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Abstract. Sequences of different human cardiac rhythms 
terminating in ventricular fibrillation have been studied, 
both qualitatively and quantitively, with methods of 
nonlinear dynamics. The analysis has been applied to 
ECG epochs belonging to rhythms of increasing electro- 
cardiographic irregularity: from sinus rhythm to prefi- 
brillatory rhythms and then to ventricular fibrillation. 
The phase portraits of these rhythms have been recon- 
structed from the ECG recording with the time-delay 
technique, and their correlation dimensions have been 
estimated with the algorithm of Grassberger and Pro- 
caccia (1983a, b). Different cardiac rhythms exhibit 
different correlation dimensions that describe the corre- 
sponding degrees of complexity. The correlation dimen- 
sion increases as one proceeds from sinus rhythm to fully 
developed ventricular fibrillation via intermediate 
rhythms. The fully developed ventricular fibrillation 
shows the highest degree of complexity. The dimensional 
analysis supports the existence of complex dynamics 
underlying different cardiac rhythms and reveals an 
increase in dimensional complexity corresponding to an 
increase in electrocardiographic irregularity. Our results 
indicate that nonlinear dynamics may be used to assess 
various dynamic states of the heart and may offer a 
non-invasive tool to investigate the complex dynamic 
phenomena occuring during arThythmia. 

1 Introduction 

Since the pioneering work of Einthoven (1903), the 
recording of cardiac electrical activity by means of 
electrodes placed on the surface of the body - the elec- 
trocardiogram (ECG) - has become the most common 
clinical tool for cardiac diagnoses, particularly diag- 
noses of rhythm disturbances. A great variety of 
rhythms, with different degrees of regularity, have been 
documented and classified (Sandae and Sigurd 1984). 
Yet a full understanding of the time evolution of such 
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rhythms is still a major problem in cardiac physiology, 
with important clinical consequences in the manage- 
ment of arrhythmic patients. Could the study of rhythm 
dynamics help to distinguish benign arrhythmias from 
rhythm cascade towards life threatening arrhythmias, 
like ventricular fibrillation? An appreciation of the ac- 
tuality of this issue may be found in the vast literature 
generated by recent large scale clinical trials aimed at 
testing the hypothesis that drug arrhythmia suppression 
would reduce the incidence of sudden cardiac death 
(Task Force of the Working Group on Arrhythmias of 
the European Society of Cardiology 1990). 

Technically, accurate long-term ECG monitoring 
(Holter ECG) can be readily obtained by means of 
small portable tape recorders (Wenger et al. 1981) and 
permits showing a marked spontaneous variability in 
both heart rate and arrhythmia frequency (Michelson 
and Morganroth 1980; Southall et al. 1981). However, 
conventional analysis of such records is mainly oriented 
to characterize mean heart rate and range, presence and 
frequency of abnormal ECG complexes, whereas the 
dynamic aspects of the rhythm are generally ignored. 

This paper deals with the study of cardiac rhythm 
evolution in human subjects, using nonlinear dynamics 
methods. Evidence that concepts from nonlinear dynam- 
ics are relevant in cardiac physiology comes from both 
experimental and theoretical studies. Experimental in- 
vestigations on cardiac preparations of increasing com- 
plexity- from single cells to perfused whole hear t s -  
have shown, in response to electrical stimulation, the 
generation of complex patterns, typical of nonlinear 
systems, such as phase locking, period-doubling bifurca- 
tions and chaotic activity (Glass et al. 1983; Chialvo and 
Jalife 1987; Savino et al. 1989; Zbilut et al. 1989; Chialvo 
et al. 1990). Complex temporal or spatio-temporal pat- 
terns have also been described by computer simulations 
based on either the equations of membrane dynamics 
(Jensen et al. 1984), or a formalized model of excitable 
medium (Moe et al. 1964; Krinsky 1968; Smith and 
Cohen 1984; Chee et al. 1988). We would like to test the 
hypothesis that nonlinear dynamics may also play a role 
in the genesis of human cardiac arrhythmia. 

Indeed, great caution is necessary when transferring 
experimental results to clinical situations, due to the 
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enormous increase in complexity and to the presence of 
pathologies not easily reproducible in the experimental 
models. Nevertheless, preliminary applications of non- 
linear dynamics methods to human data, obtained dur- 
ing clinical electrophysiological investigations (Shrier et 
al. 1987) and routine ECG recordings (Babloyantz and 
Destexhe 1988; Mayer-Kress et al. 1988; Zbilut et al. 
1988; Courtemanche et al. 1989; Kaplan et al. 1991) is 
encouraging. In particular, the ECG analysis may draw 
advantages from recent techniques developed to study 
irregular signals through the identification of attractors 
in the dynamics of the underlying system (Ekmann and 
Ruelle 1985; Holden 1986). 

Several dynamic invariants have been introduced 
for this purpose. Among these, the correlation dimen- 
sion computed with the algorithm of Grassberger and 
Procaccia (1983a, b) is the most widely used in the 
analysis of experimental data. Convincing results have 
been obtained with long time series of high quality 
relative to well controlled experiments on various phys- 
ical and chemical systems, and the presence of low 
dimensional attractors has been demonstrated (Mayer- 
Kress 1986; Abraham et al. 1989). 

Attempts to use the same methods to analyse com- 
plicated time evolutions, such as those observed in 
biological systems, have encountered more difficulties 
(see Ruelle (1990) for a discussion on this point). As far 
as human ECG is concerned, Babloyantz and Destexhe 
(1988) have shown, in a population of healthy subjects, 
that the rhythm generated by the normal cardiac oscil- 
lator is not periodic but follows a deterministic dynam- 
ics of chaotic nature. Moreover, we have recently 
analysed the extremely irregular ECG recorded from 
subjects in ventricular fibrillation (Ravelli and Antolini 
1991), the most dangerous arrhythmia that has been 
modelled as a turbulent propagation of the excitation 
waves in the cardiac tissues (Moe et al. 1964, Krinsky 
1968). The analysis was made when the fibrillation was 
fully developed, and we were not able to strictly demon- 
strate the presence of an attractor in the highly complex 
dynamics underlying the arrhythmia. This behaviour is 
not surprising, since it is generally observed in the fully 
turbulent systems of different nature, including those 
experimentally well controlled. In these cases, however, 
knowing that the time evolution at the onset of turbu- 
lence is chaotic, one may confidently infer that chaos 
and unpredictability are also present for fully developed 
turbulence, even if the experimental verification is not 
practically possible (Ruelle 1990). 

In the present study, following the above sugges- 
tion we examined rhythms of increasing electrocardio- 
graphic complexity in good quality Holter ECG tapes 
of patients who had an episode of ventricular fibrilla- 
tion during the recording. The tapes display sequences 
of different cardiac rhythms representing common pat- 
terns terminating in a low voltage ventricular fibrilla- 
tion. The ECG signals of  each rhythm have been 
reinterpreted as geometrical objects (phase portraits) in 
multidimensional embedding spaces, and a geometrical 
property of these objects - the correlation dimension - 
has been used to characterize the rhythms. 

2 Material and methods 

Holter ECG signals were obtained from the American 
Heart Association (AHA) Database of ventricular 
arrhythmias. We considered only the least half hour of 
each tape because it had been identified and annotated 
beat to beat by three experienced electrocardiographers. 
From the 10 tapes containing an episode of ventricular 
fibrillation, we first focused the analysis on one tape 
reaching the best compromise between signal quality 
and number of different rhythms, stable for at least one 
minute during the last half hour. 

The sequence of rhythms displayed by this tape 
involves 24 min of sinus rhythm followed by occur- 
rences of ventricular extrasystoles falling on the an- 
tecedent T wave (the electrocardiographic R-on-T 
phenomena). After about one minute, this phenomenon 
precipitates into ventricular fibrillation. Initially, the 
fibrillation shows large-amplitude oscillations (coarse 
fibrillation), which deteriorate into low-amplitude 
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Fig. 1. a Schematic illustration o f  the ECG recording showing the 
location of the analysed epochs I rain long. b Short ECG stretches of 
the four different cardiac rhythms of the recording: sinus rhythm (A), 
ventricular extrasystoles during sinus rhythm (B), coarse ventricular 
fibrillation (C), fine ventricular fibrillation (D). The four ECGs 
(identically scaled) are sampled at 250 Hz with 12-bit precision 



waves (fine fibrillation) when the fibrillation is fully 
developed. This pattern of  rhythms, illustrated in Fig. 
1, represents a typical evolution towards ventricu- 
lar fibrillation caused by the occurrence of  ventricular 
extrasystoles during the vulnerable period of the ven- 
tricle. 

The reproducibility of the results was tested in two 
additional tapes displaying a sinus rhythm evolving 
through an intermediate rhythm towards ventricular 
fibrillation. In one case the intermediate rhythm was a 
ventricular tachycardia, in the other case it was a 
ventricular bigeminy. 

The ECG signal was sampled at 250 Hz with 12-bit 
precision, then segmented into stationary one-minute 
epochs. Figure la shows the location of  the six epochs 
on the ECG record of  the first case analysed. Each 
epoch has been processed in two steps: first by recon- 
structing their phase portraits, and then by estimating 
the respective correlation dimensions. The phase 
portrait of  each experimental data series {V~: i = 
1 . . . . .  N} has been obtained by the time-delay tech- 
nique (Takens 1981). In short, and n-dimensional 
vector 

{V~ n) } = { V i ,  Vt. + . . . . . .  Vi+(n_l).r) (1) 

is constructed by introducing a time lag �9 between the 
scalar data Vi. In this way, a state of the underlying 
system is represented as a point { V~ ") } in an abstract 
n-dimensional phase space, whereas the whole time- 
series defines a trajectory that constitutes the phase 
portrait of  the system dynamics. In case of  dissipative 
systems, the trajectory is asymptotically confined 
within a well defined subregion of  the phase space: the 
attractor. Since Takens (1981) has shown that the 
space spanned by the reconstructed variables is at least 
topologically equivalent to the original phase space, 
the geometrical reconstruction may provide qualitative 
information of the system dynamics. In particular, de- 
terministic chaos, related to "strange attractors", could 
be distinguished from random fluctuations, corre- 
sponding to an unstructured cloud. 

The next step is a quantitative characterization of  
the attractors obtained by computing a geometrical 
invariant: the dimension. Calculation follows a method 
proposed by Grassberger and Procaccia (1983a, b) and 
estimates the correlation dimension D2, which is a 
lower bound for both the Hausdorff  and the informa- 
tion dimensions. The algorithm involves the computa- 
tion of the correlation integral: 

N 
C,,(R) = N -2 E 6)(R - II - o) 11 (2) 

i,/= 1 

where O is the Heaviside function and n the embed- 
ding dimension. The integral measures the spatial cor- 
relation of  the points on the attractors and should 
scale as C,,(R) ~ R re(n). The correlation dimension D2 
is then estimated as: 

0 2  = lim Log C,(R) (3) 
R~0 Log(R) 
n ~ o o  
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In practice, C,,(R) could be approximated by aver- 
aging in (2) on a limited number K of  origins Vi 
instead of N. For  our calculation, we used 1000 
equally spaced reference points, the total number of  
data being N = 15000. A test of  the independence of  
C,,(R) from K has been performed. For  the estimation 
of D2(n), we first plot Log C,,(R) as a function of  
Log R, then we look for a linear region and we com- 
pute the slope with a least square fit. To  better identify 
a linear region, we also report plots of  the slope 
d Log C,,(R)/d Log R as a function of  Log Cn(R). To 
reduce the fluctuations from one point to the others 
the slope has been estimated as: 

(Log Cn(Ri+ 1) - Log Cn(Ri_ 1)) (4) 

(Log Ri+ 1 - Log Ri_ 1) 

D2 has been evaluated by calculating D2(n) at 
successively higher values of  the embedding dimension 
n. If D2(n) reaches a saturation value, the system 
represented by the time series should possess an attrac- 
tor, and the saturation value D2 is an estimation of  
the attractor dimension. 

3 Resu l t s  

Some qualitative information on the dynamics of  the 
system underlying the ECGs are given by the trajecto- 
ries generated from the delayed vectors (1). Figure 2 
shows the two-dimensional phase portraits of  the four 
different rhythms: sinus rhythm, ventricular extra- 
systoles during sinus rhythm, coarse fibrillation, fine 

Fig. 2. Two-dimensional phase-portraits Vi+ ~ vs Vi (identically 
scaled) of the four different cardiac rhythms displayed in Fig. 1 (sinus 
rhythm (a), ventricular extrasystoles during sinus rhythm (b), coarse 
ventricular fibrillation (e), fine ventricular fibrillation (d)). The four 
portraits are generated by 16 s of recording with z equal to 40 ms 
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Fig. 3. Log-Log plot of the correlation integrals 
(n = 2, 4, 6 . . . . .  20) for the ECG recording displaying 
ventricular extrasystoles during sinus rhythm. The two 
dotted lines define the range of linearity of the correlation 
integrals. The linear zone is expanded in the insert. This 
calculation is based on 15000 data points sampled at 
250 Hz 

fibrillation. The protraits show a tendency towards 
more complicate structures going from the sinus 
rhythm to the fully developed fibrillation. In fact, the 
trajectory of the sinus rhythm follows a well defined 
path with a high degree of  coherence, although it does 
not describe a single close curve which would represent 
a perfect periodic oscillator. The phase portrait  of  the 
second rhythm is more complicated than the first one, 
since another closing loop - corresponding to the ven- 
tricular ex t rasys to les -  has been introduced. During 
fibrillation, the definite paths break off showing trajec- 
tories without a visible structure. Nevertheless,  the 
phase portrait  in the first minute of  fibrillation occu- 
pies a larger port ion of  the phase space than during 
fully developed fibrillation. In this final stage, the 
phase portrait  is densely filled, showing the minimum 
coherence. 

The preliminary observations about  the features of  
the ECG phase portraits can be expressed quantita- 
tively by the correlation dimension. Figure 3 displays 
the logarithmic plot of  the correlation integrals at in- 
creasing n for the ECG recording containing ventricu- 
lar extrasystoles. It should be noted that only part  of  
the correlation integral can be used for the calculation 
of the dimension. In fact, at small values of  R the 
correlation curves are spoiled by statistical fluctuations 
and by a distortion due to the oversampling of  the 
data (Theiler 1986), whereas at large values of  R there 
are evident nonlinearities. The range of linearity, de- 
limited by two dotted lines and expanded in the insert 
of  Fig. 3, is then limited to intermediate values of  R. 

Due to these problems, the characteristics of  the 
correlation curves are better evidenced by displaying 
their slopes. Figure 4 shows the slopes, at a fixed 
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Fig. 4. The slopes of the correlation integrals as a function 
of Log C,(R) at fixed embedding dimension (n = 8) for the 
four different cardiac rhythms ( -  - sinus rhythm, - -  
ventricular extrasystoles during sinus rhythm, . . . .  coarse 
fibrillation, - �9 - fine fibrillation) 
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Fig. 5. Correlation dimension vs embedding dimension n 
for the six analysed ECG epoches (77, x, O: first, second 
and third epoch of sinus rhythm; O: ventricular 
extrasystoles during sinus rhythm; A: coarse ventricular 
fibrillation, �9 fine ventricular fibrillation) and for a signal 
generated by a gaussian random process (+) 

embedding dimension (n = 8), for the four different 
rhythms. The four curves are not well distinguishable 
for Log C(R)<-3,  although the distortion due to 
oversampling is more marked for those obtained 
from ventricular fibrillation ECGs. In fact, the sources 
of  corruption of  the slope at small values of  R (noise 
and excessive digitalization rate) are characteristic 
of  the whole E C G  recording and therefore are common 
to the four ECGs. On the contrary, the slopes in the 
linear region display well distinct values corresponding 
to the four different rhythms. Moreover,  when the 
rhythms become more c o m p l e x -  going from sinus 
rhythm to ventricular fibrillation - the slope shows an 
evident increase. The results are summarized in Fig. 5, 
where the D2(n) are displayed as a function of  the 
embedding dimension n for the six E C G  epochs. 

I t  should be noted that the correlation dimensions 
corresponding to the four different cardiac rhythms 
have well distinct values at each embedding dimension, 
forming four different curves. By contrast, the correla- 
tion dimensions for the tree epochs of the sinus rhythm 
recording are superimposed. These results suggest the 
existence of a characteristic correlation dimension for 
each analysed cardiac rhythm. The curves for the sinus 
rhythm, the ventricular extrasystoles during sinus 
rhythm, and the first minute of  fibrillation show satura- 
tion at increasing embedding dimension, while the 
curve corresponding to the fully developed fibrillation 
does not display a complete saturation, although it 
stays largely below the one calculated for a pure ran- 
dom process. D2 for the sinus rhythm is equal to 2.1. 
This value increases to 3.2 when ventricular extrasys- 
toles occur. When the ventricular fibrillation appears, 
there is a further jump in the dimensionality, and D2 
for the coarse fibrillation is 5.7. The value of  D2 can 
not be evaluated for the fine fibrillation since a small 
increase of  the dimension is still observed at embedding 
dimension equal to 20 where the correlation dimension 
reaches a value of  7.8. All best-fit values of  the slopes 
have an overall estimated error of  + 0.1. 

It  should also be noted that the correlation dimen- 
sions of  each rhythm - except for the fully developed 
fibrillation - stays well below the upper bound LogmN 2 
of  the Grassberger-Procaccia algorithm proposed by 
Ruelle (1990). More exactly, since we did not use all the 
distances between the N data points but only those 
between K reference points and the N data, the upper 
limit should be Log~0KN instead of  LOgl0 N2. In our 
case, such a limit is 7.1. Only the fully developed 
fibrillation violate this condition, indicating first o f  all 
that the slope has been calculated over less than a 
decade, and moreover that this arrhythmia cannot be 
associated with a low-dimensional chaotic dynamical 
system. 

Calculation of  the correlation dimension on physio- 
logical data requires a careful check of  the influence of  
the parameters considered in the computat ion al- 
gorithm on the results. An important  point in the 
evaluation of  the correlation dimension is the choice of  
the value of  time delay ~. Theoretically, for an infinite 
time series the value of  �9 may be chosen arbitrarily. 
However,  in the experimental setting - where the num- 
ber of  data points is finite - only some values of  �9 give 
reliable results. The first zero of  the autocorrelation 
function, or the first minimum in mutual  information 
content, have been proposed to obtain the optimal time 
delay (Fraser and Swinney 1986). In all the computa-  
tion, we have used the time of the first zero crossing of  
the autocorrelation function as a value of  z. The values 
of  z for the six E C G  epochs range f rom 40 ms to 
224 ms. To check for the validity of  the choice of  ~, we 
have calculated the dependence of  the correlation di- 
mension as a function of  z. For  each rhythm we have 
found a range of  �9 with a size of  about  200 ms, where 
the results are reproducible and the times of  the first 
zero of  the autocorrelation function are included in the 
range. 

The choice of  the number  of  points to be used to 
obtain consistent results also has been investigated. 
Since for small data sets there is a substantial underesti- 
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Fig. 6. Correlation dimension as a function of the 
number of data points at fixed embedding 
dimension (n = 8) for the sinus rhythm (O), 
ventricular extrasystoles during sinus rhythm (O), 
coarse fibrillation (x) and fine fibrillation (A) 

mation of  the dimension, the analysis of  the correlation 
dimension requires long time series. On the other hand 
too long sequences of  physiological data can include 
non-stationary phenomena. Thus the choice of  the 
number of  data is a critical point. The convergence of  
the value of  the correlation dimension at increasing 
number of  points has been studied. Figure 6 shows the 
variation of  the correlation dimension with the number 
of points for the four analysed rhythms. The maximum 
number of  points used for each ECG is limited by the 
duration of  each rhythm and by the necessity of  using 
stationary data sets. In our case the longest data set was 
obtained for the sinus rhythm. By considering the 
whole set of  rhythms the values of the correlation 
dimension converge for N/> 15000. For the sinus 
rhythm smaller data sets can be used. 

The choice of the sampling rate requires further 
attention. Too high a sampling rate will include noise 
and produce distortion in the correlation integral, while 
too low a sampling rate may lose the fine structure of  the 
trajectories. We decreased the original sampling rate of 
the ECG from 250 Hz to 125 Hz and then to 50 Hz. The 
most evident effect of the undersampling was the disap- 
pearance of the distortion of the correlation integral well 
evident in Figs. 3 and 4 at small values of R. Figure 7 
gives the correlation dimension as a function of  the 
embedding dimension for the three values of  the sam- 
piing rate. Although the range of  linear region changes, 
the value of the correlation dimension doesn't change 
substantially with the variation of the sampling rate. 

To verify that changes in cardiac rhythm are cou- 
pled to a parallel variation in the correlation dimension, 
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during sinus rhythm (- .-), coarse fibrillation (-  -) and 
fine fibrillation ( . . . .  ) calculated at three different sampling 
rates: 250 Hz, 125 Hz, 50 Hz. The same 60 s ECG were 
used for the three attempts 



two additional cases of evolution from sinus rhythm to 
ventricular fibrillation have been studied. In one case 
the sequence of rhythms was a sinus rhythm followed 
by a ventricular tachycardia which deteriorated into 
ventricular fibrillation. In the second case the sinus 
rhythm was followed by a ventricular bigeminy that 
precipitated into ventricular fibrillation. The analysis 
has been applied to these additional cases following 
the procedure described above. In the first additional 
case the correlation dimension of the sinus rhythm is 
3.2. This value increases to 5.3 when ventricular tachy- 
cardia occurs, then to 6.7 when ventricular fibrillation 
appears. In the second case the correlation dimension 
increases from 4.7, the value for the sinus rhythm, to 
5.8 for ventricular bigeminy to 7.1 for ventricular 
fibrillation. 

4 Discussion 

Our concern was to investigate the cardiac rhythm 
evolution with methods of nonlinear dynamics by re- 
constructing the phase portrait of each rhythm and 
estimating its correlation dimension. The rationale for 
the dimensional analysis of ECGs relies on a large 
collection of experimental and simulation results sup- 
porting the modelling of cardiac electrical activity as a 
nonlinear system (Glass et al. 1983; Jensen et al. 1984; 
Chialvo and Jalife 1987; Chee et al. 1988; Savino et al. 
1989; Zbilut et al. 1989). This approach offers a 
promising explanation to the intriguing contradiction 
between the sudden changes in rhythm observed on 
the ECG and the relatively slow variations in the 
overall cardiac state. Within this framework, based on 
a model of nonlinear system with more than one basin 
of attraction, the transition to fibrillation may be con- 
sidered as the switch from one basin to another in- 
duced by a proper disturbance (Kaplan et al. 1988). 

The experimental analysis was carried out princi- 
pally on a good quality ambulatory ECG from a pa- 
tient who had an episode of ventricular fibrillation 
during the recording. The correlation dimension D2 
calculated for the sinus rhythm is 2.1 and remains 
constant during the 24 min considered, also in the 
presence of a 30% reduction of the mean cardiac rate. 
The sudden change in rhythm due to the appearance 
of ventricular extrasystoles on the ECG is clearly de- 
tected, both qualitatively, by an evident modification 
of the phase-portrait, and quantitatively by an increase 
of D2 from 2.1 to 3.2. It should be noted that the two 
attractors here considered are inhomogeneous like the 
majority of the physiological attractors. Since the cor- 
relation dimension in principle describes homogeneous 
attractors the use of D2 to characterize inhomoge- 
neous attractors has to be considered an approxima- 
tion. Nevertheless, at present, in the absence of other 
robust methods able to characterize inhomogeneous 
attractors, the correlation dimension, largely applied to 
physiological data series, can constitute a good ap- 
proximation of the degree of complexity of the system 
dynamic. 
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After the appearance of ventricular extrasystoles 
the successive sudden change in the ECG rhythm 
marks the transition to ventricular fibrillation that first 
appears in coarse form and then degenerates into fine 
form after about 1 min. Also in this case, the change 
in rhythm of the ECG determines a gross modification 
in the phase portrait that loses any clear structure and 
produces a jump in the correlation dimension D2 from 
3.2 to 5.7. D2 saturates as a function of the embed- 
ding dimension and stays well under both the values 
calculated from a gaussian random process and the 
limits proposed by Ruelle (1990). 

The last rhythm, the fine ventricular fibrillation, 
produces a phase portrait densely filled, corresponding 
to a correlation dimension that does not completely 
saturate as a function of the embedding dimension, 
although it largely stays below the values correspond- 
ing to a guassian random process. In this case, due 
to the lack of complete saturation, we cannot estimate 
D2, b u t -  purely for comparative purposes-  we can 
compare the values of the correlation dimension at 
fixed embedding dimension for the fine ventricular 
fibrillation to the corresponding values calculated 
for the coarse ventricular fibrillation. It can be seen 
that D2(n) for fine fibrillation is at each embed- 
ding dimension higher than the dimensions calculated 
for the coarse fibrillation. Also in this more com- 
plex case, an increase in the disorganization of the 
ECG corresponds to an increase in the complexity 
parameter. 

The evolution towards ventricular fibrillation on 
which we focused our analysis is only one possible 
route to ventricular fibrillation, although quite typical. 
In the clinical setting other sequences of rhythms ter- 
minating in ventricular fibrillation have been observed. 
In this study we have extended the analysis to two 
additional cases of evolution towards ventricular fibril- 
lation. In one case the intermediate rhythm between 
sinus rhythm and ventricular fibrillation was a ventric- 
ular tachycardia, in the other case a ventricular 
bigeminy. The analysis of these two sequences of car- 
diac rhythms confirmed the results previously ob- 
tained: the correlation dimension increases as one 
proceeds from sinus rhythm to ventricular fibrillation 
via intermediate rhythms. The ventricular fibrillation 
shows the highest degree of complexity. 

Our results relative to sinus rhythm in patients 
undergoing ventricular fibrillation may be compared 
with those of Babloyantz and Destexhe (1988); Mayer- 
Kress et al. (1988); and Kaplan et al. (1991), obtained 
from normal subjects, and with the results of Zbilut et 
al. (1988) obtained from transplanted hearts. Qualita- 
tively, all of these results are in agreement and show 
that the sinus rhythm follows chaotic dynamics. As 
concerns the estimate of the correlation dimensions on 
the ECG signal our results show a value of D2 ranging 
from 2.1 to 4.7 for the three cases of sinus rhythm. 
These values are in agreement with the results of a 
similar analysis performed on the entire ECG of 
healthy subjects and described in the literature (Babloy- 
antz and Destexhe 1988). 
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The  fact tha t  ven t r icu la r  f ibr i l la t ion displays  the 
highest  d imens iona l i ty  is in agreement  with the current  
phys io logica l  view o f  f ibr i l la t ion,  descr ibing the 
a r r h y t h m i a  as the mos t  d i so rdered  rhy thm.  Such a 
descr ip t ion  is s u p p o r t e d  by the very complex  spat io-  
t empora l  pa t t e rn  o f  f ibr i l la t ion m a p p e d  in real  hear ts  
(Allessie  et al. 1985) or  descr ibed in ma themat i ca l  
mode l s  ( M o e  et al. 1964; Kr in sky  1968; Smith  and 
Cohen  1984) and  by  recent  studies that ,  using 
the coherence  spec t rum ca lcula ted  f rom the electro- 
g rams  recorded  in two in t raca rd iac  sites, d iscr iminate  
f ibr i l la tory  and  nonf ib r i l l a to ry  rhy thms  ( R o p e l l a  et al. 
1989). 

The  results  here presented  suppor t  the existence 
o f  chaot ic  dynamics  under ly ing  different ca rd iac  
rhythms.  Never the less  since rea l -word  da t a  such as 
E C G  signals are  noise p rone  and  since the presence o f  
noise can co r rup t  the values  o f  the cor re la t ion  d imen-  
s ion some cau t ions  are  in order .  The  app l ica t ion  o f  
o ther  more  recent  app roaches  to the phase  space 
recons t ruc t ion  ( B r o o m h e a d  and  K ing  1986) and the 
ca lcu la t ion  o f  o the r  dynamica l  quant i t ies  such as 
L y a p u n o v  exponen t s  and  K o l m o g o r o v  en t ropy  could  
suppor t  fur ther  the chaos  hypothesis .  Nevertheless  
the ca lcu la t ion  o f  the cor re la t ion  d imension ,  in- 
dependen t ly  f rom the chaos  test, can lead to the esti- 
m a t i o n  o f  an index o f  complex i ty  o f  the rhy thm in 
examina t ion .  However ,  such es t imat ions  can not  at  
present  be cons idered  as abso lu te  values since the 
ca rd iac  system is no t  uniquely  defined. The same 
rhy thm in different  subjects  can have its own peculiar-  
i ty and  therefore  it is p r o b a b l e  tha t  the extension 
o f  the analysis  to a large popu l a t i on  does lead to a 
character is t ic  d imens ion  for  each rhy thm but  with a 
large var iance.  Given  the difficulty o f  es t imat ing the 
abso lu te  value o f  d imens ions  in b io logica l  systems, 
we ind ica ted  t h e  use o f  the d imens iona l  analysis  in a 
compara t i ve  sense as in the case o f  E E G  analysis  
( B a b l o y a n t z  and  Des texhe  1987). Our  results sup- 
po r t  the conjec ture  tha t  the longi tud ina l  s tudy appl ied  
to single hear t s  switching between different car-  
d iac  states can p rov ide  a va luable  tool  for  detect ing 
relat ive changes  in the complex i ty  o f  the system 
dynamics .  

The  app l i ca t ion  o f  non l inea r  dynamic  me thods  to 
the analysis  o f  E C G  is only  at  the beginning and  
therefore  at  present  this new a p p r o a c h  can not  offer 
the in t e rp re t a t iona l  assurance  o f  the t r ad i t iona l  meth-  
ods  o f  analysis ,  such as spectra l  analysis.  However  all 
these new methods ,  which are basical ly  different f rom 
the classical  a p p r o a c h e s  assuming  the signal is gener-  
a ted  by  the supe rpos i t ion  o f  per iod ic  oscil lat ions,  can 
reveal  dynamica l  aspects  unrecognized  by  t rad i t iona l  
analysis .  In  par t i cu la r ,  a l though  this s tudy does  not  
lead to the fo rmu la t i on  o f  the ma themat i ca l  models  
under ly ing  ca rd iac  act ivi ty,  it  can help in the construc-  
t ion o f  a model .  In  any  case the eva lua t ion  o f  the 
cor re la t ion  d imens ion  m a y  be used to assess var ious  
dynamic  states  o f  the hear t  and  m a y  const i tu te  a non-  
invasive tool  for  analys is  o f  the complex  dynamic  phe-  
n o m e n a  occur r ing  dur ing  a r rhy thmias .  
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