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Abstract. We investigate the convergence properties of 
the self-organizing feature map algorithm for a simple, 
but very instructive case: the formation of  a topographic 
representation of  the unit interval [0,1] by a linear chain 
of neurons. We extend the proofs of  convergence of 
Kohonen and of Cottrell and Fort  to hold in any case 
where the neighborhood function, which is used to scale 
the change in the weight values at each neuron, is a 
monotonically decreasing function of distance from the 
winner neuron. We prove that the learning dynamics 
cannot be described by a gradient descent on a single 
energy function, but may be described using a set of  
potential functions, one for each neuron, which are 
independently minimized following a stochastic gradient 
descent. We derive the correct potential functions for the 
one- and multi-dimensional case, and show that the 
energy functions given by Tolat (1990) are an approxi- 
mation which is no longer valid in the case of  highly 
disordered maps or steep neighborhood functions. 

1 Introduction 

The self-organizing feature map (SOFM) algorithm 
(Kohonen 1982a, b) is a biologically-inspired method 
for constructing a structured representation of  data 
from an often high-dimensional input space. As in 
vector quantization, the data is represented by proto- 
types, called weight vectors. Unlike vector quantization, 
however, these weight vectors are associated with se- 
lected elements, the neurons, of an image space, where 
metric relationships are defined between the elements, 
For  any given data-set, the SOFM algorithm selects 
weight vectors and assigns them to neurons in the 
network. The weight vectors as a function of neuron 
coordinates are called the feature map. 

Feature maps generated by the SOFM algorithm 
are characterized by the fact that weight vectors which 

are neighbors in the input space are mapped onto 
neighboring neurons. If  the dimensionalities of the in- 
put space I and the network differ, it is impossible to 
preserve all similarity relationships among weight vec- 
tors in the input space; only the most " impor tant"  
similarity relationships are preserved and mapped onto 
neighborhood relationships on the network of  neurons, 
while the less " important"  similarity relationships are 
not retained in the mapping. If  the input space and 
network are of  the same dimensionality, the SOFM 
algorithm can preserve all the similarity relationships 
and generates a distorted, but topographic map, of  the 
input space, where more " important"  regions of the 
input space are represented with higher resolution. 

The low-dimensional, ordered representation of 
data generated by the SOFM algorithm has proven 
useful for a variety of  technical applications in the areas 
of pattern classification and function approximation 
(Favata and Walker 1991; Kohonen 1989; Ritter et al. 
1989), as well as knowledge representation (Ritter and 
Kohonen 1989; Scholtes 1991), and the algorithm has 
been successfully applied as a model for the develop- 
ment of  structural representations in biological neural 
systems, the so-called brain maps (Obermayer et al. 
1990a, b, 1991). However, a general theory of  the 
algorithm has not yet been achieved. It is not clear 
under what conditions the algorithm may be guaran- 
teed to converge or whether the algorithm works by 
performing a stochastic gradient descent on some po- 
tential function, and problems of  important  practical 
interest, like the number and type of  the algorithm's 
stationary states, convergence speed as a function of  the 
algorithm's parameters and the avoidance of  sub-opti- 
mal representations, are not solved. The intent of this, 
and a companion paper (Erwin et al. 1992) is to answer 
some of  these questions for a simple, but very instruc- 
tive case: the formation of a topographic representation 
of  the unit interval by a linear chain of  neurons. 

t Actually the dimensionality of the given data manifold, which is 
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The formation of topologically ordered feature 
maps occurs easily in a wide range of  situations, where 
the dimensionalities of the input and image spaces are 
the same or different and where the interaction func- 
tion, or neighborhood function, takes a variety of 
forms. So far no theory exists which can demonstrate 
how the algorithm actually works to generate topologi- 
cally correct feature maps in such a variety of  condi- 
tions. Even for the simplest case, the formation of  a 
topological map of  a one-dimensional space by a linear 
array of  neurons, a rigorous proof  that an ordered 
mapping will be formed has only been provided for a 
very restricted case, where the neighborhood function 
is a one-unit-wide step-function, and for higher- 
dimensional cases no proof  of ordering has yet 
been presented. 

This paper is organized into five parts. After a short 
introduction to the algorithm in Sect. 2, we present a 
proof  of  ordering for the one-dimensional case which 
holds for any neighborhood function which is 
monotonically decreasing with distance. Unfortunately, 
our proof  gives little insight into the way the algorithm 
itself actually forms the ordered representation. 

In Sects. 3 and 4 we investigate the hypothesis that 
the SOFM algorithm minimizes a potential function by 
a downhill search, or gradient descent procedure. It 
turns out that even the one-dimensional SOFM al- 
gorithm cannot be derived as a stochastic gradient 
descent on any energy function. A set of "energy" 
functions, one for each weight vector, seems to be the 
best description of  the dynamics of  the algorithm. This 
approach was first suggested by Tolat (1990), but the 
expressions given were incorrect. In Sect. 4 we pre- 
sent the correct energy expressions for the SOFM al- 
gorithm in one dimension and generalize this ap- 
proach to arbitrary dimensions. Our findings are 
summarized in Sect. 5. 

In a second paper (Erwin et al. 1992) we consider 
some consequences of  the results of  this paper. We 
provide the conditions under which the energy equa- 
tions admit non-ordered stationary states, and we char- 
acterize these states and study their influence on the 
rate of  convergence of  the algorithm towards the 
ordered map. 

2 The S O F M  algorithm 

The SOFM algorithm employs a set of  neurons, which, 
in the general case, are arranged in a network of  a 
certain dimensionality. The location of  any neuron in 
the network is specified by a position vector s. The 
weight vector associated with neuron s in the feature 
map is denoted w~. 

Feature map formation follows an iterative proce- 
dure. Initially the weight vectors are randomly selected, 
or they are chosen to take advantage of  assumed or 
known properties of  the data manifold in the input 
space. Then at each time step t, a pattern v, an element 
of  the data manifold in input space, is chosen at 
random. The neuron r whose weight value w, is metri- 

cally closest to the pattern v, 

I l w r -  vii = min IIw,- vii, (1) 
s 

is selected. The weight values of  all neurons are then 
changed according to the feature map update rule (Ko- 
honen 1982a, b) 

ws(t + 1) - ws(t ) + Eh(r, s)(v(t) -- ws(t)), (2) 

where E the learning step width, is some small constant 
(0 < E ,~ 1.) The function h(r, s) is called the neighbor- 
hood function. For most applications it has a maxi- 
mum value of one for s---r and decreases with 
increasing distance between s and r. 

Throughout  most of  this paper we will consider 
the mapping of  the unit interval [0,1] onto a one- 
dimensional network of N neurons. The patterns v and 
weight vectors, ws will simply be scalars, and the 
indices s of  the neurons will be integers between 1 
and N. For  convenience we define a state of  the net- 
work as a particular set of  weight values 
{wsl s = 1 , 2 , . . . ,  N; w~ ~ [0,1]}, and a configuration as 
the set of  states which are characterized by the same 
order relations among the (scalar) weights. The update 
rule (2) reduces to 

ws(t + 1) = ws(t) + Eh(r, s)[v(t) -- ws(t)] (3) 

in the one-dimensional case. 

3 Proof  of convergence to stable, ordered configurations 

For the one-dimensional SOFM algorithm, we define 
an ordered configuration as a map of the input space 
[0,1] which preserves the distance relationships be- 
tween input patterns such that 

Ir - sl < Jr - ql lwr - Wsl 

<[Wr--Wq[, Vr, s , q ~ { 1 , 2  . . . .  , U } .  (4) 

There exist two ordered configurations which have 
weights arranged in either ascending or descending order. 

The update rule (3) may be arranged to give 

[ws (t + 1) -- v(t)] = [1 -- eh(r, s)][ws (t) - v(t)]. (5) 

If  (4) is fulfilled, if 0 < E, h(r, s) < 1, and if the neigh- 
borhood function is monotonously decreasing with 
I r - s  I, then the factor [ 1 -  Eh(r, s)] is positive, smaller 
than one, and decreases monotonously with [ w s -  v]. 
This application of (5) cannot change the sequence of 
weights in an ordered configuration, and ordered 
configurations are absorbing configurations of  the map- 
ping algorithm (see Kohonen 1988). But does every 
initial state eventually end up in one of  the two ab- 
sorbing configurations? 

Cortell and Fort  (1987) have shown that for a step 
neighborhood function 

1, if [r - s I ~< 1, 
h(r, s) ==- H ( I r  - sl) = 0, otherwise. (6)  
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the "number of inversions", N(t), defined by 

N(t) = Cards {s ~ { 2 , . . . ,  N - 1} [ [ws+ l(t) - -  Ws(t)] 

• [ws(t) -- Ws_l(t)] < 0 ) ,  (7) 

either decreases or remains constant at each application 
of the update rule 2. They used this fact as a motivation 
to construct a finite sequence of patterns which leads 
from an arbitrary initial configuration to the final or- 
dered configuration. 

For  other decreasing neighborhood functions, includ- 
ing the frequently used Gaussian function, however, the 
value of N(t) may increase during some iterations, 
although the probability for N(t) to decrease or remain 
the same is usually greater than the probability for it to 
increase. This point has been overlooked by several 
authors (Geszti 1990; Hertz et al. 1991) who have 
interpreted the proof  of Cottrell and Fort  to apply to any 
monotonically decreasing neighborhood function. Un- 
fortunately, their proof, although unrelated to the behav- 
ior of  N(t), cannot be easily extended to include all 
monotonically decreasing neighborhood functions. 

Tolat (1990) introduced a set of energy functions, 
one for each neuron, and interpreted the dynamics of 
the one-dimensional SOFM-algorithm as a stochastic 
gradient descent minimizing these individual energies. 
He shows that ordered configurations of  the weights 
have lower energies than all other configurations, which 
proves that the algorithm will necessarily converge to 
an ordered configuration provided that no metastable 
states exist. Tolat 's proof  of  ordering is based on energy 
functions which are only approximately correct (see 
below). But even using the correct energy functions, his 
proof  would be restricted to the subset of neighborhood 
functions which do not give rise to metastable states. 

For  a proof  of  ordering for arbitrary positive-val- 
ued, normalized and decreasing neighborhood func- 
tions, we take an approach similar to that outlined by 
Kohonen (1988) and by Cottrell and Fort  (1987). The 
result of  the proof  given in Appendix A may be stated 
formally as 

Theorem 1. Given any set of weights {wAt)ls= 
1 , 2 , . . . , N }  at t = O, and a neighborhood function 
h(r, s) =- (Ir - s[) such that 

1 ~>H(0) >~H(1) > H ( 2 )  > . . - >  

H ( N - -  2) > H ( N - -  1)/> 0, (8) 

there exists a sequence of  patterns {v(t)lt = 1,2 . . . . .  T}, 
T < ~ ,  such that application of  the update rule (3) with 
this sequence of values of v(t) will result in a set of  weight 
values {ws(t)} which fulfills condition (4 ) fo r  t >i T. 

From this it follows from the general properties of  
a Markov process (Van Kampen 1981) and with the v(t) 
being randomly selected from a continuous distribution, 
the algorithm will generate an ordered configuration in 
a finite time with probability one. Unfortunately, the 

2 If one plots ws(t ) against s, then N(t) is just the number of "turns" 
or "kinks" in the graph 

proof  of convergence of  the algorithm given above for 
the one-dimensional case cannot easily be extended to 
higher-dimensional cases. 

Lo and Bavarian (1991) have recently attempted to 
prove convergence for the self-organizing feature map 
algorithm of arbitrary dimensionality. They state that 
given a monotonically decreasing neighborhood func- 
tion, the algorithm will converge towards a "topologi- 
cally ordered" configuration, defined by I I v - w ,  ll< 
IIv - wbll if and only if Ilr - all < IIr - b[[ where r is the 
location of  the winner neuron, and a and b are the 
locations of  any other two neurons. However, the "topo- 
logically ordered" configuration of  Lo and Bavarian is 
not absorbing, as demonstrated by the following coun- 
terexample. Consider a "topologically ordered" network 
given by four neurons, (11, 12, 21, 22), connected in a 
square lattice whose weight vectors, Wll , ~t/12 , $$'21, and 
w22, project into a square pattern in the input space. If  
patterns, v, are repeatedly chosen near the initial mid- 
point of  a line segment connecting weights Wll and w22 
at diagonally opposed corners of this square, but always 
slightly closer to Wl~, then after a sufficient number of  
iterations of  the algorithm the other two weights, w~z and 
w2~, will be closer to each other than they are to w22. 
Hence "topological order" is not maintained. 

Lo and Bavarian also attempted to prove that if the 
neighborhood function is monotonically decreasing and 
the weight vectors are initially chosen to all be equal, 
then the update rule will establish the topological order 
in one iteration. However, if all weight vectors are 
initially equal the method of  selection of  the "winner" 
neuron for the first pattern is formally undefined in the 
algorithm. Although any implementation of  the al- 
gorithm will have some default method of  selecting a 
winner in such cases, even with the best possible choice 
of the patterns and the resulting "winner" neurons, the 
minimum number of  iterations required for the develop- 
ment of  a topologically ordered map in this case is 
equal to the dimensionality of  the input space, and will 
in the general case be larger than one. 

It seems that in higher dimensions true absorbing 
states of the algorithm do not exist and that no strict 
proof  of  convergence is likely to be possible. However, 
there seem to exist ordered configurations in the sense 
that a map will be far more likely to move towards or 
remain in these configurations after application of  the 
update rule than to leave these states. 

4 Energy functions 

4.1 Energy functions in one dimension 

Does there exist a global function such that the conver- 
gence to stationary states can be described as a stochas- 
tic gradient descent minimizing this potential? 
Following Ritter and Schulten (1986, 1989) we will 
introduce average "forces" acting on the weights and 
show that, in contrast to the case of  a discrete pattern 
manifold (Ritter 1988), in the general case these forces 
cannot be derived from a potential function. A global 
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energy function does not exist and the best we can do 
is to derive a set of  single-neuron energy functions 
which allow a description of  the single-neuron dynam- 
ics by conservative forces. The energy functions pro- 
posed by Tolat (1990) are shown to be an 
approximation which is no longer valid in the case of 
highly disordered maps and a steep neighborhood 
function. 

For  the following it will be convenient to relabel 
the weight values so that their indices are arranged in 
ascending order in the input space. To avoid confusion 
we introduce new symbols u~ to refer to weight values 
labeled such that x < y ~ u~ < Uy, (x, y ~ [ 1,N]) and 
use the "old"  symbols w~ to label weight values by the 
position of the corresponding neurons in the network 
(see Fig. la). "New" indices can be converted to "old" 
indices by a permutation function s = ~(x),  which, 
however, is different for each configuration of the net- 
work (see Fig. lb). Thus we may write: 

u~ =- we,(x) =- Ws. (9) 

Note that the arguments of  the neighborhood function 
are always the indices s of  w~, since the neighborhood 
function is defined by neighborhood relationships in 
the image space (network), not in the input space. 

Let us denote the probability density of choosing a 
pattern v by P(v). Then the average change 
V~[u] - (Ux(t + 1) - ux(t))  of  the weight value Ux in 
one iteration, with the average taken over all possible 
patterns v, is given by 

l 

V~[u] = e ~ ft(x, y)(v - -  ux)P(v) dv (I0) 
0 

where y is the label of  the winner neuron, and we have 
used the abbreviation fffx, y) for h(~(x) ,  ~ (y ) ) .  The 
quantity V~[u] may be interpreted loosely as the aver- 
age force acting to either increase or decrease the value 
of the weight ux at the next iteration. Expanding (10) 
into a sum of  integrals over all possible winner neu- 
rons y yields 

N 

Vx[u] = E ~ /~(x, y) ~ (v -- ux)P(v) dv (11) 
y =  1 v ~ f2( y) 

where each integral is evaluated only over the Voroni 
tesellation cell of  the neuron y, i.e. the area of  the 
input space mapped onto neuron y. The Voroni tessel- 
lation 

cell may be expressed as 
~Q(I) = { u I O  < I) < l(u I -{- U2)}, 
f2(y) {v 1 u = I~ ( y - - l ' q - U y ) ( U < 2 ( U y ' ~ - U y + l ) } ,  

(12) 
for 1 < y < N ,  

f2(N) = {V[~(UN_, + UN) < V < I}. 
Let us consider the simplest case, wherd P(x) is 

a constant. Performing the integrations in 10) we 
obtain 

N - - I  

Vx[u] = E f,(y, i - Uy , ) / 8  
y=2 

+ U y ( U y + l  - -  U y _  1 ) /4  + u x ( U y _  1 - -  Uy+ , ) / 2  

+ ] ~ ( 1 , X ) [ ( U  1 + U 2 ) 2 / 8  - -  Ux(U 1 71- U 2 ) / 2  ] 

+/~(N, x)[1/2 - Ux -- (UN + US_ 1)2/8 

"~ Ux(U N -~- U N _  ,)/21 (13) 

The quantity Vx[u] may be interpreted loosely as the 
average force acting on the weight ux. Positive values of 
Vx[u] indicate that the value of  Ux is more likely to 
increase at the next iteration; negative values indicate 
that u x is more likely to decrease. Analysis of  the 
behavior of the mapping algorithm would be greatly 
simplified if the forces (13) could be derived from a 
potential function E[u] such that 

OE[u]/gUx = -- Vx[u]. (14) 

Unfortunately, this is not the case. The necessary 
and sufficient condition (Moon and Spencer 1969) for 
the forces to obey even a more general relation of the 
type 

OE' [u]/Oux = - #[u] Vx[u], (15) 

where #[u] denotes some unknown function of the 
weight values, i.e. an integrating factor, is given by: 

VxF Vz 1 p,,x 1 
t I + vyL u  Ou l 

+V~LdUy OUx] V { x , y , z } e { 1 , 2 , . . . , N } .  (16) 

By inserting (13) into (16) it is straightforward to prove 
that for the one-dimensional case with constant P(v), 
condition (16) is not met in general, and thus an energy 
function does not exist. 
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Fig. 1. a The indices s of  the 
weights w~ are arranged in 
increasing order in the image 
space. The weights may  be 
relabelled u x with indices x 
arranged such that x < y ~ U x  < Uy. 
b The indices s o f  the weights % 
may be converted into the indices 
x o f  the weights u x by the 
permutat ion function ~(x).  The 
permutat ion function is uniquely 
defined for each possible 
configuration o f  the weights 
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It has been suggested (Tolat  1990) that the dynam- 
ics of  the SOFM algorithm can instead be described 
by a set of  individual energy-functions 

OE~[u]/Ou~ = - Vx[u], (17) 

one for each neuron x, where each weight value Ux 
performs a gradient descent to reduce, on the average, 
the value of its associated energy E~. The motion of  
the weight values are coupled, however, such that it is 
not generally possible for the weights to change in 
directions which would correspond to the steepest de- 
scent of  a sum of  the individual energy functions. 

The individual energy functions consist of  two 
terms: 

Ex[u ] -/~x[u] + Xx[u] 

= E ~ l~(x, y) (v - u:,)ZP(v) dv 
y = l  vef2(y) 2 

N E 
"31- ~ y~= 2 (Uy -- Uy -- 1)3(  1 - - / ~ ( y ,  y - -  1))  

(' ) -~-e ~(Uy AcUy_l) ( 1 9 )  

which can be proven by differentiation and compari- 
son with the forces (13). A less straightforward, but 
more general proof  is given in Appendix B. (P(u) has 
been assumed to be a continuous function.) The first 
t e rm/~[u]  corresponds to Tolat 's ansatz for the energy 
function, the second term Xx[u] is a correction to 
account for the movement of  the borders of the tessel- 
lation cells during an iteration 3. The given form of  
X~[u] is not unique. Other choices of X~[u] are possi- 
ble, but this particular form of  X~[u] was chosen be- 
cause it is independent of  x, i.e., it is the same for all 
neurons. 

The major contribution to the energies comes from 
the integral P~[u]. The correction terms, Xx[u] are gen- 
erally small; they are largest for highly disordered 
maps, where (uy - U y _  i) is near one and ~(y, y ' -  1) is 
near zero for some values of y. The correction terms 
can be neglected and the approximation E[u] ~/~[u] of  
Tolat becomes valid for ordered maps with sufficiently 
broad neighborhood functions. 

4.2 Generalization to higher dimensions 

The discussion above can be generalized to maps in 
higher dimensions. To keep the notation simple, let v 
and Ux represent the n-dimensional pattern and weight 
vectors, respectively, with each weight vector refer- 
enced by a unique, arbitrary scalar index x. We will 
again use the abbreviation ~(x, y) to indicate that in 
the neighborhood function the distance between neu- 
rons arbitrarily labelled x and y must be computed 
from their relative positions in the network of  neurons, 
not in the input space. For  an n-dimensional input 
space and an image space of  arbitrary dimensionality 

3 f2(y) is a function of {uxlx = 1,2 . . . . .  N} 

the forces are given by 

Vx[u] = e ~/~(x, y)(v - ux)P(v) d"v. (20) 

The corresponding energy functions are given by (see 
Appendix C) 

Ex[u] = Ex[u] + Xx[u] (21) 

= lim e ~ (/~(x, y))y �89 (v -- u~)2P(v) dnv 

- c ~ dnux l im fl ~ dnv (v - u~)3(1 - (/~(x, y))y) 

exp( -- fl(v -- ux) 2) 
• ~7-xxp(-~7~_-- u--~) P(v). (22) 

y 

where we have introduced the "generalized neighbor- 
hood function" 

Z/~(x, y) exp( - f l ( v  - -  Uy) 2) 
y 

(/~(x, y))y - Y~ exp( --fl(v - Uy) 2) (23) 
y 

In the limit fl ~ ~ ,  (23) reduces to/z(x, y') ,  where y '  is 
the index of the weight value Uy, closest pattern space to 
v. The generalized neighborhood function (23) is intro- 
duced to remove the discontinuities in the integrand of  
(20) so that Vx[U] may be integrated to give E~[u]. 

The second integral in (22), which is again a correc- 
tion X~[u] to the naive energy/~x[u], is over all pattern 
space; however, due to the factor (1 - ( /~ (x ,  y))y),  the 
only contributions to the integral in the limit of  large fl 
come from the border regions between the tessellation 
cells of neighboring neurons. The subsequent factor 
insures that only contributions from the borders of  the 
cell around the particular neuron x survive in the limit. 
The correction terms are generally small. The), again 
are largest for highly disordered maps, where (h(x, y))y 
is near zero for some values of  x, and they can be 
neglected for ordered maps if the neighborhood func- 
tion is sufficiently broad. 

Evaluation of (22) is difficult in general, but in 
Appendix B we demonstrate that for the one-dimen- 
sional case (22) reduces to (19). 

5 Summar y  and discussion 

We have shown here that the one-dimensional SOFM 
algorithm using any monotonically decreasing neigh- 
borhood function and a constant learning step size can 
be guaranteed to converge to an ordered mapping. In 
practical applications, however, it is observed that the 
rate at which the algorithm converges depends heavily 
on the shape of  the neighborhood function. We investi- 
gate the effect of the shape of  the neighborhood func- 
tion on the convergence rate in a companion article 
(Erwin et al. 1992) where we show that fastest conver- 
gence time may be achieved using a class of  neighbor- 
hood functions called "convex".  For  all other 
neighborhood functions, the equations of  motion admit 
stable stationary states in non-ordered configurations 
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which may trap maps for many iterations before finding 
the ordered state. 

We have also shown that the update rule (3) of  the 
self-organizing feature map algorithm does not follow a 
gradient descent of  any energy function. One might 
then wonder whether it is possible to design a self-orga- 
nizing algorithm, using the method of stochastic ap- 
proximation (Robbins and Munro 1951), which does 
perform a gradient descent on a suitable potential. The 
gratest obstacle to finding such a method is the 
difficulty of  determining what energy function would be 
appropriate. It is easy to propose a cost function which 
should be minimized by the ordered map, but it is much 
more difficult to find an energy function on which a 
gradient descent can be guaranteed to lead from any 
disordered map to a map minimizing the cost function. 

The "elastic net" algorithm of Durbin and Will- 
shaw, in the particular form suggested by Yuille, when 
applied to a discreet pattern manifold does perform a 
gradient descent on an energy function (Durbin and 
Willshaw 1987), as does the SOFM algorithm in this 
case (Ritter 1988). Simic (1989) has shown why this 
energy function is the function one would like to mini- 
mize in applications to the travelling salesman problem. 
He considers a cost function which is minimized for the 
shortest path through a space, and then adds terms 
which enforce the constraint that the path must pass 
through each of  a set of  "ci ty" locations. Using tech- 
niques from statistical mechanics, Simic develops a 
"free energy" function from this cost function, and in 
the limit of  a large number of  weight vectors relative to 
the number of  cities, this free energy is precisely the 
energy function on which the elastic net algorithm 
performs a gradient descent. Additionally, Simic 
derived a new form of  free energy function which is 
appropriate for developing an "elastic net" type al- 
gorithm for solving the travelling saleman problem 
which does not require the use of  a larger number of 
weight vectors relative to the number of cities. Durbin 
and Mitchison (1990) have proposed a more general 
form of  the elastic net algorithm which is applicable to 
networks of  neurons with arbitrary dimensions forming 
a map of  either a set of  discrete points or a continuous 
space. It is probable, however, that this more general, 
continuous form of  the elastic net algorithm does not 
follow a descent on any energy function. 

Luttrell (1989) considered the energy function 

1 
E[w] = ~ ~ h(r, s) I P(v) d n v  ( v  - -  Ws) 2, (24) 

r , s  f2(r) 

and showed that when a certain approximation holds 
the Kohonen algorithm follows a stochastic gradient 
descent on this potential 4. Our analysis has shown, 
however, that this approximation is only reasonable in 
the least interesting case, i.e. when the map is already 

4 Luttrell considered this energy function in a different theoretical 
framework which also allows the number of weight vectors to be 
infinite and both the labels on the weights and the arguments of the 
neighborhood function to be real numbers 

well ordered. Although the approximate energy func- 
tion (24) can be used to describe the dynamics of the 
algorithm after an ordered, or mostly ordered map has 
formed, it is not useful for describing the ordering of  an 
initially highly disordered map, in which case the indi- 
vidual energy functions (22) must be used to describe 
the dynamics of  the original feature map algorithm. 
The final mapping created by the algorithm does, how- 
ever, very nearly minimize (24). 

It would be interesting to find whether the self-orga- 
nizing algorithm would more efficiently order an ini- 
tially disordered map if the update rule were modified 
to more closely follow a gradient descent on the energy 
function (24). Kohonen has recently taken this ap- 
proach (Kohonen 1991), and has shown that for the 
case of a step neighborhood function one can achieve a 
self-organizing algorithm which more nearly follows a 
gradient descent on the potential (24) by adding small 
additional terms to the update rule (3). These addi- 
tional terms are similar to the terms in the elastic-net 
algorithm which act to keep the mapping of  nearest- 
neighbor cortical cells nearby in the input space. 

By choosing the step neighborhood function (6), 
and making the same assumptions as Kohonen, his 
results can also be derived by using the techniques of 
(21) and (22). For  the one-dimensional case, we can 
develop an update rule such that a gradient descent of 
(24) is exactly followed (unpublished results). At 
present it is unclear whether this approach leads to 
learning algorithms which represent an improvement 
over the original version. Although it is clear that we 
would like to have a learning algorithm which produces 
maps which minimize the energy function (24), it is not 
clear whether the best algorithm to use would be one 
which follows a gradient descent on this potential sur- 
face, since it is not clear whether metastable states are 
present in the energy landscape of  (24), or whether a 
general proof  of  ordering can be constructed for these 
algorithms. Although the original update rule does not 
perform a gradient descent of  the energy function (24), 
the final mapping created by the algorithm does very 
nearly minimize (24). For  the step neighborhood func- 
tion, Kohonen's revised algorithm creates an ordered 
mapping in fewer time steps (Kohonen 1991), with a 
(slightly) increased computational demand for each 
step. For  more general neighborhood functions, the 
revised algorithm might require more, rather than 
fewer, time steps, and the computational requirements 
per step are certainly much greater. By introducing 
complicated update rules, the analogies with biological 
self-organizing systems may also be lost. Clearly there 
are still practical questions to be answered, and further 
research into the mechanisms driving self-organizing 
processes is warranted. 
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Appendix A: proof  of  ordering 

In  this appendix, we present the full p r o o f  o f  Theorem 
1. First we must  make a definition: 
Definition 1. A k-chain is a set o f  k weight values 
obeying either 

[ W s < W s +  1 < W s +  2 ~ " " " ~ W s + k - -  1 

case 1 (ascending) : ] a n d  wj < w~ or  wj > ws+ k_ 1 

[ f o r  all other  w j, 

f W s  ~ W s + l  ~ > W s + 2 ~  ' . . ~ W s + k _  1 

or  case 2(descending):~and wj > w~ or  w i < W~+k_ 

[ f o r  all other  wj. 

In the following we will use the expression "v in the 
vicinity o f  Wr" to mean that  v is closer to Wr than to any 
other  wj. 

L e m m a  1. Applying the update rule (3) with v in the 
vicinity o f  w~for any r does not change the relative order 
o f  w~ with respect to any other weight w~, i.e. 

Sign(w,(t)  - w,( t))  = Sign(w~(t + 1) - w~(t + 1)), Vs. 

L e m m a  2. Given any w~, w~, and w~,, the repeated appli- 
cation o f  v in the vicinity o f  w~ leads after a f inite number 
o f  time steps to the relative ordering o f  w~, w, and w~, 
such that 

0 I w ~ - w ,  < w ~ - w s ,  i f H ( r - s ) < H ( r - s ' ) ,  
iO I w , - - " ~  > ,~ , - -w~ , i f  H ( r - s ) > H ( r  s ' ) , o r  

iii) the relative ordering o f  w~, w~ and w,, is unchanged 
if n ( [ r  - sl) = H(I r - s'l). 

L e m m a  3. Given w~ < ws + ~ < �9 �9 �9 < w~ + k -  ~ or 
w~ > ws + 1 > " " " > w~ + k -  l, (k >1 3), with no conditions 
on the values o f  the other wj, a k-chain can be con- 
structed within a finite number o f  steps. 

Proof. I f  k is odd, choose v near w~ + (k - 1)/2 repeatedly. 
Then f rom Lemmas  (1) and (2) we will eventually get 
our  k-chain.  I f  k is even, choose v in the vicinity o f  
w~+ (k-2)/2 unril a (k - 1)-chain is constructed f rom w~ 
to w~§ k - 2 -  Then, if necessary, choose v near  W~+k-2 
until w~+k_~ is greater than w~+k_2 and closer to it 
than to any other  weight. 

Proposition 1. Given any state { w i l i = l , 2 , . . . , N ;  
wi ~ [0,1]}, it is possible to f ind  a sequence o f  v values 
such that either an ascending or descending 3-chain can 
be constructed around any ws, s ~ 1, s ~ N,  by using the 
update rule (3). 

Proof. For  a given w~, s ~ 1, N, repeatedly choose v in 
the vicinity o f  w~. Lemma 2 then ensures that  after a 
sufficient time 

Iw~ - w~ +1 ] < Iw~ -- wjl and 

I w ~ - w , _ l l < l w ~ - w j l  v j  ~ { s -  l , s , s  + l}. 

Depending on the initial values o f  the weights, one 
arrives at one o f  the six following cases: 

1. w s _ ~ < w ~ < w ~ + ~  2. w s + ~ < w ~ < w s _ ~  
3 .  W s < W s §  1 4 .  W s < W s _ l < W s §  1 

5 .  W s + l < W s _ l < W  s 6 .  W s _ l < W s + l < W s  

Cases 1 and 2 are already 3-chains. L e m m a  2 ensures 
that  repeated application o f  (3) with v in the vicinity o f  
ws-1 or  ws +1 will lead to an ascending or  descending 
ordering o f  the three weights for  the cases 6, 3 and 4, 5, 
respectively. L e m m a  3 then ensures that  an ascending 
or  descending 3-chain may  be constructed.  

Proposition 2. Given any ascending (descending)k-chain 
(k < N), it is possible to f ind  a sequence o f  v(t) such that 
an ascending (descending) (k + D-chain will result. 

Proof. We will consider only the ascending case: 
w~ < ws+~ < " "  < w ,+k_  1. There are three sub-cases: 

1. I f  w~ + k > w~ + k -  1, L e m m a  3 ensures that  an as- 
cending k + 1-chain can be constructed f rom ws to 
w,+~. 

Z I f  w , _ ~ < w s ,  Lemma 3 again ensures that  an 
ascending k + 1-chain can be constructed f rom w~_ i to 
W~+k-1. 

3. I f  the above condit ions do no t  apply then 
w~_ ~ > ws + k -  ~ and /or  w~ + k < Ws. I f  S > 1 then choose 
v near w~ until ws_ ~ is closer to ws than w~+ 2. N o w  
choose v near w~+2 until w~_ ~< w~. N o w  the k + 1 
weights f rom ws_ ~ to W~+k_ ~ are in ascending order,  
and f rom Lemma 3, a (k + 1):chain may  be con- 
structed. I f  s = 1 then we must  work  f rom the other  end 
o f  the chain. Choose  v near w~ + k - 1 until w~ + k is closer 
to w~ + k - 1 than is w, + k -  3" Next  choose v near ws + k -  3 
until w~ + k > W~ + k-- 1. 

The p roo f  o f  Theorem 1 follows directly f rom Propo-  
sitions 1 and 2. 

Appendix B: calculation of  Exlu] in 
the one-dimensional case 

We wish to show that  Ex[u] =-Ex[u] + Xx[u] is the cor- 
rect energy function describing the dynamics  o f  the 
weight vector Ux, for the one-dimensional  case. To  do 
this we could explicitly calculate OEx[u]/Oux f rom (18) 
and show that  this gives -Vx[u] ,  but  instead we will 
demonstra te  the usefulness o f  the general expression 
(22) by calculating Ex[u] f rom it. 

F r o m  (21) and (22) we can write /~[u] for  the 
one-dimensional  case by simply changing all vectors to 
scalars; this accounts  for the first sum in (19). We have 
left to show that  Xx[u], given by 

1 

-dXx[u] /~u~ = lim Eft ~ P(v) dv (v - vx) 3 
~ o o  0 

x (1 -- (On(x, y ) ) y )  

exp( -- fl(v -- ux) 2) 
x (25) 

s e x p ( - f l ( v  - uy)2) ' 
Y 

will simplify to the second sum in (19). The factor  
e x p ( - f l ( v -  u~,)2)/Ey e x p ( - - f l ( v -  Uy) 2) will go to zero 
as/3 goes to infinite unless v is closer to ux than to any 
other  weight. However ,  the factor  ( 1 -  (I2l(x, y)  )y)  
goes to ( 1 -  h(x, x)) = 0 if v is closest to ux. Thus  the 
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only contr ibut ion to the integral comes f rom the in- 
finitesimally small border  regions between the tessella- 
t ion of  ux and its neighbors.  

Let us look at the border  between u~ and u~_ 1 
(x # 1). As fl goes to infinity, it suffices to integrate over 
the region v = (u~ + u~_ 1 ) / 2  - -  2 to V = (U~ + U~_ 1)/ 
2 + 2, where 2 is some small number.  The value o f  2 
may  be chosen arbitrarily,  since in the limit of  large fl 
the only contr ibut ion  to the integral comes from the 
region o f  pat tern  space where the distance between v 
and the border  is no larger than the order  o f  1~ft. The 
contr ibut ion to (25) f rom this region o f  the input space 
is then 

(UX + Ux -- 1)/2 + 2 

lim Eft ~ P(v) dv(v - u~) 3 
# ~ '~  (ux  + u:,: _ z )/2 - ,t 

[-1 /~(x, x)exp(--f l (v--Ux)2"Jff  f l ( x , x - - 1 ) e x p ( - - f l ( V - - U x _ l ) 2 )  -] 
X L J 

exp( - fl(v - u~) 2) -] 

• exp(  - f l ( v  - Ux) 2) + exp( - f l ( v  - U x _  1)  2) ] ' 

where we have used the definition o f  (h(x,  y ) )y  and 
where we have left only the largest terms as fl ~ oo in 
the fractions. By making the substitutions ~(x, x ) =  1, 
v = (u~ + u~_ 1)/2 + 2 '  and integrating over 2 '  instead 
o f  v we may  write, after  some rearrangement,  

2 

lim Eft S d2'P((u~ + Ux_l) /2 + 2')  

X (2'(U x -- Ux_ 1)/2) 3 

I( 1 --/Z(X, X -- 1)) e x p ( -  ctfl2')] 

• (q exp -  l '  (27) 

where a = 2(Ux - u x _  1). I f  P(v) is a cont inuous func- 
t ion then P((u~ + ux_ 1)/2 + 2')  ~ P((ux + u~_ 1)/2) for  
small 2'. Fo r  any constant  value o f  2, as 3 ~ oo we find 
the identity 

( 2 )  f l e x p ( - a f l 2 ) ~ ,  a f o r n = 0  
lim ~ ~ + ~ x ~ - ~ - - ~ a z  = 

a~o~ ~ for n = 1,2, 3. 
(28) 

Using this identity we may evaluate integral (27) to 
obtain 

- (e/16)(ux -- ux_ l)2p((ux + Ux -- 1)/2) 

x (1 --/~(x, x -- 1)). (29) 

Likewise, by integrating (25) in the region a round the 
border  between ux and Ux .1  (x ~ N)  gives a contr ibu- 
t ion o f  

+ (e/16)(u~. 1 - -  u~)2(p((ux+ 1 + Ux)/2) 

x ( 1 --/ l(x,  x + 1)). (30) 

So overall, 

-- 0X~ [u]/c')Ux = -- (E/16)(u~ -- ux _ 1 ) 2P((u~ + ux_ 1)/2) 

x (1 -- fi(x, x -- 1))(1 -- 3xl) 

+ (,/16)(u~ +, - u~)ZP((ux+, + ux)/2) 

x ( 1 - h'(x, x + 1))( 1 - 5xN). 

Integration over ux gives 
N 

X~[u] = (*/48) ~ (u~ - U x _ l ) 3 ( 1  - h ( x , x  - 1)) 
y = 2  

x P((ux + ux_ 1)/2), (31) 

plus an arbi t rary constant  which we have set to zero. 
Then  E~[u] = / ~ [ u ]  + X~[u], as in (18). 

(26) 

Appendix C: derivation of X~[u] 
in the multi-dimension case 

We wish to show that  (21) is the correct  definition o f  
the energy Ex[u] by showing that  0Ex[u]/0ux = - V~[u]. 
We start with the uncorrected energy term Ex[u]. 
Inserting (21) and (22) into aJ~x[u]/au~ gives 

dUx - ;imoo~ --e o ~ (]~(X, y))y(V -- ux)P(v) d"v 

+ • 1 d,vl" 

The first term in (32) is equivalent to - Vx[u]. Perform- 
ing the derivative on the second term yields 

(9 (fffx, y ) )y  O F~r~(x,y) exp(--fl(V--Uy)2) 7 
-- z j 

y 

=(y~ exp(--fl(v-- Uy)2)) -2 

•  

x e x p ( - f l ( v  - nx)2)(2/fl(v - u~)) 

x exp( - f l ( v  - ux)2)(2fl(v -- Ux))] 

~ exp( - f l ( v  - ux) 2) (33) 
= 2fl(v - nx)(1 -- (h(x, Y) 'Y'Z exp( - f l ( v  - uy) 2) 

y 



w h e r e  we  h a v e  used  the  fac t  /~(x, x ) =  1. Subs t i t u t i ng  
(33) a n d  (20)  in (32)  a n d  r e d u c i n g  the  first  t e r m  to  
- Vx[u] gives  

1 

~/~x[U]/aux = - Vx[u] + l im E/3 S ( v -  ux) 3 
#~oo 0 

• (1 - <~(x, y )>y)  

exp(  - - f l (v  - ux) 2) 
X Z ~ - - - ~ = u - ~ - 2 )  P (v )  dnv. (34)  

C o m p a r i s o n  o f  the  last  t e r m  wi th  (22)  gives  

a~x[u]/aux = - V~[u] - aXx[u]/au~. (35) 

Thus 

Ex[u] = ~ffx[u] + Xx[u], (36)  

fulfills a E x [ u ] / a u  = --  Vx[u]. 
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