
Biol. Cybern. 67, 47-55 (1992) Bkalogr..
cyt mett
�9 Springer-Verlag 1992

Self-organizing maps: ordering, convergence properties
and energy functions
E. Erwin, K. Obermayer, and K. Schulten

Beckman Institute and Department of Physics, University of Illinois
Urbana, IL 61801, USA

at Urbana - Champaign, 405 North Mathews Avenue,

Received July 22, 1991/Accepted in revised form December 18, 1991

Abstract. We investigate the convergence properties of
the self-organizing feature map algorithm for a simple,
but very instructive case: the formation of a topographic
representation of the unit interval [0,1] by a linear chain
of neurons. We extend the proofs of convergence of
Kohonen and of Cottrell and Fort to hold in any case
where the neighborhood function, which is used to scale
the change in the weight values at each neuron, is a
monotonically decreasing function of distance from the
winner neuron. We prove that the learning dynamics
cannot be described by a gradient descent on a single
energy function, but may be described using a set of
potential functions, one for each neuron, which are
independently minimized following a stochastic gradient
descent. We derive the correct potential functions for the
one- and multi-dimensional case, and show that the
energy functions given by Tolat (1990) are an approxi-
mation which is no longer valid in the case of highly
disordered maps or steep neighborhood functions.

1 Introduction

The self-organizing feature map (SOFM) algorithm
(Kohonen 1982a, b) is a biologically-inspired method
for constructing a structured representation of data
from an often high-dimensional input space. As in
vector quantization, the data is represented by proto-
types, called weight vectors. Unlike vector quantization,
however, these weight vectors are associated with se-
lected elements, the neurons, of an image space, where
metric relationships are defined between the elements,
For any given data-set, the SOFM algorithm selects
weight vectors and assigns them to neurons in the
network. The weight vectors as a function of neuron
coordinates are called the feature map.

Feature maps generated by the SOFM algorithm
are characterized by the fact that weight vectors which

are neighbors in the input space are mapped onto
neighboring neurons. If the dimensionalities of the in-
put space I and the network differ, it is impossible to
preserve all similarity relationships among weight vec-
tors in the input space; only the most " impor tant"
similarity relationships are preserved and mapped onto
neighborhood relationships on the network of neurons,
while the less " important" similarity relationships are
not retained in the mapping. If the input space and
network are of the same dimensionality, the SOFM
algorithm can preserve all the similarity relationships
and generates a distorted, but topographic map, of the
input space, where more " important" regions of the
input space are represented with higher resolution.

The low-dimensional, ordered representation of
data generated by the SOFM algorithm has proven
useful for a variety of technical applications in the areas
of pattern classification and function approximation
(Favata and Walker 1991; Kohonen 1989; Ritter et al.
1989), as well as knowledge representation (Ritter and
Kohonen 1989; Scholtes 1991), and the algorithm has
been successfully applied as a model for the develop-
ment of structural representations in biological neural
systems, the so-called brain maps (Obermayer et al.
1990a, b, 1991). However, a general theory of the
algorithm has not yet been achieved. It is not clear
under what conditions the algorithm may be guaran-
teed to converge or whether the algorithm works by
performing a stochastic gradient descent on some po-
tential function, and problems of important practical
interest, like the number and type of the algorithm's
stationary states, convergence speed as a function of the
algorithm's parameters and the avoidance of sub-opti-
mal representations, are not solved. The intent of this,
and a companion paper (Erwin et al. 1992) is to answer
some of these questions for a simple, but very instruc-
tive case: the formation of a topographic representation
of the unit interval by a linear chain of neurons.

t Actually the dimensionality of the given data manifold, which is
Correspondence to: E. Erwin embedded in this input space

48

The formation of topologically ordered feature
maps occurs easily in a wide range of situations, where
the dimensionalities of the input and image spaces are
the same or different and where the interaction func-
tion, or neighborhood function, takes a variety of
forms. So far no theory exists which can demonstrate
how the algorithm actually works to generate topologi-
cally correct feature maps in such a variety of condi-
tions. Even for the simplest case, the formation of a
topological map of a one-dimensional space by a linear
array of neurons, a rigorous proof that an ordered
mapping will be formed has only been provided for a
very restricted case, where the neighborhood function
is a one-unit-wide step-function, and for higher-
dimensional cases no proof of ordering has yet
been presented.

This paper is organized into five parts. After a short
introduction to the algorithm in Sect. 2, we present a
proof of ordering for the one-dimensional case which
holds for any neighborhood function which is
monotonically decreasing with distance. Unfortunately,
our proof gives little insight into the way the algorithm
itself actually forms the ordered representation.

In Sects. 3 and 4 we investigate the hypothesis that
the SOFM algorithm minimizes a potential function by
a downhill search, or gradient descent procedure. It
turns out that even the one-dimensional SOFM al-
gorithm cannot be derived as a stochastic gradient
descent on any energy function. A set of "energy"
functions, one for each weight vector, seems to be the
best description of the dynamics of the algorithm. This
approach was first suggested by Tolat (1990), but the
expressions given were incorrect. In Sect. 4 we pre-
sent the correct energy expressions for the SOFM al-
gorithm in one dimension and generalize this ap-
proach to arbitrary dimensions. Our findings are
summarized in Sect. 5.

In a second paper (Erwin et al. 1992) we consider
some consequences of the results of this paper. We
provide the conditions under which the energy equa-
tions admit non-ordered stationary states, and we char-
acterize these states and study their influence on the
rate of convergence of the algorithm towards the
ordered map.

2 The S O F M algorithm

The SOFM algorithm employs a set of neurons, which,
in the general case, are arranged in a network of a
certain dimensionality. The location of any neuron in
the network is specified by a position vector s. The
weight vector associated with neuron s in the feature
map is denoted w~.

Feature map formation follows an iterative proce-
dure. Initially the weight vectors are randomly selected,
or they are chosen to take advantage of assumed or
known properties of the data manifold in the input
space. Then at each time step t, a pattern v, an element
of the data manifold in input space, is chosen at
random. The neuron r whose weight value w, is metri-

cally closest to the pattern v,

I l w r - vii = min IIw,- vii, (1)
s

is selected. The weight values of all neurons are then
changed according to the feature map update rule (Ko-
honen 1982a, b)

ws(t + 1) - ws(t) + Eh(r, s)(v(t) -- ws(t)), (2)

where E the learning step width, is some small constant
(0 < E ,~ 1.) The function h(r, s) is called the neighbor-
hood function. For most applications it has a maxi-
mum value of one for s---r and decreases with
increasing distance between s and r.

Throughout most of this paper we will consider
the mapping of the unit interval [0,1] onto a one-
dimensional network of N neurons. The patterns v and
weight vectors, ws will simply be scalars, and the
indices s of the neurons will be integers between 1
and N. For convenience we define a state of the net-
work as a particular set of weight values
{wsl s = 1 , 2 , . . . , N; w~ ~ [0,1]}, and a configuration as
the set of states which are characterized by the same
order relations among the (scalar) weights. The update
rule (2) reduces to

ws(t + 1) = ws(t) + Eh(r, s)[v(t) -- ws(t)] (3)

in the one-dimensional case.

3 Proof of convergence to stable, ordered configurations

For the one-dimensional SOFM algorithm, we define
an ordered configuration as a map of the input space
[0,1] which preserves the distance relationships be-
tween input patterns such that

Ir - sl < Jr - ql lwr - Wsl

<[Wr--Wq[, Vr, s , q ~ { 1 , 2 , U } . (4)

There exist two ordered configurations which have
weights arranged in either ascending or descending order.

The update rule (3) may be arranged to give

[ws (t + 1) -- v(t)] = [1 -- eh(r, s)][ws (t) - v(t)]. (5)

If (4) is fulfilled, if 0 < E, h(r, s) < 1, and if the neigh-
borhood function is monotonously decreasing with
I r - s I, then the factor [1 - Eh(r, s)] is positive, smaller
than one, and decreases monotonously with [w s - v].
This application of (5) cannot change the sequence of
weights in an ordered configuration, and ordered
configurations are absorbing configurations of the map-
ping algorithm (see Kohonen 1988). But does every
initial state eventually end up in one of the two ab-
sorbing configurations?

Cortell and Fort (1987) have shown that for a step
neighborhood function

1, if [r - s I ~< 1,
h(r, s) ==- H (I r - sl) = 0, otherwise. (6)

49

the "number of inversions", N(t), defined by

N(t) = Cards {s ~ { 2 , . . . , N - 1} [[ws+ l(t) - - Ws(t)]

• [ws(t) -- Ws_l(t)] < 0) , (7)

either decreases or remains constant at each application
of the update rule 2. They used this fact as a motivation
to construct a finite sequence of patterns which leads
from an arbitrary initial configuration to the final or-
dered configuration.

For other decreasing neighborhood functions, includ-
ing the frequently used Gaussian function, however, the
value of N(t) may increase during some iterations,
although the probability for N(t) to decrease or remain
the same is usually greater than the probability for it to
increase. This point has been overlooked by several
authors (Geszti 1990; Hertz et al. 1991) who have
interpreted the proof of Cottrell and Fort to apply to any
monotonically decreasing neighborhood function. Un-
fortunately, their proof, although unrelated to the behav-
ior of N(t), cannot be easily extended to include all
monotonically decreasing neighborhood functions.

Tolat (1990) introduced a set of energy functions,
one for each neuron, and interpreted the dynamics of
the one-dimensional SOFM-algorithm as a stochastic
gradient descent minimizing these individual energies.
He shows that ordered configurations of the weights
have lower energies than all other configurations, which
proves that the algorithm will necessarily converge to
an ordered configuration provided that no metastable
states exist. Tolat 's proof of ordering is based on energy
functions which are only approximately correct (see
below). But even using the correct energy functions, his
proof would be restricted to the subset of neighborhood
functions which do not give rise to metastable states.

For a proof of ordering for arbitrary positive-val-
ued, normalized and decreasing neighborhood func-
tions, we take an approach similar to that outlined by
Kohonen (1988) and by Cottrell and Fort (1987). The
result of the proof given in Appendix A may be stated
formally as

Theorem 1. Given any set of weights {wAt)ls=
1 , 2 , . . . , N } at t = O, and a neighborhood function
h(r, s) =- (Ir - s[) such that

1 ~>H(0) >~H(1) > H (2) > . . - >

H (N - - 2) > H (N - - 1)/> 0, (8)

there exists a sequence of patterns {v(t)lt = 1,2 T},
T < ~ , such that application of the update rule (3) with
this sequence of values of v(t) will result in a set of weight
values {ws(t)} which fulfills condition (4) fo r t >i T.

From this it follows from the general properties of
a Markov process (Van Kampen 1981) and with the v(t)
being randomly selected from a continuous distribution,
the algorithm will generate an ordered configuration in
a finite time with probability one. Unfortunately, the

2 If one plots ws(t) against s, then N(t) is just the number of "turns"
or "kinks" in the graph

proof of convergence of the algorithm given above for
the one-dimensional case cannot easily be extended to
higher-dimensional cases.

Lo and Bavarian (1991) have recently attempted to
prove convergence for the self-organizing feature map
algorithm of arbitrary dimensionality. They state that
given a monotonically decreasing neighborhood func-
tion, the algorithm will converge towards a "topologi-
cally ordered" configuration, defined by I I v - w , ll<
IIv - wbll if and only if Ilr - all < IIr - b[[where r is the
location of the winner neuron, and a and b are the
locations of any other two neurons. However, the "topo-
logically ordered" configuration of Lo and Bavarian is
not absorbing, as demonstrated by the following coun-
terexample. Consider a "topologically ordered" network
given by four neurons, (11, 12, 21, 22), connected in a
square lattice whose weight vectors, Wll , ~t/12 , $$'21, and
w22, project into a square pattern in the input space. If
patterns, v, are repeatedly chosen near the initial mid-
point of a line segment connecting weights Wll and w22
at diagonally opposed corners of this square, but always
slightly closer to Wl~, then after a sufficient number of
iterations of the algorithm the other two weights, w~z and
w2~, will be closer to each other than they are to w22.
Hence "topological order" is not maintained.

Lo and Bavarian also attempted to prove that if the
neighborhood function is monotonically decreasing and
the weight vectors are initially chosen to all be equal,
then the update rule will establish the topological order
in one iteration. However, if all weight vectors are
initially equal the method of selection of the "winner"
neuron for the first pattern is formally undefined in the
algorithm. Although any implementation of the al-
gorithm will have some default method of selecting a
winner in such cases, even with the best possible choice
of the patterns and the resulting "winner" neurons, the
minimum number of iterations required for the develop-
ment of a topologically ordered map in this case is
equal to the dimensionality of the input space, and will
in the general case be larger than one.

It seems that in higher dimensions true absorbing
states of the algorithm do not exist and that no strict
proof of convergence is likely to be possible. However,
there seem to exist ordered configurations in the sense
that a map will be far more likely to move towards or
remain in these configurations after application of the
update rule than to leave these states.

4 Energy functions

4.1 Energy functions in one dimension

Does there exist a global function such that the conver-
gence to stationary states can be described as a stochas-
tic gradient descent minimizing this potential?
Following Ritter and Schulten (1986, 1989) we will
introduce average "forces" acting on the weights and
show that, in contrast to the case of a discrete pattern
manifold (Ritter 1988), in the general case these forces
cannot be derived from a potential function. A global

50

energy function does not exist and the best we can do
is to derive a set of single-neuron energy functions
which allow a description of the single-neuron dynam-
ics by conservative forces. The energy functions pro-
posed by Tolat (1990) are shown to be an
approximation which is no longer valid in the case of
highly disordered maps and a steep neighborhood
function.

For the following it will be convenient to relabel
the weight values so that their indices are arranged in
ascending order in the input space. To avoid confusion
we introduce new symbols u~ to refer to weight values
labeled such that x < y ~ u~ < Uy, (x, y ~ [1,N]) and
use the "old" symbols w~ to label weight values by the
position of the corresponding neurons in the network
(see Fig. la). "New" indices can be converted to "old"
indices by a permutation function s = ~(x), which,
however, is different for each configuration of the net-
work (see Fig. lb). Thus we may write:

u~ =- we,(x) =- Ws. (9)

Note that the arguments of the neighborhood function
are always the indices s of w~, since the neighborhood
function is defined by neighborhood relationships in
the image space (network), not in the input space.

Let us denote the probability density of choosing a
pattern v by P(v). Then the average change
V~[u] - (Ux(t + 1) - ux(t)) of the weight value Ux in
one iteration, with the average taken over all possible
patterns v, is given by

l

V~[u] = e ~ ft(x, y)(v - - ux)P(v) dv (I0)
0

where y is the label of the winner neuron, and we have
used the abbreviation fffx, y) for h(~(x) , ~ (y)) . The
quantity V~[u] may be interpreted loosely as the aver-
age force acting to either increase or decrease the value
of the weight ux at the next iteration. Expanding (10)
into a sum of integrals over all possible winner neu-
rons y yields

N

Vx[u] = E ~ /~(x, y) ~ (v -- ux)P(v) dv (11)
y = 1 v ~ f2(y)

where each integral is evaluated only over the Voroni
tesellation cell of the neuron y, i.e. the area of the
input space mapped onto neuron y. The Voroni tessel-
lation

cell may be expressed as
~Q(I) = { u I O < I) < l(u I -{- U2)},
f2(y) {v 1 u = I~ (y - - l ' q - U y) (U < 2 (U y ' ~ - U y + l) } ,

(12)
for 1 < y < N ,

f2(N) = {V[~(UN_, + UN) < V < I}.
Let us consider the simplest case, wherd P(x) is

a constant. Performing the integrations in 10) we
obtain

N - - I

Vx[u] = E f,(y, i - Uy ,) / 8
y=2

+ U y (U y + l - - U y _ 1) /4 + u x (U y _ 1 - - Uy+ ,) / 2

+] ~ (1 , X) [(U 1 + U 2) 2 / 8 - - Ux(U 1 71- U 2) / 2]

+/~(N, x)[1/2 - Ux -- (UN + US_ 1)2/8

"~ Ux(U N -~- U N _ ,)/21 (13)

The quantity Vx[u] may be interpreted loosely as the
average force acting on the weight ux. Positive values of
Vx[u] indicate that the value of Ux is more likely to
increase at the next iteration; negative values indicate
that u x is more likely to decrease. Analysis of the
behavior of the mapping algorithm would be greatly
simplified if the forces (13) could be derived from a
potential function E[u] such that

OE[u]/gUx = -- Vx[u]. (14)

Unfortunately, this is not the case. The necessary
and sufficient condition (Moon and Spencer 1969) for
the forces to obey even a more general relation of the
type

OE' [u]/Oux = - #[u] Vx[u], (15)

where #[u] denotes some unknown function of the
weight values, i.e. an integrating factor, is given by:

VxF Vz 1 p,,x 1
t I + vyL u Ou l

+V~LdUy OUx] V { x , y , z } e { 1 , 2 , . . . , N } . (16)

By inserting (13) into (16) it is straightforward to prove
that for the one-dimensional case with constant P(v),
condition (16) is not met in general, and thus an energy
function does not exist.

w s

1 . 0 -

0 . 5 -

a
u x

0 0 0 - - _ - z _ - z _ - _ - _ - _ - " - _- _- _- _-_- _- _- - - _- _- _- - - _ ~ 4 0 0 - d

�9 ~ - -- -- - - - - - - ----- -- -- -- - - - - -- -- -- -- --

0.0 ' ' ' ' I ' ' ' ' I S
0 5 1 0

�9 �9 Z Z Z Z Z Z Z t" Z Z - - - Z - Z - ~
�9 - �9

�9 - 0 0

- 6 e

. . . . I ' ' ' ' I
0 5 1 0

S

10 -

5-

o

b

O,
/ "W P (x)

.o e'
e'

. . . . I I
5 10

X

Fig. 1. a The indices s of the
weights w~ are arranged in
increasing order in the image
space. The weights may be
relabelled u x with indices x
arranged such that x < y ~ U x < Uy.
b The indices s o f the weights %
may be converted into the indices
x o f the weights u x by the
permutat ion function ~(x). The
permutat ion function is uniquely
defined for each possible
configuration o f the weights

51

It has been suggested (Tolat 1990) that the dynam-
ics of the SOFM algorithm can instead be described
by a set of individual energy-functions

OE~[u]/Ou~ = - Vx[u], (17)

one for each neuron x, where each weight value Ux
performs a gradient descent to reduce, on the average,
the value of its associated energy E~. The motion of
the weight values are coupled, however, such that it is
not generally possible for the weights to change in
directions which would correspond to the steepest de-
scent of a sum of the individual energy functions.

The individual energy functions consist of two
terms:

Ex[u] -/~x[u] + Xx[u]

= E ~ l~(x, y) (v - u:,)ZP(v) dv
y = l vef2(y) 2

N E
"31- ~ y~= 2 (Uy -- Uy -- 1)3(1 - - / ~ (y , y - - 1))

(') -~-e ~(Uy AcUy_l) (1 9)

which can be proven by differentiation and compari-
son with the forces (13). A less straightforward, but
more general proof is given in Appendix B. (P(u) has
been assumed to be a continuous function.) The first
t e rm/~[u] corresponds to Tolat 's ansatz for the energy
function, the second term Xx[u] is a correction to
account for the movement of the borders of the tessel-
lation cells during an iteration 3. The given form of
X~[u] is not unique. Other choices of X~[u] are possi-
ble, but this particular form of X~[u] was chosen be-
cause it is independent of x, i.e., it is the same for all
neurons.

The major contribution to the energies comes from
the integral P~[u]. The correction terms, Xx[u] are gen-
erally small; they are largest for highly disordered
maps, where (uy - U y _ i) is near one and ~(y, y ' - 1) is
near zero for some values of y. The correction terms
can be neglected and the approximation E[u] ~/~[u] of
Tolat becomes valid for ordered maps with sufficiently
broad neighborhood functions.

4.2 Generalization to higher dimensions

The discussion above can be generalized to maps in
higher dimensions. To keep the notation simple, let v
and Ux represent the n-dimensional pattern and weight
vectors, respectively, with each weight vector refer-
enced by a unique, arbitrary scalar index x. We will
again use the abbreviation ~(x, y) to indicate that in
the neighborhood function the distance between neu-
rons arbitrarily labelled x and y must be computed
from their relative positions in the network of neurons,
not in the input space. For an n-dimensional input
space and an image space of arbitrary dimensionality

3 f2(y) is a function of {uxlx = 1,2 N}

the forces are given by

Vx[u] = e ~/~(x, y)(v - ux)P(v) d"v. (20)

The corresponding energy functions are given by (see
Appendix C)

Ex[u] = Ex[u] + Xx[u] (21)

= lim e ~ (/~(x, y))y �89 (v -- u~)2P(v) dnv

- c ~ dnux l im fl ~ dnv (v - u~)3(1 - (/~(x, y))y)

exp(-- fl(v -- ux) 2)
• ~7-xxp(-~7~_-- u--~) P(v). (22)

y

where we have introduced the "generalized neighbor-
hood function"

Z/~(x, y) exp(- f l (v - - Uy) 2)
y

(/~(x, y))y - Y~ exp(--fl(v - Uy) 2) (23)
y

In the limit fl ~ ~ , (23) reduces to/z(x, y') , where y ' is
the index of the weight value Uy, closest pattern space to
v. The generalized neighborhood function (23) is intro-
duced to remove the discontinuities in the integrand of
(20) so that Vx[U] may be integrated to give E~[u].

The second integral in (22), which is again a correc-
tion X~[u] to the naive energy/~x[u], is over all pattern
space; however, due to the factor (1 - (/~ (x , y))y), the
only contributions to the integral in the limit of large fl
come from the border regions between the tessellation
cells of neighboring neurons. The subsequent factor
insures that only contributions from the borders of the
cell around the particular neuron x survive in the limit.
The correction terms are generally small. The), again
are largest for highly disordered maps, where (h(x, y))y
is near zero for some values of x, and they can be
neglected for ordered maps if the neighborhood func-
tion is sufficiently broad.

Evaluation of (22) is difficult in general, but in
Appendix B we demonstrate that for the one-dimen-
sional case (22) reduces to (19).

5 Summar y and discussion

We have shown here that the one-dimensional SOFM
algorithm using any monotonically decreasing neigh-
borhood function and a constant learning step size can
be guaranteed to converge to an ordered mapping. In
practical applications, however, it is observed that the
rate at which the algorithm converges depends heavily
on the shape of the neighborhood function. We investi-
gate the effect of the shape of the neighborhood func-
tion on the convergence rate in a companion article
(Erwin et al. 1992) where we show that fastest conver-
gence time may be achieved using a class of neighbor-
hood functions called "convex". For all other
neighborhood functions, the equations of motion admit
stable stationary states in non-ordered configurations

52

which may trap maps for many iterations before finding
the ordered state.

We have also shown that the update rule (3) of the
self-organizing feature map algorithm does not follow a
gradient descent of any energy function. One might
then wonder whether it is possible to design a self-orga-
nizing algorithm, using the method of stochastic ap-
proximation (Robbins and Munro 1951), which does
perform a gradient descent on a suitable potential. The
gratest obstacle to finding such a method is the
difficulty of determining what energy function would be
appropriate. It is easy to propose a cost function which
should be minimized by the ordered map, but it is much
more difficult to find an energy function on which a
gradient descent can be guaranteed to lead from any
disordered map to a map minimizing the cost function.

The "elastic net" algorithm of Durbin and Will-
shaw, in the particular form suggested by Yuille, when
applied to a discreet pattern manifold does perform a
gradient descent on an energy function (Durbin and
Willshaw 1987), as does the SOFM algorithm in this
case (Ritter 1988). Simic (1989) has shown why this
energy function is the function one would like to mini-
mize in applications to the travelling salesman problem.
He considers a cost function which is minimized for the
shortest path through a space, and then adds terms
which enforce the constraint that the path must pass
through each of a set of "ci ty" locations. Using tech-
niques from statistical mechanics, Simic develops a
"free energy" function from this cost function, and in
the limit of a large number of weight vectors relative to
the number of cities, this free energy is precisely the
energy function on which the elastic net algorithm
performs a gradient descent. Additionally, Simic
derived a new form of free energy function which is
appropriate for developing an "elastic net" type al-
gorithm for solving the travelling saleman problem
which does not require the use of a larger number of
weight vectors relative to the number of cities. Durbin
and Mitchison (1990) have proposed a more general
form of the elastic net algorithm which is applicable to
networks of neurons with arbitrary dimensions forming
a map of either a set of discrete points or a continuous
space. It is probable, however, that this more general,
continuous form of the elastic net algorithm does not
follow a descent on any energy function.

Luttrell (1989) considered the energy function

1
E[w] = ~ ~ h(r, s) I P(v) d n v (v - - Ws) 2, (24)

r , s f2(r)

and showed that when a certain approximation holds
the Kohonen algorithm follows a stochastic gradient
descent on this potential 4. Our analysis has shown,
however, that this approximation is only reasonable in
the least interesting case, i.e. when the map is already

4 Luttrell considered this energy function in a different theoretical
framework which also allows the number of weight vectors to be
infinite and both the labels on the weights and the arguments of the
neighborhood function to be real numbers

well ordered. Although the approximate energy func-
tion (24) can be used to describe the dynamics of the
algorithm after an ordered, or mostly ordered map has
formed, it is not useful for describing the ordering of an
initially highly disordered map, in which case the indi-
vidual energy functions (22) must be used to describe
the dynamics of the original feature map algorithm.
The final mapping created by the algorithm does, how-
ever, very nearly minimize (24).

It would be interesting to find whether the self-orga-
nizing algorithm would more efficiently order an ini-
tially disordered map if the update rule were modified
to more closely follow a gradient descent on the energy
function (24). Kohonen has recently taken this ap-
proach (Kohonen 1991), and has shown that for the
case of a step neighborhood function one can achieve a
self-organizing algorithm which more nearly follows a
gradient descent on the potential (24) by adding small
additional terms to the update rule (3). These addi-
tional terms are similar to the terms in the elastic-net
algorithm which act to keep the mapping of nearest-
neighbor cortical cells nearby in the input space.

By choosing the step neighborhood function (6),
and making the same assumptions as Kohonen, his
results can also be derived by using the techniques of
(21) and (22). For the one-dimensional case, we can
develop an update rule such that a gradient descent of
(24) is exactly followed (unpublished results). At
present it is unclear whether this approach leads to
learning algorithms which represent an improvement
over the original version. Although it is clear that we
would like to have a learning algorithm which produces
maps which minimize the energy function (24), it is not
clear whether the best algorithm to use would be one
which follows a gradient descent on this potential sur-
face, since it is not clear whether metastable states are
present in the energy landscape of (24), or whether a
general proof of ordering can be constructed for these
algorithms. Although the original update rule does not
perform a gradient descent of the energy function (24),
the final mapping created by the algorithm does very
nearly minimize (24). For the step neighborhood func-
tion, Kohonen's revised algorithm creates an ordered
mapping in fewer time steps (Kohonen 1991), with a
(slightly) increased computational demand for each
step. For more general neighborhood functions, the
revised algorithm might require more, rather than
fewer, time steps, and the computational requirements
per step are certainly much greater. By introducing
complicated update rules, the analogies with biological
self-organizing systems may also be lost. Clearly there
are still practical questions to be answered, and further
research into the mechanisms driving self-organizing
processes is warranted.

Acknowledgements. This research has been supported by the National
Science Foundation (grant number NSF 90-15561) and by the Na-
tional Institute of Health (grant number P41RR05969). Financial
support to E. E. by the Beckman Institute and the University of
Illinois, and of K. O. by the Boehringer-Ingelheim Fonds is gratefully
acknowledged. The authors would like to thank H. Ritter for stimu-
lating discussions and for comments on the manuscript.

53

Appendix A: proof of ordering

In this appendix, we present the full p r o o f o f Theorem
1. First we must make a definition:
Definition 1. A k-chain is a set o f k weight values
obeying either

[W s < W s + 1 < W s + 2 ~ " " " ~ W s + k - - 1

case 1 (ascending) :] a n d wj < w~ or wj > ws+ k_ 1

[f o r all other w j,

f W s ~ W s + l ~ > W s + 2 ~ ' . . ~ W s + k _ 1

or case 2(descending):~and wj > w~ or w i < W~+k_

[f o r all other wj.

In the following we will use the expression "v in the
vicinity o f Wr" to mean that v is closer to Wr than to any
other wj.

L e m m a 1. Applying the update rule (3) with v in the
vicinity o f w~for any r does not change the relative order
o f w~ with respect to any other weight w~, i.e.

Sign(w,(t) - w,(t)) = Sign(w~(t + 1) - w~(t + 1)), Vs.

L e m m a 2. Given any w~, w~, and w~,, the repeated appli-
cation o f v in the vicinity o f w~ leads after a f inite number
o f time steps to the relative ordering o f w~, w, and w~,
such that

0 I w ~ - w , < w ~ - w s , i f H (r - s) < H (r - s ') ,
iO I w , - - " ~ > ,~ , - -w~ , i f H (r - s) > H (r s ') , o r

iii) the relative ordering o f w~, w~ and w,, is unchanged
if n ([r - sl) = H(I r - s'l).

L e m m a 3. Given w~ < ws + ~ < �9 �9 �9 < w~ + k - ~ or
w~ > ws + 1 > " " " > w~ + k - l, (k >1 3), with no conditions
on the values o f the other wj, a k-chain can be con-
structed within a finite number o f steps.

Proof. I f k is odd, choose v near w~ + (k - 1)/2 repeatedly.
Then f rom Lemmas (1) and (2) we will eventually get
our k-chain. I f k is even, choose v in the vicinity o f
w~+ (k-2)/2 unril a (k - 1)-chain is constructed f rom w~
to w~§ k - 2 - Then, if necessary, choose v near W~+k-2
until w~+k_~ is greater than w~+k_2 and closer to it
than to any other weight.

Proposition 1. Given any state { w i l i = l , 2 , . . . , N ;
wi ~ [0,1]}, it is possible to f ind a sequence o f v values
such that either an ascending or descending 3-chain can
be constructed around any ws, s ~ 1, s ~ N, by using the
update rule (3).

Proof. For a given w~, s ~ 1, N, repeatedly choose v in
the vicinity o f w~. Lemma 2 then ensures that after a
sufficient time

Iw~ - w~ +1] < Iw~ -- wjl and

I w ~ - w , _ l l < l w ~ - w j l v j ~ { s - l , s , s + l}.

Depending on the initial values o f the weights, one
arrives at one o f the six following cases:

1. w s _ ~ < w ~ < w ~ + ~ 2. w s + ~ < w ~ < w s _ ~
3 . W s < W s § 1 4 . W s < W s _ l < W s § 1

5 . W s + l < W s _ l < W s 6 . W s _ l < W s + l < W s

Cases 1 and 2 are already 3-chains. L e m m a 2 ensures
that repeated application o f (3) with v in the vicinity o f
ws-1 or ws +1 will lead to an ascending or descending
ordering o f the three weights for the cases 6, 3 and 4, 5,
respectively. L e m m a 3 then ensures that an ascending
or descending 3-chain may be constructed.

Proposition 2. Given any ascending (descending)k-chain
(k < N), it is possible to f ind a sequence o f v(t) such that
an ascending (descending) (k + D-chain will result.

Proof. We will consider only the ascending case:
w~ < ws+~ < " " < w ,+k_ 1. There are three sub-cases:

1. I f w~ + k > w~ + k - 1, L e m m a 3 ensures that an as-
cending k + 1-chain can be constructed f rom ws to
w,+~.

Z I f w , _ ~ < w s , Lemma 3 again ensures that an
ascending k + 1-chain can be constructed f rom w~_ i to
W~+k-1.

3. I f the above condit ions do no t apply then
w~_ ~ > ws + k - ~ and /or w~ + k < Ws. I f S > 1 then choose
v near w~ until ws_ ~ is closer to ws than w~+ 2. N o w
choose v near w~+2 until w~_ ~< w~. N o w the k + 1
weights f rom ws_ ~ to W~+k_ ~ are in ascending order,
and f rom Lemma 3, a (k + 1):chain may be con-
structed. I f s = 1 then we must work f rom the other end
o f the chain. Choose v near w~ + k - 1 until w~ + k is closer
to w~ + k - 1 than is w, + k - 3" Next choose v near ws + k - 3
until w~ + k > W~ + k-- 1.

The p roo f o f Theorem 1 follows directly f rom Propo-
sitions 1 and 2.

Appendix B: calculation of Exlu] in
the one-dimensional case

We wish to show that Ex[u] =-Ex[u] + Xx[u] is the cor-
rect energy function describing the dynamics o f the
weight vector Ux, for the one-dimensional case. To do
this we could explicitly calculate OEx[u]/Oux f rom (18)
and show that this gives -Vx[u] , but instead we will
demonstra te the usefulness o f the general expression
(22) by calculating Ex[u] f rom it.

F r o m (21) and (22) we can write /~[u] for the
one-dimensional case by simply changing all vectors to
scalars; this accounts for the first sum in (19). We have
left to show that Xx[u], given by

1

-dXx[u] /~u~ = lim Eft ~ P(v) dv (v - vx) 3
~ o o 0

x (1 -- (On(x, y)) y)

exp(-- fl(v -- ux) 2)
x (25)

s e x p (- f l (v - uy)2) '
Y

will simplify to the second sum in (19). The factor
e x p (- f l (v - u~,)2)/Ey e x p (- - f l (v - Uy) 2) will go to zero
as/3 goes to infinite unless v is closer to ux than to any
other weight. However , the factor (1 - (I2l(x, y))y)
goes to (1 - h(x, x)) = 0 if v is closest to ux. Thus the

54

only contr ibut ion to the integral comes f rom the in-
finitesimally small border regions between the tessella-
t ion of ux and its neighbors.

Let us look at the border between u~ and u~_ 1
(x # 1). As fl goes to infinity, it suffices to integrate over
the region v = (u~ + u~_ 1) / 2 - - 2 to V = (U~ + U~_ 1)/
2 + 2, where 2 is some small number. The value o f 2
may be chosen arbitrarily, since in the limit of large fl
the only contr ibut ion to the integral comes from the
region o f pat tern space where the distance between v
and the border is no larger than the order o f 1~ft. The
contr ibut ion to (25) f rom this region o f the input space
is then

(UX + Ux -- 1)/2 + 2

lim Eft ~ P(v) dv(v - u~) 3
~ '~ (ux + u:,: _ z)/2 - ,t

[-1 /~(x, x)exp(--f l (v--Ux)2"Jff f l (x , x - - 1) e x p (- - f l (V - - U x _ l) 2) -]
X L J

exp(- fl(v - u~) 2) -]

• exp(- f l (v - Ux) 2) + exp(- f l (v - U x _ 1) 2)] '

where we have used the definition o f (h(x, y))y and
where we have left only the largest terms as fl ~ oo in
the fractions. By making the substitutions ~(x, x) = 1,
v = (u~ + u~_ 1)/2 + 2 ' and integrating over 2 ' instead
o f v we may write, after some rearrangement,

2

lim Eft S d2'P((u~ + Ux_l) /2 + 2')

X (2'(U x -- Ux_ 1)/2) 3

I(1 --/Z(X, X -- 1)) e x p (- ctfl2')]

• (q exp - l ' (27)

where a = 2(Ux - u x _ 1). I f P(v) is a cont inuous func-
t ion then P((u~ + ux_ 1)/2 + 2') ~ P((ux + u~_ 1)/2) for
small 2'. Fo r any constant value o f 2, as 3 ~ oo we find
the identity

(2) f l e x p (- a f l 2) ~ , a f o r n = 0
lim ~ ~ + ~ x ~ - ~ - - ~ a z =

a~o~ ~ for n = 1,2, 3.
(28)

Using this identity we may evaluate integral (27) to
obtain

- (e/16)(ux -- ux_ l)2p((ux + Ux -- 1)/2)

x (1 --/~(x, x -- 1)). (29)

Likewise, by integrating (25) in the region a round the
border between ux and Ux .1 (x ~ N) gives a contr ibu-
t ion o f

+ (e/16)(u~. 1 - - u~)2(p((ux+ 1 + Ux)/2)

x (1 --/ l(x, x + 1)). (30)

So overall,

-- 0X~ [u]/c')Ux = -- (E/16)(u~ -- ux _ 1) 2P((u~ + ux_ 1)/2)

x (1 -- fi(x, x -- 1))(1 -- 3xl)

+ (,/16)(u~ +, - u~)ZP((ux+, + ux)/2)

x (1 - h'(x, x + 1))(1 - 5xN).

Integration over ux gives
N

X~[u] = (*/48) ~ (u~ - U x _ l) 3 (1 - h (x , x - 1))
y = 2

x P((ux + ux_ 1)/2), (31)

plus an arbi t rary constant which we have set to zero.
Then E~[u] = / ~ [u] + X~[u], as in (18).

(26)

Appendix C: derivation of X~[u]
in the multi-dimension case

We wish to show that (21) is the correct definition o f
the energy Ex[u] by showing that 0Ex[u]/0ux = - V~[u].
We start with the uncorrected energy term Ex[u].
Inserting (21) and (22) into aJ~x[u]/au~ gives

dUx - ;imoo~ --e o ~ (]~(X, y))y(V -- ux)P(v) d"v

+ • 1 d,vl"

The first term in (32) is equivalent to - Vx[u]. Perform-
ing the derivative on the second term yields

(9 (fffx, y))y O F~r~(x,y) exp(--fl(V--Uy)2) 7
-- z j

y

=(y~ exp(--fl(v-- Uy)2)) -2

•

x e x p (- f l (v - nx)2)(2/fl(v - u~))

x exp(- f l (v - ux)2)(2fl(v -- Ux))]

~ exp(- f l (v - ux) 2) (33)
= 2fl(v - nx)(1 -- (h(x, Y) 'Y'Z exp(- f l (v - uy) 2)

y

w h e r e we h a v e used the fac t /~(x, x) = 1. Subs t i t u t i ng
(33) a n d (20) in (32) a n d r e d u c i n g the first t e r m to
- Vx[u] gives

1

~/~x[U]/aux = - Vx[u] + l im E/3 S (v - ux) 3
#~oo 0

• (1 - <~(x, y)>y)

exp(- - f l (v - ux) 2)
X Z ~ - - - ~ = u - ~ - 2) P (v) dnv. (34)

C o m p a r i s o n o f the last t e r m wi th (22) gives

a~x[u]/aux = - V~[u] - aXx[u]/au~. (35)

Thus

Ex[u] = ~ffx[u] + Xx[u], (36)

fulfills a E x [u] / a u = -- Vx[u].

References

Cottrell M, Fort JC (1987) Etude d'un processus d'auto-organization.
Ann Inst Henri Poincar6 23:1-20

Durbin R, Mitchison G (1990) A dimension reduction framework for
understanding cortical maps. Nature 343:644-647

Durbin R, Willshaw D (1987) An analogue approach to the travelling
salesman problem using an elastic net method. Nature 326:689-
691

Erwin E, Obermayer K, Schulten K (1992) Self-organizing maps:
Stationary states, metastability and convergence rate. Biol Cy-
bern (this issue)

Favata F, Walker R (1991) A study of the application of Kohonen-
type neural networks to the travelling salesman problem. Biol
Cybern 64:463-468

Geszti T (1990) Physical models of neural networks. World Scientific,
Singapore

Hertz J, Krogh A, palmer RG (1991) Introduction to the theory
of neural computation. Addison-Wesley, Redwood City, Califor-
nia

Kohonen T (1982a) Analysis of a simple self-organizing process. Biol
Cybern 44:135-140

Kohonen T (1982b) Self-organized formation of topologically correct
feature maps. Biol Cybern 43:59-69

Kohonen T (1988) Self-organization and associative memory.
Springer, New York Berlin Heidelberg

55

Kohonen T (1989) Speech recognition based on topology preserving
neural maps. In: Aleksander I (ed) Neural computation. Lon-
don, Kogan Page

Kohonen T (1991) Self-organizing maps: optimization approaches.
In: Kohonen T et al. (eds) Artificial neural networks, vol II.
North Holland, Amsterdam, pp 981-990

Lo ZP, Bavarian B (1991) On the rate of convergence in topology
preserving neural networks. Biol Cybern 65:55-63

Luttrell SP (1989) Self-organization: a derivation from first principles
of a class of learning algorithms. In: Proc. 3rd IEEE Int. Joint
Conf. on Neural Networks, vol II. Washington, pp 495-498,
IEEE Neural Networks Council

Moon P, Spencer DE (1969) Partial differential equations. Heath,
Lexington, Mass

Oberrnayer K, Ritter H, Schulten K (1990a) Large-scale simulations
of self-organizing neural networks on parallel computers:
Applications to biological modelling. Parallel Computer 14:
381-404

Obermayer K, Ritter H, Schulten K (1990b) A principle for the
formation of the spatial structure of cortical feature maps. Proc
Natl Acad Sci USA 87:8345-8349

Obermayer K, Blasdel GG, Schulten K (1991) A neural ne twork
model for the formation of the spatial structure of retinotopie
maps, orientation- and ocular dominance columns. In: Kohonen
T et al. (eds) Artificial neural networks, vol I. North Holland,
Amsterdam, pp 505-511

Ritter H (1988) Selbstorganisierende neuronale Karten. PhD thesis.
Technische Universit~it Miinchen

Ritter H, Kohonen T (1989) Self-organizing semantic maps. Biol
Cybern 61:241-254

Ritter H, Schulten K (1986) On the stationary state of Kohonen's
self-organizing sensory mapping. Biol Cybern 54:99-106

Ritter H, Schulten K (1988) Convergence properties of Kohonen's
topology conserving mappings: Fluctuatuions, stability and di-
mension selection. Biol Cybern 60:59-71

Ritter H, Martinetz T, Schulten K (1989) Topology conserving maps
for learning visuomotor-coordination. Neural Networks 2:159-
168

Robbins H, Munro S (1951) A stochastic approximation method.
Ann Math Statist 22:400-407

Scholtes JC (1991) Unsupervised context learning in natural language
processing. In: Proc 5th IEEE Int. Joint Conf. on Neural Net-
works, vol I. Washington, pp 107-112, IEEE Neural Networks
Council

Simic PD (1989) Statistical mechanics as the underlying theory of
'elastic' and 'neural' optimizations. Network 1:89-103

Tolat VV (1990) An analysis of Kohonen's self-organizing maps
using a system of energy functions. Biol Cybern 64:155-164

van Kampen NG (1981) Stochastic process in physics and chemistry.
North-Holland, Amsterdam

