (exon 9) or long (ex- 
on 10) cytoplasmic exon. e, Be- 
tween exon 5 and 6 up to ten 
variant exons can be inserted in 
multiple combinations. Some 
more frequent isoforms are 
named: keratinocyte type (exon 
v8-v 10; b), epithelial type (exon 
v3-v 10; c), meta (metastasis-as- 
sociated)- l (exon v4-v7; d) 
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which is thought to result either in conformational 
changes or in a redistribution of CD44 in the cell mem- 
brane [112]. Furthermore, O-glycosylation sites are im- 
portant for the CD44-HA interaction [85]. CD44 also 
bind to fibronectin [113, 114], laminin and type IV colla- 
gen [115], and gycosaminoglycans [116]. The molecule 
is known to be involved in the assembly of the extracel- 
lular matrix [111, 117-118]. For some functions binding 
to the cytoskeleton via ankyrin is essential [85, 114, 
119]. CD44 variant isoforms (CD44v), in particular, are 
linked via the ERM family to the actin based cytoskele- 
ton [120]. There are three phosphorylation sites at the in- 
tracytoplasmatic tail, and binding to the cytoskeleton is 
not observed in the phosphorylated state [109]. 

CD44v are expressed less abundantly. Although most 
epithelia and the hematopoietic organs are CD44v-posi- 
tive during ontogeny [121-122], expression of CD44v in 
the adult is restricted mainly to the skin, the epithelium 
of the gut, and a variety of glands [121, 123-125]. In all 
instances expression of CD44v is linked to a high rate of 
cell division [121-122]. It should be mentioned that even 
within the CD44v-positive tissues different cell layers 
express distinct CD44 variant isoforms. This suggests 
both a strictly regulated mechanism of splicing and di- 
vergent functions [67, 126-127]. 

CD44 and metastasis 

The model 

The possible involvement of CD44v in tumor progres- 
sion was first described in, a metastasizing rat tumor line 
[128]. This pancreatic adenocarcinoma predominantly 
expressed the variant exons v4-v7 [91]. Metastasis for- 
mation of the locally growing subline was initiated by 
the transfer of CD44v4-v7 [91], and metastatic spread 
was inhibited [129-130] by an antibody, 1.1ASML, rec- 
ognizing an epitope on exon v6 [91, 131]. In the rat this 
phenomenon appears to be of general validity. In a vari- 
ety of rat tumor lines with paired sublines either growing 
locally or metastasizing via the lymphatic system, ex- 
pression of CD44v has been detected exclusively in the 
metastasizing sublines [132]. In line with this finding is 
the notion that transfection of different nonmetatasizing 
rat tumor lines with CD44v transfers the metastasizing 
phenotype. This is independent of the histology of the 
primary tumor and of the grade of dedifferentiation. The 
capacity to form lymph node metastases is correlated 
solely with the intensity of surface expression of CD44v 
(Hofmann et al., unpublished finding). Interestingly, in a 
rat colon carcinoma model it has also been noted that tu- 
morigenicity is correlated with CD44v6 expression 
[133]. Experiments aimed at defining the important 
structural equivalent were able to exclude that any of the 
variant exons interfered negatively with metastatic pro- 
gression (Sleeman et al., unpublished finding). Also, no 
interference of exons, from the standard part of the mole- 
cule was. observed (Kasuhiro et al., unpublished finding). 
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Finally, transfection with exons v6 and v7 or with exon 
v6 as the only variant exon still confers metastatic be- 
havior [134] (Kasuhiro, unpublished finding). However, 
it remains to be explored whether the variant exons by 
themselves, interactions between the standard exons and 
exon v6, or conformational changes by the insertion of 
variant exons are the structural equivalent to metastasis 
induction. Regardless of this, however, the observation 
that expression of CD44v initiates lymphatic spread of 
solid tumors in the rat has received much attention. It has 
been hypothesized that CD44v and in particular exon v6 
may be of special importance in tumor progression (re- 
viewed in [135-139]). Screening of human tumors did 
not unequivocally support this assumption (reviewed in 
[140]). However, for some human malignancies expres- 
sion of CD44v is clearly correlated with tumor progres- 
sion. 

CD44 in human malignancies 

Following the recognition that CD44v play an important 
role in the lymphatic spread of rat tumor cells, many in- 
stitutions screened human tumors for the expression of 
CD44v and searched for correlations between expression 
profiles and prognostic paramters. Although data are not 
yet available for all types of malignancies, it is evident 
that expression of CD44v on metastatic tumors in the hu- 
man is variable. In some tumors, such as neuroblastoma, 
there is no expression of CD44v [141], or tumor aggres- 
siveness is even correlated with repression of CD44 ex- 
pression [142]. Also, tumors arising from CD44v-posi- 
tive tissues, especially the skin and squamous epithelium 
including the lung, appear to loose expression upon tu- 
mor progression [143-144] (Seiter et al., submitted). On 
the other hand, CD44v is frequently upregulated in tu- 
mors infiltrating the skin, but this appears to be associat- 
ed with tissue injury rather than with tumor progression 
[145]. Other tumors such as prostate cancer [146] and 
gastrinomas [147] express, in contrast to their nonmalig- 
nant counterparts, CD44v even at early stages of malig- 
nant transformation and unlinked to metastatic progres- 
sion. However, the progression of some tumors, includ- 
ing those in humans appears to be closely linked to 
CD44v expression. This has been described in breast 
carcinoma [148-150], bladder carcinoma [151], high 
grade non-Hodgkin lymphoma and large cell lymphoma 
[152-153], kidney carcinoma [154], high-grade glioblas- 
toma and meningioma [ 155], and hepatocellular carcino- 
ma [156]. Contradictory findings have been reported in 
some tumor systems. In colorectal carcinoma, for exam- 
ple, some groups have described a correlation between 
tumor progression and CD44v6 expression [100, 
157-160] while others have detected no expression of 
CD44 splice variants or noted it early and independently 
of progression [161-163]. Upregulation of CD44v ex- 
pression has been reported in cervical cancer by Dall et 
al. [ 164] but was not detected by another group (Woerner 
et al., submitted). Also in the case of gastric cancer evi- 
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dence supports correlation of CD44v expression with 
progression either only in the intestinal, less differentiat- 
ed type [165-167] or generally [168-169]. The use of 
different sets of reagents may explain at least some of 
the discrepancies. 

Interestingly, to the extent that a correlation between 
tumor progression and CD44v expression was noted, it 
was - unlike in the rat model - not essentially exon v6 
that was upregulated in human malignancies. Instead, 
the expression of other variant exons has been de- 
scribed to be important for metastasis formation of hu- 
man tumors, for example, exon v9 in kidney carcinoma 
[154], exon vl0 in skin metastasis of melanoma (Seiter 
et al., submitted), exon v5 or exon v9 in some types of 
gastric cancer [165, 168], exon v5 for the settlement of 
melanoma cells in lymph node tissue (Seiter et al., sub- 
mitted), exon v7-v8 in carcinoma of the cervix uteri 
[163], and exons v4 and v5 in hepatocellular carcinoma 
[156]. 

Although CD44v cannot be considered as a general 
metastasis marker in the human, for some types of ma- 
lignancies a strong correlation between metastasis for- 
mation and CD44 expression has been demonstrated. 
Possibly of similar importance is the notion that some 
tumors explicitly downregulate expression of CD44. 
When one also considers that expression of CD44v initi- 
ates lymphatic spread of rat tumors, the CD44 family of 
glycoproteins appears an ideal model for examining the 
precise requirements of progressively growing tumor 
cells at each step in the metastatic cascade by defining 
the functional principles of distinct CD44 isoforms. 
Since tumor cells which gain in metastatic capacity re- 
cruit new and/or silence gene activities, it is also tempt- 
ing to speculate that they adopt pathways of functional 
activities from those cells and organs in which activa- 
tion or silencing of genes occurs physiologically 
[ 170-171 ]. This is frequently observed during ontogeny, 
in stem cell differentiation, and during lymphocyte acti- 
vation. 

Physiological and metastasis-associated 
functional activities of CD44 

It has been proposed repeatedly that the multitude of 
CD44 isoforms corresponds to a multitude of functions. 
This view is based on the following observations: (a) ex- 
pression of CD44 isoforms appears strictly regulated, (b) 
expression of CD44v is generally transient, (c) distinct 
ceils express different CD44v, and (d) the same cell can 
express different CD44 isoforms depending on its state 
of activation. Although by no means are the functions of 
all possible CD44 isoforms known, some - in particular 
those of the CD44 standard isoform (CD44s) - are 
known, and there is initial evidence for activities of 
CD44v which allow the determination of whether tumor 
progression does indeed rely on the recruitment of physi- 
ological programs involving expression of CD44 iso- 
forms. 

Functional activities of CD44s and CD44v as substrate 
and cell adhesion molecules 

CD44s is known as the principal receptor for hyaluronan, 
one of the major components of the extracellular matrix. 
By its unique structure as the longest molecule in the or- 
ganism, hyaluronan is thought to he important particular- 
ly as a skid for cells. It has been shown that during de- 
velopment the expression of CD44s and that of hyaluro- 
nan coincides, and that, for example, in the limb bud the 
protruding edge is especially rich in hyaluronan and in 
brightly CD44-positive cells. Similar features account 
for the somite formation [172-173]. It has been suggest- 
ed that hyaluronan/CD44 is involved in the formation of 
the early mesoderm, the differentiation of the craniofa- 
cial mesenchym, and the morphogenesis of the axial 
skeleton [174]. Interestingly, CD44 also degrades hyal- 
uronan [175-178]. This function may be of importance 
in the formation of ducts, cavities, and canniculi as re- 
quired in the formation of the respiratory tract, the ho- 
meostasis of cartilage tissue [177, 179], and the forma- 
tion of dermal condensations [ 180]. Independently of the 
concomitant presence of hyaluronan, expression of 
CD44 has also been noted in instructive epithelia [172]. 
All of these findings are in accordance with the view that 
CD44 facilitates migration of cells on substrates of the 
extracellular matrix; they also suggest additional, as yet 
undefined activities. 

A second function undoubtedly associated with CD44 
is its involvement in lymphocyte "homing" (reviewed in 
[181]). There are several respects in which this is of 
physiological importance. One is the homing of mature 
lymphocytes in peripheral lymphoid tissues, in particular 
into lymph nodes. Lymphocytes bind to high endothelial 
venules via CD44 and binding can be inhibited by anti- 
CD44 antibodies [182-186]. This function is restricted 
to CD44s and is not mediated, for exampe, by the epithe- 
lial isoform of CD44 [187]. It is also known that CD44 is 
involved in the binding of bone marrow ceils to stromal 
elements, where binding of myeloid cells in particular 
seems to function via HA binding [188]. Furthermore, 
mere seeding of stem cells on stroma layers requires 
CD44, but seeding can be inhibited by antibodies, which 
do not block HA binding (Khaldoyanidi et al., submit- 
ted). CD44 is involved in the binding of colony forming 
cells to fibronectin [189], in plasmocytoma cell-stroma 
interactions [190], in binding of lymphocytes to human 
umbilical vein endothelial cells [191], and in lymphocyte 
endothelial cell interactions in general [192]. It should be 
mentioned that lymphocyte binding is inducible [193], 
and in most instances, especially regarding HA binding, 
it is observed only after induction [111-112]. Evidence 
has recently been presented that migration of prothymo- 
cytes into the thymus is also guided by CD44, but not via 
HA binding [194]. CD44 also plays a role in the reap- 
pearance of T cells in the periphery after depletion proto- 
cols [195-196]. Experiments in the rat have revealed, in 
accordance with published evidence, that stem cell seed- 
ing, migration of prothymocytes, and homing of nonacti- 



vated lymphocytes can be partially inhibited by anti- 
CD44s, but by neither anti-CD44v6 nor GST-CD44v fu- 
sion proteins covering the variant exons v4-v l0  (M.Z., 
unpublished findings). Although further experiments are 
required for an unequivocal exclusion, all data available 
so far indicate that the homing and migration of both he- 
matopoietic progenitor cells and mature lymphocytes in- 
to lymphoid organs is independent of the CD44v expres- 
sion but is influenced by CD44s. 

In addition to its function in lymphocyte homing into 
lymphoid organs, CD44 also is involved in the homing 
into nonlymphoid organs (reviewed in [197]) which is 
especially important in infectious and allergic and auto- 
immune reactions. CD44 is thought to be involved par- 
ticularly in the extravasation of lymphocytes, but not in 
the migration process [198]. It has been described that T 
cell-keratinocyte binding is strengthened by anti-CD44 
[199], that infiltration of B cells in the lacrimal gland 
depends on CD44 [200], and that T cell-astrocyte inter- 
actions are also CD44 mediated [201]. Furthermore, 
CD44 induces cell aggregation [202], which depends on 
its interaction with the cytoskeleton [203]. Also, upon 
lymphocyte-endothelial cell interaction syncapping of 
CD44 has been noted, which could play a critical role 
during recirculation and homing of activated lympho- 
cytes in injured organs [204]. It has been described that 
CD44, by immobilizing macrophage inflammatory pro- 
tein-l~, induces chemotaxis and adhesion of T cells to 
vascular cell adhesion molecule 1 in inflammatory pro- 
cesses. Finally, the binding of platelets to endothelial 
cells after tissue injury also appears to be mediated by 
CD44 [205]. 

In contrast to the homing of progenitors and naive 
lymphocytes in hematopoietic organs, there is evidence 
that CD44v are required for the homing of activated lym- 
phocytes in nonhematopoietic tissues. The human skin 
abundantly expresses the so-called keratinocyte form of 
CD44, which contains the variant exons v3-v l0  [96]. 
Although expression of exon vl0 has been noted neither 
in the bone marrow nor during lymphocyte activation, 
lymphocytes infiltrating the skin strongly expressed exon 
vl0, irrespective of whether malignantly transformed or 
in the course of infectious or allergic reactions. Concom- 
itant expression of CD44v10 has also been noted on cap- 
illary walls in the surrounding tissue (Wagner et al., sub- 
mitted). It is therefore tempting to speculate that ex- 
presssion of CD44v10 is fundamentally required, but 
also may be sufficient for infiltrating the tight connec- 
tions of the epithelial layers of the skin. Interestingly, it 
has been reported that CD44v are linked to the ERM 
members of the cytoskeleton. The ERM family of mole- 
cules is closely related to the catenins, which are linked 
to cadherins, the major adhesive element of epithelial 
structures, which tight neighboring cell by homotypic 
binding. Whether CD44v10 also functions by homotypic 
binding, and whether CD44v10 represents a counterpart 
to E-cadherin remains to be explored. Furthermore, it 
will be interesting to evaluate whether the requirement of 
CD44v10 expression for homing into the skin represents 
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a unique situation, or whether infiltration of nonlym- 
phoid organs in general depend on expression of defined 
CD44v. 

Linkage between metastasis formation 
and CD44-mediated migration and homing 

A linkage between upregulation of CD44 expression and 
metastasis formation has been noted in a variety of tu- 
mors (reviewed in [140, 206-208]) particularly in hema- 
topoietic malignancies (reviewed in [209]). In lymphoma 
and leukemia the level of CD44 expression is correlated 
rather with the dissemination than the degree of dediffer- 
entiation (reviewed in [210]). This has been found in B 
cell acute lymphatic leukemia [211], multiple myeloma, 
where expression of CD44 correlates with homotypic ad- 
hesion [212], Burkitt's lymphoma [213], non-Hodgkin 
lymphoma [84, 214-216], and T lymphoma, where ex- 
pression of CD44 coincides with increased tumorigenici- 
ty [217]. For a B cell hybridoma it has been described 
that expression of CD44s is accompanied by aggregation 
and metastasis formation [218]. 

High level of CD44s expression has also been noted 
on solid tumors, for example in melanomas [206, 
219-221], where it is thought that CD44 plays a role in 
forming a leading lamella which is required for efficient 
locomotion, and that the chondroitin sulfate portion of 
CD44 is the critical component for the increased motility 
by interaction with type I collagen [222-223]. Similar 
notions have been described in gastric cancer [224], me- 
sothelioma [225], breast carcinoma [226], glioblastoma, 
and meningioma [227-228]. In line with these findings 
is the observation that in ovarian tumors a decrease in tu- 
morigenicity is apparently correlated with a decrease in 
CD44 [229]. Considering the underlying mechanism, it 
has been suggested that CD44 increases motility 
[224-226] or facilitates penetration by HA degradation 
or by interaction with the extracellular matrix [227]. The 
latter possibility is strongly supported by the view that 
melanoma metastasis formation is inhibited by a CD44- 
Ig fusion protein which inhibits binding to HA but not by 
mutated CD44-Ig fusion protein [230]. 

There are few reports which consider possible func- 
tions of CD44v in tumor cell migration and homing in 
tissue of foreign origin. In the rat model, where metasta- 
sis formation is transferred by transfection with 
CD44v4-v7 cDNA, we have excluded that CD44 variant 
exons facilitate either the migration or the embedding of 
tumor cells in the draining lymph node [132]. However, 
especially regarding the skin it appears that tissue-specif- 
ic infiltration again may require and be accompanied by 
de novo CD44v expression. Jackson et al. [231] recently 
reported that a special variant isoform spans v3, v8-vl0,  
or vS-vl0, or vl0  only. Exon v3 has been found to con- 
tain glycosaminoglycan-related sequences, which are 
known to act as reservoirs for growth factors in many tis- 
sues [232]. There is no ligand structure on the endotheli- 
al cells. However, the authors suggested that cytokine 
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production may be initiated via CD44v3, particularly by 
keratinocytes, monocytes, and dendritic cells in the skin 
[233]. Of special interest also appears to be the observa- 
tion that basal and spindle cell carcinoma, which do not 
or only rarely metastasize, express the skin-associated 
pattern of CD44v at early stages of tumor growth but 
loose expression of exon vl0 when leaving the epidermal 
tissue. The same accounts for squamous cell carcinoma 
of the head and neck region, where CD44v8-v10 is most 
strongly downregulated on metastatic tissue (Seiter et al., 
submitted). Melanomas, on the other hand, strongly ex- 
press CD44v10 when infiltrating the skin but loose this 
particular variant isoform when metastasizing to the 
draining lymph node or upon in vitro culture (Seiter et 
al., submitted). Finally, intracutaneous lymphoma ex- 
presses CD44v10, which is not expressed on hematopoi- 
etic precursor cells or during systemic activation of lym- 
phocytes. It is, however, found on intracutaneous lym- 
phocytes both during allergic reactions and during in- 
flammation of the skin (Wagner et al., submitted). These 
features of shared expression of CD44v10 on activated 
and malignant lymphocytes related to the homing organ 
suggests joint features in organ-specific metastasis for- 
mation and lymphocyte infiltration in autoimmunity or in 
response to injury. Taken together, the data are strongly 
suggestive that special variant isoforms facilitate organ- 
specific homing of both lymphocytes and tumor cells. 

CD44 in hematopoiesis and hematopoietic malignancies 

CD44 is known to play important roles in the differentia- 
tion and proliferation of hematopoietic progenitor cells 
in the bone marrow microenvironment [234]. As early as 
1990 Miyake et al. [235] described that in long-term 
bone marrow cultures of the mouse no cobblestone areas 
appear in the presence of anti-CD44s, and that nonadher- 
ent progenitors do not develop. CD44 have been shown 
to be necessary for both myelopoiesis and for lympho- 
poiesis [235-238] (Khaldoyanidi et al., submitted). Inhi- 
bition of hematopoiesis by anti-CD44s is restricted 
mainly to stem cells and early progenitors, i.e., anti- 
CD44s display no [235] or minor effects (Khaldoyanidi 
et al., submitted) on the colony formation of committed 
progenitors in soft agar cultures. Since anti-CD44s inter- 
fere predominantly with the maturation/expansion of 
stem cells and/or early progenitor cells, one can presume 
that expression of CD44s is required either for interac- 
tions between stem cells/progenitor cells and stromal el- 
ements, or that by ligand binding growth-promoting sig- 
nals are transfered into the hematopoietic stem cell/pre- 
cursor cell. The two possibilites are not mutually exclu- 
sive. In fact, at least part of the anti-CD44s mediated 
blockade relies on the inhibition of cell division. When 
freshly harvested bone marrow cells were incubated with 
IM-7 and then treated with [3H]thymidine, a significant 
decrease was noted in the number of stem cells which 
had undergone suicide upon transfer into lethally irradi- 
ated mice (Khaldoyanidi et al., submitted). 

Establishment of rat LTBMC in the presence of anti- 
CD44v6 revealed that maturation particularly of the ad- 
herent stem cell population requires expression of 
CD44v. As in mouse LTBMC, anti-CD44s prohibit the 
development of nonadherent progenitors at least during 
the starting 5-7 weeks of culture. Anti-CD44v6 displays 
only a minor effect during the first 2-3 weeks. Thereaf- 
ter the cultures contained exclusively stromal cells, and 
hematopoiesis did not recover after omission of anti- 
CD44v6, while it did recover in cultures containing tran- 
siently anti-CD44s (M.Z., unpublished finding). Since 
maturation of hematopoietic stem cells requires basical 
interaction with the stromal environment (reviewed in 
[239]) the question arises of whether CD44v6 expression 
is required for stroma formation, and/or whether 
CD44v6 is involved in stem cell-stroma interactions. In 
fact, stroma formation of rat bone marrow is significant- 
ly delayed in the presence of anti-CD44v6. Considering 
that stromal cells do express CD44v6, it is tempting to 
speculate that by CD44v6 (stem cells)-ligand (stroma 
cells) interaction signals are transduced, which facilitates 
stroma formation. Since, on the other hand, stern cell 
maturation is also completely inhibited in the presence 
of anti-CD44v6, a binary mode of signal transduction 
must be assumed. 

Although CD44 may possibly be replaced by distinct 
adhesion molecules, CD44 apparently plays an essential 
role in stem cell proliferation, expansion, and matura- 
tion. According to published evidence and in line with 
our findings, the CD44 standard isoform provides (upon 
ligand interaction) proliferation initiating signals for ear- 
ly progenitors of all three hematopoietic lineages. 
CD44v, on the other hand, may be involved primarily in 
transducing signals between stromal cells and stem cells, 
which initiate differentiation. 

Among the joint functions of CD44 isoforms in lym- 
phocyte maturation and tumor progression, malignancies 
of the hematopoietic system should be considered in par- 
ticular since these tumors frequently resemble early stag- 
es of development. Indeed, as outlined above, many he- 
matological malignancies are accompanied by high ex- 
pression of CD44, and progressive states are defined by 
upregulation of CD44s and CD44v6. So far, however, a 
possible growth-inhibiting potential of anti-CD44 has 
not been evaluated with native leukemia, lymphoma. 
However, it has been shown that a CD44s-negative Bur- 
kitt's lymphoma line (Namalwa) transfected with 
CD44s-cDNA displays increased tumorigenicity and 
metastatic potential upon intravenous injection [240]. 
Furthermore, tumor growth can be inhibited by a CD44s- 
Ig fusion protein [241]. Interestingly, a slightly reverse 
effect has been noted with CD44v-transfected Namalwa 
cells. A possible explanation is that CD44s confers 
growth-promoting activities while CD44v expression is 
prone to differentiation. So far this view is merely specu- 
lative; however, it is possible that it could be experimen- 
tally verified. 



Costimulatory function of CD44 
in lymphocyte activation and tumor cell expansion 

There is ample evidence that CD44, as most adhesion 
molecules, functions as costimulator in T cell activation 
[242-249]. Interestingly, some antibodies are stimulatory 
together with anti-CD2 but not with anti-CD3. The latter 
have been found to stimulate palmitoylation of CD44 
[199]. Cross-linking via anti-CD44 also leads to activa- 
tion of cytolytic T cells and is a trigger for natural killer 
cells, the pathway of activation strongly resembling that 
for activation via the T cell receptor [250-252]. It also is 
known that the association with the cytoskeleton is espe- 
cially important for T cell activation via cross-linking of 
CD44 [253]. Under more physiological conditions of an- 
tigen-specific activation CD44 has been shown to be in- 
volved in enhanced binding of dendritic cells to T cells 
[202] and to trigger the chondroitin sulfate form of the 
invariant chain to function as a costimulus [254]. CD44 
promotes homotypic adhesion via lymphocyte function 
associated antigen 1 [255], and by HA binding interleu- 
kin-2 production and release of trypsinlike esterase by 
cytotoxic T lymphocytes may be triggered in a PTK-de- 
pendent fashion [252, 256-257]. 

Thus there is no question of the functional importance 
of CD44 as costimulatory molecule in T and probably 
also B cell activation. However, few of these studies dif- 
ferentiated between CD44s- and CD44v-mediated ef- 
fects. We have begun to solve this question focusing on 
T cell responses in the rat, because rat T cells upon anti- 
genic or mitogenic stimulation are known to express on- 
ly one or two (CD44v6 or CD44v6-v7) of the ten variant 
exons. Our blocking studies with anti-CD44s and anti- 
CD44v6 have clearly shown that functional activity of 
CD44 in the rat during the activation process is indepen- 
dent of the upregulation of CD44s but is mediated by 
CD44v6 (CD44v6-v7). The conclusion is based on the 
following observations: (a) T cell dependent and T cell 
independent immune responses both in vivo [258] and in 
vitro (Arch, unpublished finding) are significantly inhib- 
ited in the presence of anti-CD44v6 but are not altered 
by anti-CD44s; (b) proliferation and cytotoxicity assays 
set up under limiting dilution conditions reveal that the 
frequency of responding cells is reduced by anti- 
CD44v6; (c) when purified T cells are cultured on anti-T 
cell receptor coated plates, a strong costimulatory effect 
of anti-CD44v6 is observed. These data are interpreted 
in the sense that CD44v is required for the activation 
process itself but, in distinction to CD44s activity in the 
mouse, not for effector functions (M.Z., unpublished 
finding). Since both ligand binding and cross-linking of 
CD44v6 at the cell surface initiates signals leading to 
lymphocyte proliferation and maturation, two possible 
modes of CD44v6 function should be considered: (a) 
Signals are transduced into the antigen-presenting cell, 
which becomes activated. This could result in increased 
cytokine production, as described for IL-l[3, TNF-cz, 
TNF-[3, insulin-like growth factor-l, macrophage colony- 
stimulating factor [259-262] and interleukin-2 [263-264] 
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by activated CD44 or in an augmentation of presentation 
as seen after binding of CD44 to the chondroitin sulfate 
form of the invariant chain [254]. The observation that 
lymphocyte activation is severely impaired after preincu- 
bation of antigen presenting cells with anti-CD44v6 sup- 
ports this view. (b) Alternatively, but not mutually exclu- 
sive by cross-linking or ligand binding of CD44v6, sig- 
nals are transfered in the T or B lymphocyte which initi- 
ate proliferation or activation of genes associated with 
immune response. The latter view is supported by the 
observation that upon cross-linking of CD3 anti-CD44v6 
supports T cell proliferation. It thus appears that in the 
rat predominantly CD44v (v6 or v6-v7) are involved in 
the process of T cell activation, and that CD44v6/ 
CD44v6-v7 fulfills divergent functions, i.e., modulates 
the activity of both antigen-presenting cells and the lym- 
phocyte. Experiments are in progress to clarify the un- 
derlying molecular events. 

Do tumor cells which have settled in the draining 
lymph node require CD44v6 in a similar way? Prelimi- 
nary evidence suggests that this is in fact the case. An in- 
creased proliferation rate is noted upon culturing of tu- 
mor cells on anti-CD44v6 coated plates. This is inter- 
preted to indicate that cross-linking of CD44v6 on the 
tumor cell initiates signals with growth-promoting activi- 
ty, as has been observed upon cross-linking of the TCR 
concomitantly with CD44v6 on lymphocytes. Further- 
more, CD44v-positive tumor cells preferentially adhere 
to dendritic cells, and the proliferation rate of tumor cells 
is clearly augmented in the presence of antigen-present- 
ing cells. Adhesion of tumor cells can be blocked by an- 
ti-CD44v6, and as a consequence the growth advantage 
for tumor cells supplied by antigen presenting cells is 
abolished. Finally, there is preliminary evidence that 
cytokines secretion is augmented upon CD44v-ligand 
binding, for example, upregulation of tumor necrosis fac- 
tor and interleukin-1 secretion by CD44-mediated mono- 
cyte-tumor cell interactions has been described [259, 
265]. It thus appears that via CD44v on both tumor cells 
and lymphocytes signals can be transduced in the 
CD44v-positive and in the CD44v ligand-bearing cell, 
which in addition to proliferation also initiates cytokine 
production. 

CD44 isoforms are so far the only molecules which 
can confer metastatic capacity to nonmetastasizing tumor 
cells. In view of this it could be of great value to eluci- 
date the molecular mechanisms underlying the various 
physiological functions of CD44 isoforms, and thereby 
one (as pars pro toto) program of tumor progression. The 
physiological patterns of expression of CD44 suggest 
that distinct exons/isoforms of the molecule are involved 
in cell-cell and cell-matrix adhesion as well as in cell 
motility. Ligand binding may be required for, or at least 
may facilitate, both organ-specific homing and signal 
transduction. There is evidence that the latter initiates 
cell proliferation, differentiation, and/or cytokine pro- 
duction as well as activation of proteases and other en- 
zymes. This contribution attempts to elucidate whether 
and when in the metastatic cascade tumor cells make use 
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of "physiological  funct ions"  of CD44 isoforms. There is 
convinc ing  exper imenta l  evidence that CD44 in tumor 
progression shares many  features with CD44 activities in 
developmental  programs,  stem cell differentiation, and 
lymphocyte  activation. However, since the coordinat ion 

of distinct functions to defined CD44 isoforms is far 
from complete, many quest ions remain  unanswered.  The 
molecular  mechanisms under ly ing  the distinct funct ions 
of CD44 isoforms as a model  system of tumor progres- 
sion are yet to be unraveled (Fig. 2). 
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Fig. 2 Functional activities of CD44. Examples of analogous 
physiological and metastasis-associated functions of CD44: degra- 
dation of hyaluronan/penetration of basement membrane; settle- 
ment of stem cells/"isolated tumor cells" in the bone marrow mi- 
croenvironment; lymphocyte/tumor cell motility; induction of cy- 
tokine production, for example, in antigen-presenting cells by 
lymphocyte/tumor cell receptor engagement; growth promotion in 
lymphocytes/tumor cells by receptor cross-linking; immigration 
into nonhematopoietic tissue during immune responses, autoim- 
mune reactions, organ-specific metastasis formation. Evidence for 
the involvement of defined exons is circumstantial in most instanc- 
es; parentheses, hypothetical analogies 
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