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Abstract. We explore representation of 3D objects in 
which several distinct 2D views are stored for each 
object. We demonstrate the ability of a two-layer net- 
work of thresholded summation units to support such 
representations. Using unsupervised Hebbian relax- 
ation, the network learned to recognize ten objects from 
different viewpoints. The training process led to the 
emergence of compact representations of the specific 
input views. When tested on novel views of the same 
objects, the network exhibited a substantial generaliza- 
tion capability. In simulated psychophysical experi- 
ments, the network's behavior was qualitatively similar 
to that of human subjects. 

1 Introduction 

Model-based object recognition involves, by definition, 
a comparison between the input image and models of 
different objects that are internal to the recognition 
system. The structure of the models depends on the 
information available in the input and on the method of 
comparing models with images. Although some recog- 
nition methods (Lowe 1986; Thompson and Mundy 
1987; Ullman 1989) avoid the need to recover depth for 
each input image, most of them still rely on 3D models 
of objects, which are usually supplied independently 
(e.g., from range data, or through hand-coding). 

Recent psychophysical findings indicate that the 
human visual system tends to represent familiar objects 
by collections of their 2D views, rather than by single 
object-centered 3D descriptions (Tart and Pinker 1989; 
Edelman et al. 1989). The main difficulty faced by 
computational recognition schemes that use such repre- 
sentations is how to infer the appearance of an object 
from a novel viewpoint without storing too many 
views. Algorithm-level solutions for this have been 
offered by Ullman and Basri (1990) and by Poggio and 
Edelman (1990). In this paper we address this problem 
on an implementation level, by constructing a model of 
human performance in recognition, subject to the con- 

straints of computational simplicity and biological 
plausibility. In particular, our model relies on unsuper- 
vised Hebbian learning, is able to generalize to novel 
views to the same extent our subjects do, can be tested 
with the same stimuli, and generates, in turn, testable 
predictions concerning human performance. 

2 Review of psychophysical experiments and results 

Everyday objects are more readily recognized when 
seen from certain representative, or canonical, view- 
points than from other, random, viewpoints. Palmer et 
al. (1981) found that canonical views of commonplace 
objects can be reliably characterized using several crite- 
ria. For example, when asked to form a mental image 
of an object, people usually imagine it as seen from a 
canonical perspective. In recognition, canonical views 
are identified more quickly than others, with response 
times decreasing monotonically with increasing subjec- 
tive goodness. 

This dependency of response time on the distance to 
a canonical view is expected if one draws an analogy 
between recognition by viewpoint normalization on one 
hand (Lowe 1986; Ullman 1989) and mental rotation 
on the other (Shepard and Cooper 1982). The very 
existence of canonical views may be attributed to a 
tradeoff between the amount of memory invested 
in storing object representations and the amount of 
time that must be spent in viewpoint normalization. 
Thus, it may seem that no preferred perspective should 
exist for familiar objects that are equally likely'~to be 
seen from any viewpoint. Indeed, there is evidence that 
normalization effects in recognition latency (as reflected 
in the existence of preferred views) disappear with 
practice for a variety of 2D stimuli, such as line draw- 
ings of common objects (Jolicoeur 1985), random 
polygons (Larsen 1985), pseudo-characters (Koriat and 
Norman 1985) and stick figures (Tarr and Pinker 1989). 

Edelman et al. (1989) have investigated the canoni- 
cal views phenomenon for novel 3D wire-frame objects, 
by looking for the effects of object complexity and 
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Fig. 1. Examples of wire-like objects. Shaded, 
grey-scale images of similar wires were used as 
stimuli in the experiments 

familiarity on the variation of response times and error 
rates over different views of the object. The results of 
that study indicate that response times for different 
views become more uniform with practice, even when 
the subjects receive no feedback as to the correctness of 
their responses. In addition, the orderly dependency of 
the response time on the distance to a "good" view, 
characteristic of the canonical views phenomenon and 
of mental rotation, tends to disappear with practice. 

The stimuli, novel wire-frame objects of small, 
nonzero thickness (Fig. 1), were created and displayed 
on a computer graphics system (Symbolics S-Geometry 
environment). The objects were created in two steps. 
First, a straight five-segment chain of vertices was 
made. Second, each vertex was displaced in 3D by a 
random amount, distributed normally around zero. By 
definition, the variance of the displacements determined 
the complexity of the resulting wire. Third, the size of 
the resulting object was scaled, so that all the wires 
were of the same length. Thirty novel 3D objects, 
generated according to this procedure and grouped by 
average complexity into three sets of ten, served as 
stimuli in the experiment. 144 evenly spaced images of 
each of the objects were produced by stepping the 
"camera" by 30 ~ increments in latitude and longitude. 

The basic experimental run used ten objects of the 
same complexity and consisted of ten blocks, in each of 
which a different object was defined as the target for 
recognition. Each block had two phases, training and 
testing. In the training phase, which preceded each 
block of tests, the subject was shown all 144 views of 
the target twice, in a natural succession (the target was 
seen as being three-dimensional and rotating in space, 
due to the kinetic depth effect). In the testing phase, the 
subject was presented with static views, shown one at a 
time. Half of these were views of the target (16 fixed 
views, spaced by 90 ~ in latitude and longitude, were 
used for each target). The other half were views of the 
rest of the objects from the current set. The subject was 
asked to determine whether or not the view was of the 
current target. No feedback was given as to the correct- 
ness of the response. 

The experiment was repeated in two sessions, each 
consisting of several blocks. The response time (RT) 
and error rate (ER) served as measures of recognition. 
Since the decrease in the mean RT, brought about by 
the subject's increased proficiency in the task, would 
have masked any differential RT effects between views, 
the coefficient of variation of RT over the different 

views (defined as the ratio of the standard deviation of 
RT to the mean of RT) was used as a measure of the 
prominence of canonical views. A different perspective 
on the canonical views effect was provided by estimat- 
ing the dependency of the RT on the attitude of the 
object relative to the observer. First, the view that 
yielded the shortest RT for each object was defined as 
its "best" view. One could then characterize RT as a 
function of object attitude by measuring its dependency 
on D = D(subject, target, view), the distance between 
the best view and the actually shown view. Regression 
analysis was used to characterize RT(D) and ER(D). 

The main findings of that experiment were as fol- 
lows (see Figs. 2 through 4): 

1. Stimulus complexity had no effect on the co- 
efficient of variation of RT over views and little effect 
on the coefficient of variation of ER. 

2. Stimulus familiarity reduced the variation of RT 
over views. 

3. Initially, R T  for  a part icular  view depended on 
the distance to the canonical  view. Stimulus familiarity 
decreased this dependency, eventually making  it statisti- 
cally insignificant. 

One possible interpretation o f  these findings is in terms 
o f  a theory o f  recognition that  involves two distinct 
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Fig. 2. Human subjects: effects of complexity and familiarity. Co- 
efficient of variation of RT over views (%) vs. session, by complexity 
(dot, square and triangle mark low, middle and high complexity, 
respectively). The c.v. of RT decreased with session for the low and 
the medium, but not for the high, complexity groups. The overall 
effect of session is significant 
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Fig. 3. Human subjects: effect of familiarity. Regression curves of RT 
(s) on the distance between the shown view and the best view, D 
(deg), by session. The difference between the regression curves for 
sessions 1 and 2 is barely significant. In this experiment, the sessions 
consisted of 3 and 2 exposures per view per object, respectively. 
Apparently, such an exposure level is not enough to produce a visible 
effect on the dependency of RT on D (cf. Fig. 4) 

by the comparison stage. With practice, more views of 
the stimuli could be retained by the visual system, 
resulting in a smaller average amount of rotation neces- 
sary to normalize the input to a standard, or canonical, 
appearance. The response times for the initially "bad" 
views (determined by the normalization process) would 
decrease, reducing the variation of RT over views. On 
the other hand, the mean error rates for the "bad" 
views (determined by the comparison process), and, 
consequently, the variation of ER over views, would 
not change, because of the absence of feedback to the 
subject. 

In the rest of the paper we demonstrate the possibil- 
ity of an alternative explanation of the experimental 
results of (Edelman et al. 1989). Specifically, we show 
that a self-organizing network model that has no built- 
in provisions for rotating arbitrary three-dimensional 
object representations may suffice to account for these 
results. We do this by constructing the model and 
testing it using the same experimental paradigm and 
essentially the same stimuli (the projections of the 
vertices of the wire objects) seen by the human subjects. 

stages: normalization and comparison (e.g., Ullman's 
(1989) recognition by alignment). In the normalization 
stage the image and a model are brought to a common 
attitude in a visual buffer. This operation can be clone 
by a process analogous to mental rotation, which 
would take time proportional to the attitude difference 
between the image and the model. Subsequently, a 
comparison would be made between the two. The time 
to perform the comparison could depend, e.g., on the 
object's complexity, but not on its attitude, so that the 
comparison stage would contribute a constant amount 
to the overall recognition time. On the other hand, the 
error rate of recognition would be largely determined 

3 The model 

3.1 Structure 

The structure of the network (called CLF, for conjunc- 
tions of localized features) appears in Fig. 5. The first 
(input) layer of the network is a feature map. In our 
case the features are vertices of wire-frame objects, but 
any other local features, such as edge elements, are also 
suitable. The computer graphics system we used to 
create the wire-frame objects marks every vertex by a 
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Fig. 4. Human subjects: effect of familiarity. Regression curves of RT 
(s) on the distance between the shown view and the best view, D 
(deg), by session. The regression for session 1, but not for session 2 
(the flatter curve) is highly significant. In this experiment, each 
session consisted of 5 exposures per view per object. Error bars 
denote twice the standard error of the mean for the corresponding 
points. The flattening of the curve signifies the diminution of the 
dependency of RT on D, which can be interpreted as the weakening 
of a phenomenon related to mental rotation (see text) 
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Fig. 5. The network consists of two layers, F (input, or feature, layer) 
and R (representation layer). Only a small part of the projections 
from F to R are shown. The network encodes input patterns by 
making units in the R-layer respond selectively to conjunctions of 
features localized in the F-layer. The curve connecting the representa- 
tions of the different views of the same object in R-layer symbolizes 
the association that builds up between these views as a result of 
practice 
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Fig. 6. a Wire-frame object, as it is presented to the model, b The 
actual input to the network, derived from a by a thinning-like 
operation. Note that the crossing of the two segments of the original 
object is detected, along with its vertices. Typically, only the vertices 
are detected 

small square (see Fig. 6). To isolate the vertices, we thin 
the image, retaining only those object pixels which have 
more than six neighbors. As a side-effect of this 
method, crossings are detected along with the vertices. 

Every unit in the feature or F-layer is connected to 
all units in the second, representation or R-layer. The 
initial strength of  a "vertical" (V) connection between 
an F-unit and an R-unit decreases monotonically with 
the "horizontal" distance between the units, according 
to an inverse square law (which may be considered the 
first approximation to a r Gaussian distribution). In our 
simulations the size of  the F-layer was 64 x 64 units 
and the size of  the R-layer - 16 x 16 units. Let (x, y) be 
the coordinates of  an F-unit and (i, j )  - the coordinates 
of  an R-unit. The initial weight between the~se two units 
is t h e n  Wxyi j l t=o = 1/tr[1 + ( x  - - 4 i ) 2 + ( y  -4 j )2 ]  -1, 
where tr = 50 and (4i, 4j) is the point in the F-layer that 
is directly "above"  the R-unit ( i , j ) .  

The R-units in the representation layer are intercon- 
nected by lateral (L) links, whose initial strength is zero. 
Whereas the V-connections form the representations of  
individual views of  an object, the L-connections form 
associations among different views of  the same object. 
Any two R-units may become associated. The full 
connection matrix for a 16 x 16 R-layer is, therefore, of  
size 256 x 256. 

3.2 Operation 

During training, the model is presented with a sequence 
of  appearances of  an object, encoded by the 2D loca- 
tions of  concrete sensory f ea tu re s -  ver t ices -  rather 
than by a list of  abstract features. At the first presenta- 
tion of  a stimulus several representation units are 
active, all with different strengths (due to the initial 
Gaussian distribution of  vertical connection strengths). 

3.2.1 Winner take all. We employ a simple winner- 
take-aU (WTA) mechanism to identify for each view of  
the input object a few most active R-units, which 
subsequently are recruited to represent that view. The 
WTA mechanism works as follows. The net activities of  
the R-units are uniformly thresholded. Initially, the 
threshold is high enough to ensure that all activity in 
the R-layer is suppressed. The threshold is then gradu- 
ally decreased, by a fixed multiplicative amount, until 
some activity appears in the R-layer. I f  the decrease 
rate of  the threshold is slow enough, only a few units 
will remain active at the end of  the WTA process. In 
our implementation, the decrease rate was 0.95. In most 
cases, only one winner emerged. 

More specifically, let S, be a flag that is set when 
there is any activity in the R-layer at iteration n, T, a 
global adjustable threshold, A( i , j )  ~) the net activity of  
unit (i, j )  thresholded by T,, and p < 1 the threshold 
decrease factor. The threshold updating rule is: 

�9 S ~  V A(i,J)  ~~ 
(ij) ~ R 

�9 while S. = 0 do 

1 T n ~ T n - l p  

2. & ~ V a(i,j)~") 
if j )  E R 

To increase the likelihood of  obtaining a single winner, 
the value of  p can also be learned so that it is smaller 
than the ratio of  the activity of  the second strongest 
unit to that of  the eventual winner. 

Note that although the WTA can be performed by 
a simple computation, we prefer the stepwise algorithm 
above, because it has a natural interpretation in biolog- 
ical terms. Such an interpretation requires postulating 
two mechanisms that operate in parallel. The first 
mechanism, which looks at the activity of  the R-layer, 
may be thought as a high fan-in OR gate. The second 
mechanism, which performs uniform adjustable 
thresholding on all the R-units, is similar to a global 
bias. Together, they resemble feedback-regulated global 
arousal networks that are thought to be present, e.g., in 
the medulla and in the limbic system of  the brain 
(Kandel and Schwartz 1985)J 

3.2.2 Adjustment o f  weights and thresholds. In the next 
stage, two changes of  weights and thresholds occur that 
make the currently active R-units (the winners of the 
WTA stage) selectively responsive to the present view of  
the input object. First, there is an enhancement of  the 
V-connections from the active (input) F-units to the 
active R-units (the winners). At the same time, the 
thresholds of  the active R-units are raised, so that at 
the presentation of  a different input these units will be 
less likely to respond and to be recruited anew. 

We employ Hebbian relaxation to enhance the V- 
connections from the input layer to the active R-unit 
(or  units). Specifically, the connection strength vab from 
F-unit a to R-unit b = (i, j )  changes by 

vmaX - -  Vab (1) 
AVab -~ min{O~VabAa " Aij, vmax --/Jab } " 1)ma x 

where A~ is the activation of  the R-unit ( i , j )  after 
WTA, v max is an upper bound on a connection strength 

The reason we could implement WTA with such a simple mecha- 
nism is the relaxation of its main functional requirement, namely, the 
uniqueness of the winner. Unlike existing WTA algorithms (e.g., 
Koch and UUman 1985; Yuille and Grzywacz 1989), our approach 
does not require complicated arithmetics or precisely weighted c o n -  
nect ions  among processing units. These advantages suggest that, 
instead of increasing the sophistication of WTA algorithms to meet  
stringent functional requirements, it might be worthwhile to revise 
theories that incorporate WTA models, so that they can tolerate a 
compromise in the WTA performance 



and �9 is a parameter controlling the rate of conver- 
gence. This is a bounded Hebbian relaxation rule where 
weights are updated by the correlation between input 
and output activities ( A  a �9 A/j),  that is, the activities on 
both ends of the link, in proportion to the current value 
of the weight (the correlation is multiplied by V~b), and 
where the weight is bounded by v m~x. 

The threshold of a winner R-unit is increased by 

ATb = ~ E AVabaa ( 2 )  
o 

where 6 < 1. This rule keeps the thresholded activity 
level of the unit growing while the unit becomes more 
input specific. As a result, the unit encodes the spatial 
structure of a specific view, responding selectively to 
that view after only a few (two or three) presentations. 

3.2.3 Between-views association. The principle by which 
specific views of the same object are grouped is that of 
temporal association. New views of the object appear in 
a natural order, corresponding to their succession dur- 
ing an arbitrary rotation of the object. The lateral (L) 
connections in the representation layer are modified by 
a time-delay Hebbian relaxation. L-connection wbc be- 
tween R-units b = (i, j )  and c = (/, m) that represent 
successive views is enhanced in proportion to the close- 
ness of their peak activations in time, up to a certain 
time difference K: 

W max __ 
�9 z f t+k  Wbc aW~c = Y. a M ( b ,  c ) -  ~ka,~ "~m " (3) 

Ikl < g wmaX 

This is again bounded Hebbian relaxation where 
weights are according to the correlation between the 
activities on both ends of the link (A,~ �9 a t+ ka tm ) at differ- 
ent time instants, and where the weight is bounded by 
wm~. 

The strength of the association between two views is 
made proportional to a coefficient, AM(b,  c), that mea- 
sures the strength of the apparent motion effect that 
would ensue if the two views were presented in succes- 
sion to a human subject. The reason for the introduc- 
tion of this coefficient is the observation that people 
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tend to preceive that two unfamiliar views belong to the 
same object only if their presentation induces an appar- 
ent motion effect (Foster 1973). Korte's laws (see, e.g., 
Ullman 1979) suggest that AM(b,  c) should depend on 
two factors: figural similarity between the two views, 
and their temporal proximity. We have used blurring 
followed by 2D correlation to measure figural similarity 
between views, because this method appears biologi- 
cally plausible, and because of the finding that, in the 
perception of three-dimensional structure from motion, 
the human visual system appears to compute the 2D 
rather than the 3D minimal mapping (Ullman 1979). 
Within the minimal mapping framework, minimizing 
the sum of distances between corresponding points is 
equivalent to maximizing the correlation between two 
point sets, as suggested by the following argument. 

Let f(x)  be the input pattern in frame 1 and 
f ( x  + v A t ) -  the pattern in frame 2 of a motion se- 
quence. Then v may be recovered using standard regu- 
larization, by looking for 

rain {IV(x) - - f ( x  + u At)I1: + IIPull 2} (4) 
D 

where P is a smoothing operator (see e.g. Poggio et al. 
1985). If v is assumed constant over small patches of 
the image, the second term in (4) may be dropped, 
leaving 

rain E I[f(x) - f ( x  + n At)II = (5) 
a Pi 

where p~ are the patches covering the image, over which 
v is approximately constant. Under reasonable assump- 
tions this is equivalent to 

max ~ f ( x )  "f(x + u At) (6) 
Pt 

(cf. Mallet et al. 1989). The expression in (6) is essen- 
tially the maximal correlation between the two frames. 

3.2.4 Signalling a new object�9 The appearance of a new 
object is explicitly signalled to the network, so that two 
different objects do not become associated by this 

Fig. 7. Snapshots of the activation patterns in the 
network in different stages of operations for two 
views of the same object. Left  to right: input 
array; R-layer before thresholding; R-layer after 
thresholding but before WTA; R-layer after WTA. 
Becanse of the adjustment of the V-connections, 
in the leftmost panel in the bottom row there are 
only two units whose activity is visibly above 0. 
Even though these two R-units, which have been 
previously recruited to represent a different view 
of the object, are much more active than the rest 
of the R-layer, after thresholding (bottom row, 
third panel from the left) they are suppressed 
(leaving black "holes") and the true distribution 
of activity is apparent. Note that it is a blurred 
version of the input shape. After WTA (rightmost 
panels), there remains usually just one active 
R-unit. More than one winner may emerge, as it 
happened in the second row 
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mechanism. This separation can also be implicitly 
achieved by forcing a delay of more than K time units 
between the presentation of different objects. The 
parameter ~k decreases with [k[ so that the association is 
stronger for units whose activation is closer in time. In 
this manner, a footprint of temporally associated view- 
specific representations is formed in the second layer for 
each object. Together, the view-specific representations 
form a distributed multiple-view representation of the 
object (Fig. 7 illustrates the training sequence). 

4 Testing the model 

We have subjected the CLF network to simulated ex- 
periments, modeled after the experiments of Edelman et 
al. (1989). Each of ten novel 3D wire-frame objects (the 
low-complexity set from those experiments) served in 
turn as target. The task was to distinguish between the 
target and the other nine, non-target, objects. The 
network was first trained on a set of projections of the 
target's vertices from 16 evenly spaced viewpoints. 
After learning the target using Hebbian relaxation as 
described above, the network was tested on a sequence 
of inputs, half of which consisted of familiar views of 
the target, and half of views of other, not necessarily 
familiar, objects. 

The presentation of an input to the F-layer acti- 
vated units in the representation layer. The activation 
then spread to other R-units via the L-connections (see 
Fig. 8). After a fixed number of lateral activation cycles, 
we correlated the resulting pattern of activity with 
footprints of objects learned so far. The object whose 
footprint yielded the highest correlation was recognized 
by definition. In this experiment, the network recog- 
nized the views of each session's target and of the 
previous targets, and rejected other, as yet unfamiliar, 
objects. 

We used correlation to measure closeness between 
two patterns. This choice may be clarified by consider- 
ing a model of decision-making in recognition in which 
many units (possibly with different initial levels of 
activation) encode the known entities (one unit per 

entity; cf. Morton 1969; Ratcliff 1981; in our case 
several units together encode an object). When an input 
is present, each unit's activation is increased in propor- 
tion to the similarity between the input and the concept 
that the unit represents. The decision threshold, initially 
kept high to minimize false alarms, is gradually de- 
creased, until it is exceeded by some unit's activation 
(note the similarity to our WTA mechanism). Recogni- 
tion latency in this scheme clearly depends on the 
activation induced by the input in the would-be 
strongest representation unit. In our scheme, this acti- 
vation is measured by the correlation between the 
actual footprint induced by the input and the prototyp- 
ical memory trace of this footprint. This correlation 
also serves as an analog of response time. 

In this representation scheme, learning a new view 
of an object amounts to the recruitment of a new unit 
in the R-layer and the adjustment of its incoming 
V-connections and threshold to determine its input 
specificity. With a total of 256 initially available R-units 
and little more than 160 units necessary to encode every 
learned view of the ten objects, 2 the network had the 
potential to recognize correctly all the learned views. 
The recognition was indeed perfect for those views (the 
issue of generalizing recognition to novel views is 
explored below). 

4. I Simulated psychophysical experiments 

Recall that the analog of response time in our simula- 
tions is the value of the correlation (CORR) between 
the actual activation pattern in the R-layer and the 
ideal pattern for the recognized object. We were able to 
reproduce all three main results of the psychophysical 
experiments outlined in Sect. 2, with a random initial 
choice of the parameters of the network model: 

�9 No dependency of the coefficient of variation of 
CORR over views on stimulus complexity was found 
(Fig. 9; compare with Fig. 2). 

2 The "Winner take all" mechanism rarely came up with more than 
one R-unit per view 

m [] 

i : :  I >:,:::::,: 

Fig. 8. Left: activation pattern in the R-layer, 
produced by one object, after the network has 
been trained on all ten objects. Right: the 
remembered (ideal) footprint o f  the same object 
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Fig. 9. The coefficient o f  variation of  C O R R  over views for the two 
sessions, by complexity, before the introduction o f  shortcuts into the 
footprint (see text). Compare with Fig. 2 
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Fig. 11. Coefficient o f  variation o f  C O R R  over views for the two 
sessions, by complexity, after the introduction of  shortcuts into the 
footprint (see text) 

�9 The variation of CORR over views significantly 
decreased with practice (Fig. 9; compare with Fig.2). An 
analysis of variance yielded F (1, 16) = 15.88, p < 0.001. 

�9 The dependence of  CORR on stimulus attitude 
diminished with practice (Fig. 10; compare with Fig. 3). 

The last point above involved computing the regres- 
sion coefficients of CORR on D, the distance between 
the actually shown view of the stimulus and its best 
(highest-CORR) view, see Sect. 2. We have used second- 
order regression, that is, looked for the quadratic expres- 
sion that best approximated the data. The real 
experiments revealed a significant flattening of the re- 
gression curve following practice. In the simulated ex- 
periment, however, the difference between the sets of 
regression coefficients corresponding to sessions 1 and 2 
(excluding the intercept) was practically insignificant 
( F ( 2 ,  157)  = 1 . 5 , p  = 0 . 2 3 ) .  

At that stage, we added the enhancement of the 

lateral connections between simultaneously active units 
in the representation layer during the test phase of  the 
simulated experiment to the enhancement during the 
training phase (controlled by ~k in Eq. 3). As a result, 
more shortcuts (lateral links spanning more than one 
successive view of an object) appeared in the footprints, 
which tended therefore to become less "linear" with 
practice. 

Introducing the shortcuts enhanced the session 
effect, increasing the significance of  the difference be- 
tween the regression coefficients of  CORR on D for the 
two sessions (F(2, 157) = 2.6,p < 0.08; see Fig. 12). The 
effect of shortcuts on the coefficient of  variation of  
CORR was even stronger (compare Fig. 11 with Fig. 9). 
Apparently, already the first session caused the CORR 
characteristics for the different views to reach their 
steady-state values. With longer sessions the flattening of  
CORR(D) was more obvious (see Fig. 13). 
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Fig. 10. The regression of  C O R R  on distance to the best view, by 
session, before the introduction o f  shortcuts into the footprint (see 
t e x t ) .  Compare with Fig. 3, keeping in mind that high C O R R  is 
analogous to low RT 
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Fig. 12. Regression o f  C O R R  on distance to the best view, by 
session, after the introduction o f  shortcuts into the footprint (see 
t e x t ) .  Compare with Fig. 3 
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Fig. 13. Regression of CORR on distance to the best view, by 
session, after the introduction of shortcuts into the footprint, with l0 
exposures per view per session (see text). This many exposures were 
necessary to achieve a disappearance of the dependency of CORR on 
D (compare with Fig. 4) 

4.2 Modeling variable association between successive 
views 

The simulated experiments described above were con- 
ducted with the apparent  motion estimator switched off 
(by setting the term A M  in Eq. 3 identically to 1). An 
opportuni ty to test whether apparent  motion (in our 
formulation, correlation) is involved in determining be- 
tween-views association arose when we found that the 
data of  one of  the subjects o f  the psychophysical exper- 
iments described in Sect. 2 had to be excluded from the 
final analysis, for the following reason. Whereas all 
other subjects were shown closely spaced views of  the 
target object during the training phase (144 views per 
object), this subject was trained, by mistake, on widely 
disparate views (16 views per object, the same number  
as in the testing stage). 3 Because of  this, no significant 
dependency of  the response time on the distance to the 
best view was found for this subject, already in the first 
session. 

To  replicate this finding, we compared the depen- 
dency of  the C O R R  performance measure of  the model 
on the distance to the best view under two conditions. 
In the control condition, the network was trained on 
144 views of  an object, and tested on 16 of  these views 
(as were the human subjects). 4 In the "no  apparent  
mot ion"  condition, 16 views were used both for train- 
ing and testing. As expected, the dependency of C O R R  
on the distance to the best view was much stronger in 
the control condition, 5 apparently because of  the influ- 
ence of  the A M  term in (3), and in accordance with the 
human performance under analogous circumstances. 

3 The subject later reported that he saw no apparent motion when 
the training views were presented to him 
4 To save computation time, in all the simulated experiments so far 
the network was exposed to the same 16 views in the training and the 
testing phases 
5 Regression of CORR on the distance to the best view in the control 
condition: F(2, 13)= 5.1, p <0.03; regression in the "no apparent 
motion" condition: F(2, 13) < 1 
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Fig. 14. Performance of the network on novel orientations of familiar 
objects (mean of 10 objects, bars denote the variance). Broken line 
shows the performance with the WTA step implemented by a pro- 
gram that simply chooses the strongest R-unit, and with a fixed boost 
factor of 50 (see text). Solid line show the performance with the 
iterative WTA scheme and the adaptive boost factor 

4.3 Generalization to novel views 

The utility of  a recognition scheme based on multiple- 
view representation depends on its ability to classify 
correctly novel views of  familiar objects. To assess the 
generalization ability of  the CLF  network, we have 
tested it on views obtained by rotating the objects away 
from learned views by as much as 23 ~ (see Fig. 14). The 
classification rate was better than chance for the entire 
range of  rotation. For  rotations of  up to 4 ~ it was close 
to perfect, decreasing to 30% at 23 ~ (chance level was 
10% because we have used ten objects). One may 
compare this result with Rock 's  (Rock 1987; Rock et 
al. 1989) finding that people have difficulties in recog- 
nizing or imagining wire-frame objects in a novel orien- 
tation that differs by more than 30 ~ from a familiar 
one. 

The smoothness of  the V-connections ~ alone would 
suffice to make the network insensitive to small defor- 
mations of  the input objects (caused, e.g., by a shift in 
the viewpoint) and to noise, were it not for the updat- 
ing of  the R-thresholds in (2). Raising the thresholds 
implies that, after training, only an exact replica of  the 
original input can activate a recruited R-unit. 

A partial solution to this difficulty is provided by 
the observation that if at least some of  the F-units 
originally activated by a certain view of  an object are 
activated also by a novel view, then there is a good 
chance that simply raising the input level will turn on 
the correct R-unit before any other committed R-unit. 
The uncommitted R-units (situated along the periphery 
of  the R-layer) will have remained inactive, provided 
that the decrease in the V-connection strength with 

6 The V-connections are smooth in the following sense. If an active 
F-unit at (x, y) causes the activity in the R-layer to peak at (i,j), then 
shifting the input to (x + 6x, y + @), where &x and 5.t, are small, 
causes the peak in the R-layer to move to (i + 6i, j + 6j), where 6i and 
6j are also small 
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Fig. 15. Recognition o f  a novel view of  a 3-vortex object by the CLF  
network. The Gauss ian templates of  Eq. 8 for one o f  the familiar 
views are represented schematically by the a "ha ts"  centered on the 
F-units tim. The centers o f  another  set of  vertex templates are also 
shown (t;x). The recognized view is represented by the R-unit  R 1 . x l ,  
x2, and x N are the locations o f  the vertex o f  a distorted input  that  is 
still recognized as view 1 

horizontal displacement is larger than the increase in 
input activity needed to push the correct R-unit over its 
threshold. Following this observation, we modified the 
Winner-Take-All mechanism as follows. During learn- 
ing, the winner R-units were identified as before. Dur- 
ing testing, on the other hand, we now required that the 
total activity of the winner R-units exceed a threshold, 
equal to a fraction (specifically, 80%) of the long-term 
running-average activity in the R-layer. If after the 
WTA step no R-unit satisfied the threshold require- 
ment, the input (i.e., the activity of the F-layer) was 
boosted (multiplied by 1.1) and the WTA process was 
repeated, until some R-unit's activity exceeded the 
threshold. At the end of this process, the correct R-unit 
was more often than not the first one to cross the 
threshold, provided the input was sufficiently similar to 
its preferred pattern (see Fig. 14). 7 

The above solution to the generalization problem is 
partial, because it requires that there be an actual 
overlap between the positions of some of the features 
belonging to the novel view and those that belong to 
one of the known views of the object. Thus, boosting 
the input enables the network to perform autoassocia- 
tion, i.e., to activate the representation of a view given 

7 While providing a solution to the generalization problem in a 
biologically plausible framework, the above modification o f  the W T A  
mechanism does require one additional piece o f  information. Namely,  
the network now has  to be told whether its current input  is a pat tern 
to be learned (in which case the F-layer activity should not  be 
artificially boosted), or a pattern to be classified 
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partial information on the position of its features. 
Blurring the input prior to its application to the F-layer 
can significantly extend the model's generalization abil- 
ity. Performing autoassociation on a dot pattern 
blurred with a Gaussian G(x, a) is computationally 
equivalent to finding the k'th committed R-unit that 
g i v e s  

N N 

max E Z A,G(IIx,--tjk II)vjk (7) 
k i J 

where N is the number of features (points or vertices) in 
the input pattern x whose coordinates are xi in the 
F-layer, tyk are the coordinates in the F-layer of  the j ' th  
feature that contributes to the k'th R-unit, Ai is the 
activity of the i'th feature detector in the F-layer and Vyk 
is the weight of the V-connection between the j ' th  
feature of the k'th object and its R-unit (of. Eq. 1). If 
the width a of the blurring Gaussian is small compared 
with the average distance between t~'s, and if A~V~k does 
not change much with i and k, then (7) may be rewrit- 
ten as 

N 

m a x  G(llx,--tk II) (8) 
k i 

which may be considered a correlation between the 
input and a set of templates, realized as Gaussian 
receptive fields (see Fig. 15). This, in turn, appears to 
be related to interpolation with Radial Basis Functions 
(Poggio and Girosi 1990; Poggio and Edelman 1990). 

5 Discussion 

The notion that visual objects are represented by con- 
junctions or coincidences of spatially localized feature 
occurrences can be traced at least as far back as 
McCulloch's (1950) work. Detection of spatiotemporal 
coincidences has been since proposed repeatedly as a 
general model of brain function (e.g., Barlow 1985; 
Damasio 1989). Spatiotemporal association is the cen- 
tral characteristic of the CLF model, which encodes 
object views as coincidences of retinotopically orga- 
nized features, and constructs complete object represen- 
tations from view-specific representations (ef. Perrett et 
al. 1989), by linking views according to their "natural" 
order of appearance (as in object rotation). We now 
discuss some of the model's details from the standpoint 
of biological plausibility. 

5.1 Hebbian synapses, correlation and unsupervised 
learning 

An adaptive system that is also autonomous must rely 
during learning on coincidence-detecting, or correlation, 
operations. The CLF model incorporates correlation at 
several levels. At the level of weight adjustment, correla- 
tion appears in the form of a Hebbian rule (Eq. 1); see 
McNaughton and Morris 1987). At a higher level, 
correlation between two successive views of an object 
serves to determine their figural similarity, and hence the 
strength of the association to be established between 
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their representations in the R-layer. Finally, the model 
classifies an unknown view by choosing the template (a 
familiar view) that is maximally correlated with the 
input. 

5.2 Learning by selective reinforcement 

In the CLF model, the input (F) layer is fully connected 
to the representation (R) layer. For  this reason, the 
model satisfies trivially the following availability re- 
quirement: for any input configuration of  F-units there 
exists an R-unit that is connected to all of  them and can 
represent their co-occurrence. The CLF model learns to 
represent and recognize an object by selective reinforce- 
ment of  existing structures, rather than by creating 
novel structures. Within the selection paradigm, the 
major structures (in our case, distinct input and repre- 
sentation areas) are specified by design while the details 
emerge in a self-organizing fashion. Neurobiological 
support for the selection view of  learning may be found, 
e.g., in (Edelman and Finkel 1984; Merzenich et al. 
1988). 

5.3 Which unit should be reinforced: the role of  WTA 

In the CLF model, as in some previously suggested 
learning schemes (e.g., in Fukushima 1988), the repre- 
sentation unit to be reinforced is selected via a Winner- 
Take-All process. The CLF model is, however, more 
flexible in that we assume no prior classification of  the 
input features. As a result, two different patterns may 
cause the same R-unit to become the winner, provided 
that the projections of  their centroids on the F-layer 
coincide. An additional mechanism, selective raising of  
the R-units' thresholds, is therefore necessary to en- 
hance representation selectivity. 

5.4 The lateral connections 

The CLF network differs from layered models that 
compute progressively more complex topographic maps 
of  the input by its reliance on long-range lateral connec- 
tions in the representation layer. Whereas some percep- 
tual phenomena can be modeled by continuous maps in 
which topological proximity is the major consideration, 
potentially holistic or global phenomena such as recog- 
nition require that conceptual proximity be substituted 
for the topological one (Von der Malsburg and Singer 
1988). Relatively long-range lateral connections appear 
to exist in the cortex and may be responsible for 
nonlocal phenomena such as the nonclassical receptive 
fields (Gilbert 1988). 

5.5 Several predictions 

The CLF scheme, considered as a model of  the human 
faculty of  object recognition, generates three specific 
predictions that can be tested experimentally. First, it 
predicts that people will exhibit limited generalization 
capability to novel views that differ too much from the 
familiar ones. Psychophysical results to date (e.g., Rock 
and DiVita 1987; Edelman and Biilthoff 1990) appear 

to support this prediction. Second, the model predicts a 
limited capability for mental rotation outside the range 
of  familiar views, and, at the same time, dependence of  
mental rotation effects within this range on presentation 
sequence during training. The third prediction arises 
from the reliance of  the CLF model on retinotopically 
localized features, which makes it sensitive to the posi- 
tion of  the object in the visual field and to occlusion. 
This restriction can be circumvented through the paral- 
lel use of  several recognition modules each of  which 
fixates a different feature of  the same object. As a 
result, the model predicts that subjects' recognition 
performance should depend on their fixation patterns, 
during both training and testing phases. 

6 Summary 

We have described a two-layer network of  thresholded 
summation units that is capable of  developing multiple- 
view representations of  3D objects in an unsupervised 
fashion, using fast Hebbian learning. In simulated psy- 
chophysical experiments that investigated the phenom- 
ena of  canonical views and mental rotation, the moders  
performance closely paralleled that of  human subjects, 
even though the model has no provisions for "rotat ing" 
3D object representations and, in fact, does not employ 
such representations at all. This indicates that findings 
usually taken to signify mental rotation may have an 
alternative interpetation. The footprints (chains of  rep- 
resentation units created through association during 
training) formed in the representation layer in our model 
provide a hint as to what the substrate upon which the 
mental rotation phenomena are based may look like. At 
the same time, the similarity between the model's perfor- 
mance in generalizing recognition to novel views and the 
relevant psychophysical data supports the notion that at 
least in some recognition tasks the human visual system 
relies on blurred template matching or, equivalently, on 
nonlinear view interpolation. 
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