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Abstract. For the Ornstein-Uhlenbeck neuronal model
a quantitative method is proposed for the estimation of
the two parameters characterizing the unkown input
process, namely the neuron’s mean input per unit time
u and the infinitesimal standard deviation per unit time
o. This method is based on the experimentally observed
first- and second-order moments of interspike intervals.
The dependence of the estimates 2 and & on the moments
of the observed interspike intervals and on the neuronal
parameters is clarified, and a comparison is made be-
tween the estimates based on the classical Wiener model
and those yielded by the Ornstein-Uhlenbeck model.
Comprehensive tables are included in which the dis-
played values of i and 6 have been calculated in terms of
physiologically realistic pairs of first- and second-order
moments. Our method is finally applied to interspike
interval data recorded from neurons in the mesen-
cephalic reticular formation of the cat during hypotheti-
cal sleep, slow-wave sleep stage, and wake stage.

1 Introduction

One-dimensional diffusion processes have been widely
used as models to account for statistical features of spike
trains recorded from single neurons belonging to com-
plex networks in the brain. Among these, the Ornstein-
Uhlenbeck (OU) process plays a central role because it
naturally arises when starting from an equivalent electric
circuit of the membrane potential of real neurons at
subthreshold level. The corresponding neuronal model is
thus referred to as the OU model.

In general, diffusion models of neuronal activity arise
when it is assumed, or proved, that the membrane potential
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is described by a stochastic process X (t) that satisfies the
stochastic differential equation

dX(5) = p(X@)dt + a(X@)AW (), P{X(0)=x0} =1

1)

where W (¢) is the standard Wiener process, u(*) and o()
are functions of X(t) accounting for neuronal input pro-
cesses, and x, denotes the initial potential.

We assume that neuronal firing takes place, and con-
sequently an action potential (spike) is observed, when-
ever the neuron’s membrane potential X (¢) reaches the
firing threshold S(¢) and that the membrane potential is
then instantly reset to the initial membrane potential x,.
The threshold potential S(z) is commonly taken to be
a deterministic time function. However, we shall assume
throughout this paper that it is constant, ie, S(f) = S.
The interspike interval (ISI) is then represented by the
random variable

Ts=inf{t>0: X(®) =S}, X(O0)=x0<S @)

namely, by the first-passage time (FPT) through S of the
process X (t) conditional on the initial value x,. Although
we call X(t), xo, and S the membrane potential, the initial
potential, and the threshold, respectively, we assume in
the sequel that these symbols imply the differences be-
tween respective potentials and the membrane resting
potential, for the sake of convenience. The FPT probabil-
ity density function (pdf)

g(t|S,xo)=§ZP{Ts<t}, 0<t<

is thus appropriate to describe the time interval elapsing
between successive spikes. In other words, it is assumed
that the ISIs are generated in accordance with a renewal
process associated to the FPTs (T). Therefore, all theor-
etical studies on diffusion neuronal models are ultimately
focused on the FPT problem for the underlying process.
Despite the conceptual simplicity of most diffusion mod-
els, it is hard to solve the corresponding FPT problems as
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in general they are analytically intractable and numer-
ically difficult to handle.

The first diffusion model for neuronal activity was
suggested by Gerstein and Mandelbrot (1964). In this
model — also known as the Wiener or perfect integrator
neuronal model — the membrane potential X(¢) is de-
scribed by a Wiener process with positive drift, i.e., by the
diffusion process defined by (1) with

p()=pu>0, a(-)=0>0 3

The parameters ¢ and ¢ denote, respectively, the mean
input per unit time to the neuron and the positive square
root of the variance per unit time (drift and infinitesimal
standard deviation). The FPT pdf for this model, which is
the theoretical counterpart of the ISI histogram, is the
well-known inverse gaussian distribution (IGD). How-
ever, it should be stressed that this is a model too simple
to be realistically viewed as suitable to describe the neur-
on’s membrane potential in general.

In the OU model, also known as the leaky integrator,
the underlying diffusion process X(t) is specified by

W)= ==+ 4 o) =0>0 @)

where u is the mean input per unit time to the neuron, o2
the variance per unit time, and t the membrane time
constant ( — o0 < u < 00, 6 <0, > 0). For any value
of p, the first-passage through § is a sure event
(P{Ts < o0} = 1). This model, that realistically includes
the spontaneous decay of the membrane potential to the
resting value, is generally accepted as the simplest and
most reasonable compromise for modeling the spontan-
eous activity of neurons in the central nervous system,
and it is also used as a basis for the most common
stochastic models of single neurons (Ricciardi 1976, 1977,
Tuckwell 1988, 1989; Lansky et al. 1990; Rospars and
Lansky 1993).

The OU process, which is also appropriate to de-
scribe a variety of fluctuating phenomena besides neur-
onal discharges, has been widely analyzed. In particular,
an expression for the Laplace transform of the FPT pdf
has been obtained (Roy and Smith 1969), and by using
a singular point analysis of the Laplace transform, the
FPT pdf has been expressed as an infinite sum of ex-
ponential functions with negative exponents (Ricciardi
and Sato 1988). Numerical methods for the evaluation of
the FPT pdf have also been proposed (Buonocore et al.
1987), since manageable analytical results are scarce and
fragmentary. Because of the unavailability of closed-form
results for the FPT pdf, a considerable amount of work
has been directed to the study of the FPT moments.
Explicit moment formulas have been given (Keilson and
Ross 1975; Nobile et al. 1985; Ricciardi and Sato 1988),
while the asymptotic behavior of the pdf as well as of
moments has been studied (Tuckwell 1982; Nobile et al.
1985; Ricciardi and Sato 1988; Giorno et al. 1990). The
formulas for the moments, however, are rather cumber-
some, so that numerical evaluations constitute a formi-
dable task.

More realistic models, such as those that take into
account the reversal potentials (Capocelli and Ricciardi
1973; Hanson and Tuckwell 1983; Smith and Smith 1984;
Lansky and Lanska 1987; Giorno et al. 1988), have also
been proposed, but it is usually impossible to obtain their
FPT pdf’s. In the rare cases where this can be done, the
FPT pdf is in the form of a rather complicated function
whose behavior is hard to discern. This is the reason why
models more realistic than the Wiener one, such as the
OU model, have not been analyzed so far with reference
to real experimental data (Tuckwell and Richter 1978). In
particular, the problem of the parameters estimation for
the OU model has not been considered on a rigorous
quantitative basis.

As for the experimental evidence, we recall that the
spontaneous firings of single neurons in the central ner-
vous system have been often systematically recorded and
analyzed (see, for instance, Correia and Landolt 1977;
Anastasio et al. 1985; Lansky and Radil 1987; Levine
1991; see also the references in Tuckwell 1988). Stationar-
ity and independence of neuronal spike series have been
discussed, and the frequency distribution of the observed
ISIs has been fitted by means of theoretical distributions
such as gamma, IGD, and log-normal, and the goodness
of fit has been discussed.

According to the above investigations, the fitness of
the data of IGD or log-normal distribution is good.
However, this is a purely phenomenological approach in
which values of physicobiological variables relevant to
the real neuronal firings, such as the intensity or the
variance of synaptic input, cannot be estimated because
such distributions do not arise as a consequence of the
consideration of any physicochemical process underlying
spike generation. Instead, methods to estimate the values
of parameters such as u(-) and a(-) have been proposed
by observing not the extracellularly recorded spike se-
quences but the intracellularly recorded subliminal mem-
brane potential fluctuation (Lansky 1983; Lansky et al.
1988; Habib 1992).

In the present paper, we assume that the neuronal
firing is modeled by the OU process and propose
a method to obtain quantitative evaluations of the input
parameters x4 and ¢ from the first and second sample
moments of ISI based on the OU model in which physio-
logically plausible values of the ‘intrinsic’ parameters xo,
S and 1 are preassigned. The dependence of estimates
ft and & on the assumed values of parameters x,, S, and
7 is then clarified on the basis of extensive and systematic
numerical computation results.

The relation between the moments of the observed
ISIs and the estimates ft and & is established by using the
mean ISI and its coefficient of variation (CV = standard
deviation/mean). It should be stressed that the CV is
widely used by both theoretical and experimental neur-
obiologists as it is appropriate to quantify the degree of
regularity, or of randomness, of a spike train. A table will
be given in which the values of i and & have been
estimated by means of physiologically plausible pairs of
the first- and second-order moments. A comparison
based on the Wiener model and on the OU model will
finally be performed between the values of parameters
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Fig. 1. Ornstein-Unlenbeck first-passage time probability density func-
tions (OU-FPT pdf’s) for various pairs of y and ¢. All pdf’s are obtained
by setting xo =0,S =15,and t =5.In(a) o = 1 and u =2.5,3.0, 3.5,

estimated for the ISIs observed from neurons in mesen-
cephalic reticular formation of cat during hypothetical
sleep, slow-wave sleep stage, and wake stage.

2 The FPT problem for the QU neuronal model

2.1 Normalization of the OU process

As we have seen in Sect. 1, the FPT pdf of the OU process
to a constant boundary, which is the theoretical counter-
part of the ISI histogram, depends on the five parameters
i, o, S, xo, and 1, where gy and ¢ are related to the
neuronal input, whereas S, xo, and 1 are intrinsic or
characteristic parameters of the neuron. The FPT pdf’s
for various pairs of input parameters are plotted in Fig. 1,
where we have set xo =0, S = 15, and © = 5. They have
been obtained numerically by means of the algorithm
proposed in Buonocore et al. (1987).

To reduce the number of parameters in (1) with (4), we
make use of the transformation

X = 2ot (x — 1), = % )

21

025

0.20 ~

i 0.15 -

0.10 ~

0.05 —

0.00

0.25 o= l 0 d' u___3
—

0.20 —
- o=

4w 015 / o=4
0.10 < / o=1

-~

0.05 -

0.00

T T ‘
0 10 20 30 40 50

t msec

40;in(b) 6 =10andu= —6, —3,0,3;in(c) u= —3ando =7,10,
13;andin(d) p=3ande=1,4,7,10

The process X(t) defined as a solution of (1) with (4) is
then transformed into the process X'(¢') which satisfies

dX'(¢') = — X'()dt’ + . /2dW (), P{X'(0)=¢} =1
(6)

with new initial state £ and new threshold 5 given by

& = /2/a%t(xo — 1) (7a)

n=2c*t(S —p1), —0 <E<n< o (7b)

We shall refer to X'(¢') as the ‘normalized’ OU process. It
is not difficult to prove that the following relations hold:

d 1
965, 1%0) = 9’01, ¥ 19| 5 | = - ¢ 210) (8)
ma(S|x0) = My (11¢) (8b)

where g(S, t|x,) is the FPT pdf of X(1), g’'(n,t'|¢) is that of
X'(t'), and where forn=1,2,. ..

!

ma(S|xo0) = | t"g(S, t]x0)dt,
0o

M n]é) = }:(t')"g'(n, ¢1¢)dr’
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denote the moment of order n of the FPT of X (t) and of
X'(t), respectively. Note that X(f) and X'(¢') possess
identical coefficients of variation. Hence, in the sequel
such a coefficient of variation will be denoted for both
processes by the unique symbol CV.

The FPT of the normalized OU process to a constant
boundary » is a random variable depending on the two
parameters (£, 1), and hence via (8), the FPT of the OU
process to a constant boundary S is a random variable
depending on the triplet of parameters (&, #, 7).

2.2 FPT moments

There exist several alternative formulas and analytical
approximate results for the moments M,(n|&) of the
normalized OU process (Keilson and Ross 1975; Tuck-
well 1982; Nobile et al. 1985; Ricciardi and Sato 1988).
They are all very cumbersome and thus hard to use for
reliable numerical computations.

Let us employ the following explicit expressions by
Ricciardi and Sato (1988) for the first two moments:

Mi(n|&) = ¢1(n) — ¢1(8) (%a)
My(n1&) =243 (n) — ¢2(n) — 201 (mP1(E) + $2(8) (9b)

where we have taken 5 > £ In (9), the expressions for
éu(2), k = 1, 2 are given by:

B = 3 (‘/jz)" r (f) PP

= 2/

pi) =1, piP =y n/2) — (1) (10b)

where I'(y) and ¥/(y) denote the gamma function and the
digamma function, respectively. Expressions (10) are use-
ful for numerical calculation of ¢, (z) whenever z > 0 and
|z| is rather small. If, instead, z <0 and |z| is large,
alternative expressions must be used, as we shall see in
the sequel. Indeed, for z < 0, the evaluation of ¢,(z),
which is an alternating series [see (10)], becomes harder
and harder as the value of |z| grows larger, because of
canceling effects. Hence, a different method is needed to
estimate ¢,(z) when z is negative and rather large in
absolute value. Good approximations of ¢,(z) can be
obtained in such cases, by making use of the following
results due to Keilson and Ross (1975):

61 (2) > — <KB + log|z] + i %) (11a)

(k=1,2,...) (10a)

1
$2(z) =2 [Kn + Kploglz| + 3 (log|zl)*

d log|z it
+ Y b gl v %] (11b)
k=1 4 k=172

where Kp = 0.63518142, K = 0.818578 and

_(’*1)"—1(2""‘2)! . G+
=TT T T Ty
Ck=ak+bk dk=ck—(2k—1)dk_1

G+y Gy
gk=KBbk_W_ﬁ

Expressions (10) and (11) have been used to evaluate
¢x(z) at z = — 7, and results from both expressions are in
excellent agreement.

3 Parameter estimation from first and second
FPT moments

3.1 Method of moments

Suppose that first and second sample moments (m,, m,)
of ISI are obtained from an experiment. Because the
theoretical counterpart of the ISI is the FPT in the QU
model, we can equate sample and FPT moments:

™ (&) =m, (12a)
2 M, (n)&) = m, (12b)
or, alternatively to (12b),
VMa@18) — Mit€)
=CV
M%) ¢ (129

Let us now assign a reasonable value to 7, which is
legitimate since t is one of the intrinsic neuronal para-
meters. Making use of analytical and/or approximate
expressions (9) for the moments M, (n| &) and M,(n|¢&),
we can then obtain estimates £ and # by numerically
solving (12). Finally, by virtue of (7), we are led to the
estimates i and & of the input parameters from the
estimates ¢ and #:

PPl &=\/3.S X 13

¢ ih-¢
where X,, S, and 7 denote the assumed values of intrinsic
neuronal parameters x,, S, 7. The difference S between
threshold and resting potential can be assumed to be of
the order of 10-20 mV and the time constant t to range
from 1 to 20 ms in different neurons (see, for example,
Kandel and Schwartz 1985). The difference x, between
the initial membrane potential and the resting potential
will be taken as zero in the simplest case.

The FPT pdf ¢'(#,t/7|#) can then be obtained by
a numerical method (see, for instance, Buonocore et al.
1987), and hence via (8a) one can obtain the FPT pdf
g(S,t] Xo) which corresponds to the ISI histogram of the
neuronal model with assumed S, X, and T as the values of
its intrinsic parameters and with ji and & as the estimates
of input parameters.

When one solves (12), due to the circumstance that
M (n| &) and M,(n| &) have been obtained as sums of
power series in £ and #, their derivatives with respect to
¢ and n can be calculated. Equations (12) can then be
solved with respect to £ and n by standard methods, such
as Newtons method. [Approximate expressions for
d¢(z)/dz when z is negative and large in absolute value
can also be obtained by formally differentiating the right-
hand side of (11) with respect to z.] However, it must be
pointed out that for an effective implementation of New-
ton’s method, an appropriate choice of the initial value is
required. To overcome the difficulty inherent in the




Table 1. Estimated parameters & and # obtained from the FPT moments via (12). The FPT moments have been computed by
means of the moment formulas (9) via (8b) for choices (t*, ¢*, n*). The computed FPT moments m; = t* M, (y*]{*) and
my = %2 M, (n* | £*) were obtained numerically in two ways, i.e. by an accuracy to five decimal digits (m{® and m5”) and two
decimal digits (m$ and m$@"). The estimates & and #® are obtained from m{® and m$ and &® and #® from m{ and m$
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C* ’I* mSS) m?) 3(5) ;’(5) msz) mgz) E(Z) ﬁ(z)
1 3 84.838 14616 1.0000 3.0000 85 15000 1.4 30
-3 -1 0.88044 1.0684 —3.0001 - 1.0001 0.88 11 —-28 —0.89
choice of the initial point, Newton’s method and a con- a
tinuation method (see, for instance, Ortega and Rhein- 40 CV=03 cCv=05
boldt 1970) have been combined. ‘ cv=07 CV=09
In order to check the validity and effectiveness of our ) /.
numerical computation mentioned above, we have ap- s/o:
plied it to some test cases. The values t*, £*, and n* of e 1
parameters 1, £, and # have been preassigned, and the <3 20 Cv=10
FPT moments t* M,(n* | *) and t*2M,(n*| *) have
been computed numerically with different accuracies for 40 Cv=12
such choices by means of (8b) and (9). By m{® and m$”, we 60 -]
indicate an accuracy to five significant digits by m{? and Cv=15
m$ an accuracy to two significant digits. The results are ey =

shown in Table 1. It is evident that the estimates £ and
#i® are characterized by an excellent precision. It is also
clear that estimates &2 and #® do not differ too drasti-
cally from estimates & and #*® of m{® and m$. This
indicates that our method is not very sensitive to the
measurement error of the sample moments m, and m,

and that it is stable.

3.2 Dependence of estimates on FPT moments

Let us consider the quantities j7 = j7(M;,CV) and
8/ = &ﬁ(M 1, CV) as compound functions of the

normalized mean M (= m,/t) and of the coefficient of
variation (CV) = CV of the FPT. From (13), we have

%o — ES S—x
ﬁf=f”‘+’£, 8 /7= /2220 (14)
h—< A—&
Note that the estimated mean input 47 and its variance
627 per time duration 7 depend only on the two quantit-
ies M, and CV. Using this remark, we shall provide

numerical tables (cf. Tables 3 and 4) in which jif and &\/1'_:
are displayed for a variety of values of M, and CV. For
any fixed 7 the desired estimates of i and & will then
follow. Although we have set § = 15 and %, = 0 as a real-
istic possibility to obtain Tables 3 and 4, the effect of
different choices of § and X, on the estimates f and & will
be considered in the following section.

Figures 2 and 3 show the dependence of the estimated

input mean T and the standard deviation &\/% on the
normalized FPT mean M, and CV for the choice (X,
§) = (15, 0). As shown in Fig. 2a, when CV > 1, i
decreases as M, increases and is negative except for small
values of M. The sign of it changes around M; = 6.5
when CV =1, and the value of M; where a change of
sign takes place becomes smaller as the CV grows larger,
as shown in Fig. 2a. When CV < 1, it decreases as M,

Ml
bso
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: cv=Ls
b
40
© cv=12
cv=05 /
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CV=07 CV=09 CV=10
VAN 4
0T

Fig. 2a, b. Dependence on the normalized FPT mean M, of the esti-
mated input parameters for various fixed values of the coefficient of
variation (CV), with X, = 0 and § = 15. (a) Dependence on M, of the
estimated mean input 7 per time duration 7; (b) dependence on M, of
the square root of the estimated input variance 62 7 per time duration 7

increases to reach its minimum and then increases to
approach asymptotically the threshold value (§ = 15).
Figure 4a shows the minimum of A7, (4T )., for various
choices of CV < 1. Note that it is almost always positive
when CV < 1. From the plots of the results of our com-
putations it is evident that an increase of the FPT mean
does not necessarily imply a decrease of the input mean
[iT: A result that is as interesting as unexpected and that
appears to have passed so far unnoticed.

As for the quantity &\/1'?, this has a minimum for each

CV > 1 (see Fig. 2b). Such a minimum, (&ﬁ)min, has
been indicated in Fig. 4b. In contrast to the behavior of
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Fig. 3a, b. Dependence on CV of the estimated input parameters of the
FPT for various fixed values of M, and for X, =0 and §=15. In
(a) the dependence on CV of the estimated mean input 4% per time
duration 7 is shown, whereas in (b) the dependence on CV of the square
root of the estimated input variance 627 per time duration 7 is indicated

(1T )min» the relation between CV and (&\/%)mi,, appears to

be almost linear. The estimate 4. /7 strongly depends on
the CV, and the diversity of the means seems to be rather

ineffective (cf. Fig. 3b). If (81/)mi is estimated via CV,

then a rough approximation of &\/% also follows. Indeed,
as Fig. 2b shows, for each fixed CV the corresponding

quantity &\/% does not vary rapidly with M,. Moreover,

the estimated quantities &\/% remain clearly distinct as
CV is varied.

It is meaningful to remark that, as Fig. 2a and Fig. 3a
indicate, for most of the region of variability of M, and
CV the ensuing estimated quantity 47 is below the firing
threshold (§ = 15 in figures). Under such conditions no
output would be released by the model neuron in the
absence of randomness [namely, if ¢ — 0 in (4)], i.e., in
the limit of a deterministic model. The presence of ran-
domness thus ensures the existence of a firing activity by
the model neuron (see Fig. 2b).

3.3 Dependence of estimates on intrinsic parameters

For the estimation of the input parameters y and o,
values for the intrinsic parameters S, xo, and T must be

20
a b
g 10 g
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o
1 34 =
ey e
~ ©
0 -’
-10 L L A 'l i ‘o
0.0 0.2 04 0.6 08 1.0 1.0 1.2 1.4 16 1.8 2.0
(4 Cv

Fig. 4a, b. The minimum of the estimated input parameters for various
choices of CV. (a) The minimum of /7 for various choices of CV < 1;

(b) the minimum of &,/ for various choices of CV > 1

assumed. As is well known, the values of S and 7 in
general depend both on the type of neuron and on its
state. Although the initial state x, is often set to zero, we
can set it to any value. For instance, by setting
xo = — 10 mV the effect of afterhyperpolarization can
be taken into account. We shall now discuss the depend-
ence of /i and & on the values of X, S, and 7.

First of all, consider the effect of the assumed values
Xo and S on the estimates /i and 6. Suppose now that 2,
and &, are the estimates obtained from the choices T,
%o = Xo1 and § =8, and fi, and &, are those from 7,
Xo = Xg3, and § = §,. From (13), we obtain the relation
between fi; and fi; and that between &, and &,:
El__ﬁfm—fsl ﬁ_sl—'fm (15)
ﬁZ ﬁfoz — 38_'2 ’ &2 S2 - f02
In the particular case Xy, = X0, = 0, from (15), we have
the simple linear relations
b ad (16
7] 2 02 S

The dependence of the estimated input parameters on
the time constant 7 is more complicated. Figure 5 shows
the changes of the estimated input parameters i and ¢ as
a function of 7 for fixed values of the FPT moments
(my =20, CV =05, 0.8, 1.0, 2.0), where we have set
%o = 0and § = 15. We recall that the OU process yields
the Wiener process in the limit when the time constant
7 tends to infinity [see (3) and (4)]. In Fig. 5, i, and 6,
denote the mean input per unit time to the neuron and
the standard deviation per unit time for the Wiener
model estimated from the same values of moments via
the closed from expressions

7

. . .. [my—mi _ _ CV
Gu=0E—%) [——=—=F—%)—=
m ~/ My

Parameter ,, is proportional to the firing rate (m; ') and
is always positive. The estimated standard deviation &,,
of the input per unit time is proportional to CV for fixed
m; and decreases as m, increases.

(18)
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Fig. 5a, b. Dependence of the estimated input parameters on the preas-
signed time constant 7 for fixed values of the FPT moments, where we
have set m, =20 and CV = 0.5, 0.8, 1.0, and 1.2, respectively, and with
the choices X, = 0 and § = 15. (a) Dependence of /1 on 7, where f,,
denotes the estimated drift for the Wiener model; (b) dependence of
& on %, where 62 denotes the estimated infinitesimal variance for the
Wiener model

The estimated parameters for the OU model depend
nonlinearly on the assumed value 7. Indeed, the estimates
fi = [i(7) and & = 6(7) change largely with 7 for small
values of 7 with modalities that vary according to the
values of CV. Indeed, as shown in Fig. 5, fi(7) decreases
monotonically when CV < 1 and increases when CV > 1
to approach fi,, in both cases. In particular, we note that
the sign of fi(7) depends on the assumed value of 1 when
CV = 1. Since the sign of fi(7) indicates whether excita-
tory inputs prevail over inhibitory inputs, or vice versa,
an observed change of the sign of fi(t) when the assumed
value 7 is changed does indicate a qualitatively significant
different result for the estimated parameter. As for the
estimate &, Fig. 5b shows that for CV > 1, 6(7) decreases
to approach &, asymptotically, whereas if CV < 1, (7)
initially increases and then decreases to approach &,
asymptotically. Note that the speed of convergence to &,,
decreases as CV increases. Hence, the assumed value of
7 used in the estimation considerably affects the resulting
estimated values of parameters.

Figure 6 depicts the dependence of the estimated FPT
pdf on 7 for the OU model. Figure 6a shows the case
when m; = 20 and CV = 0.5, Fig. 6b refers to the case in
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Fig. 6a—c. Dependence of the estimated FPT pdf on 7 for the OU
model: (a) m; =20 and CV=05; (b) m;y =20 and CV =08;
(¢ my=20and CV =12

which m; = 20 and CV = 0.8, while Fig. 6c depicts the
case my; = 20 and CV = 1.2. It should be remarked that
the dependence of the pdf on 7 is much greater in the case
of CV =1.2 (Fig. 6¢) than in CV = 0.8 (Fig. 6a) and
CV =0.5 (Fig. 6b), which pinpoints the critical role
played by CV in this respect. Furthermore, we remark
that the shapes of pdf’s for different values of 7 in the case
of CV = 0.8 look alike.

3.4 Comparison of the estimates of input parameters
between the Wiener model and the OU model

In this section, we compare the estimated input para-
meters (flo, &) for the OU model with those (i, &,,) for
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Fig. 7a—d. Comparison of the estimates of input parameters as func-
tions of m,, between the Wiener model (dotted line) and the OU model
(solid lines) for the following values of the time constant: T = 1, §, 20.

the Wiener model. Figure 7a and ¢ show the values of i,
and [ip for T = 1, 5, 20 as functions of m, for fixed values
of CV. Similarly, the values of &, and &, have been
plotted in Fig. 7b and d. In agreement with a straightfor-
ward theoretical argument, for very small values of m;,
the estimated parameters for both models are similar,
and the range of similarity widens up with 7. As m, grows
larger, the difference in behavior of fi,, and ji, depends on
the values of CV, as for instance shown for T = 1, 5 in Fig.
7a (CV = 0.8) and in Fig. 7c (CV = 1.2). Moreover, when
CV 2 1, jip for T = 1, 5 is negative unless m, is very small,
whereas [1,, is always positive, whatever m;. A remark-
able different behavior of ,, and 6, is instead observed in
the case CV =1.2 for T =1, 5 (see Fig. 7d). On the
contrary, it is apparent that the estimated parameters for
both models behave similarly for 7 = 20 over a wide and
physiologically significant range of m,, even though their
differences increase with m;.

In conclusion, the role of time constant T is to en-
hance similarities between the OU and Wiener models
for large 7 and discrepancies for small 7. Hence, if the
ratio My = m,/7 is small, the OU and Wiener models
yield similar input parameters. On the other hand, if M,

<©

d Cv=12
30 4
25 -
o 20 — -
) _ =5 Wiener model
a \a =20

e,
soermecsvoness

(a) Values of j versus m; for CV = 0.8; (b) values of & versus m, for
CV =0.8; (c) values of ji versus m, for CV = 1.2; (d) values of & versus
m; for CV =12

is large, one is led to relevantly different estimates of the
neuronal input parameters ji and 62

4 Analysis of experimental data

Spontaneous activities of several neurons in the mesen-
cephalic reticular formation (MRF) of head-restricted
cats have been recorded in order to investigate their
dynamic properties during sleep and wake: during slow-
wave sleep (SWS), paradoxical sleep (PS), and the attent-
ive state of bird watching (BIR) (Yamamoto et al. 1986).
In this experiment, one could extract activities of a single
neuron even though recording was done extracellularly.
A set of data consists of 5000 ~ 50000 ISIs depending on
the neurons and their states of consciousness. All ISI
histograms constructed from these data exhibit unimodal
shapes. We have compared the OU and Wiener neuronal
models by determining if the changes of the values of the
estimated input parameters are indicative of the varying
level of consciousness of the cat. Such a goal has been
achieved without any need to proceed to a detailed quant-
itative comparison of the estimated values of parameters.
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Table 2. Statistics of the interspike intervals (ISIs) for mesencephalic reticular formation (MRF) neurons under
different states of consciousness and the input parameters estimated via the OU model and the Wiener model. By PS,
SWS and BIR we have denoted the states of consciousness during paradoxical sleep, slow-wave sleep, and the

attentive state of bird watching respectively

~ a A

Group  Neuron State my Cv fio e do Gy
I ml13 PS 159 0.73 2.09 0.94 324 2.76
SWS 65.9 0.73 267 0.23 0.53 1.36
BIR 223 0.66 232 0.67 1.95 211
ml75 PS 202 0.69 223 0.74 232 229
SWS 494 0.57 290 0.30 0.20 121
BIR 127 0.66 3.00 0.12 0.00 0.88
II m171 PS 31.8 1.33 —4.57 047 12.5 3.53
SWS 372 1.41 —6.77 0.40 150 3.48
BIR 19.6 1.39 —4.15 0.77 137 4.71
m178 PS 284 1.07 —-0.70 0.53 6.96 3.02
SWS 51.9 1.19 —329 0.29 9.38 2.47
BIR 358 1.13 —1.74 042 8.01 2.84
a . b 50x10°
3 r/o N S : a. ml13BIR
i 1 9% 40+ <=+ Wiener FPT
2% = X o 2 Ut
o data
l 2 O ~ - - /T 104 f
1 ~ b=
6: = -X 6. —~ (o] -g.
L SO | X I 20
0 =:0 0 S
PS SWS BIR PS SWS BIR
state state 10
| c d
0 -
Re——mpg===0 15 x 1 T T 1 T !
N by I 5 l/ —— 0 20 40 60 80 100 120 140
\ o o t msec
(o]
3 o / ’ ! / ——
X X 5 I x 0.14
\ / 6::::'6:____0 012 b. m171.PS
-7 X 0 l l
Af <=+~ Wiener FPT
PS SWS BIR PS SWs BIR 0.10 e
state state o data
0.08
Fig. 8a-d. Estimated values of the input parameters for each MRF :g
neuron at each level of consciousness. Solid and dashed lines correspond 0.06
to the estimates for the OU and Wiener model, respectively. (a) Values
of f1, and ji, for each unit in group I. The cross corresponds to m113 0.04
neuron and the circle to m175 neuron. (b) Values of &,, and &, for group B
1 neurons. (¢) Values of f,, and i, for each unit in group II. The cross 0.02 ~[i
corresponds to m171 neuron and the circle to m178 neuron. (d) Values
of é,, and &, for group II neurons 0.00

Indeed, one of the aims to analyze the firing activities of
a neuron in the central nervous system by means of
mathematical models is to monitor any significant cha-
nges that might occur temporally of its input process as
a consequence of the change of the perception level, the
presence of long duration constant stimuli, etc.

In Table 2, the mean ISIs and their coefficients of
variation are shown for four MRF neurons (neurons
m113,m175, m171, and m178). The input parameters (i,

0 20 40 60 80 100 120 140
t msec

Fig. 9a,b. ISI histograms from the MRF neurons in cat (circles) fitted
with the OU-FPT pdf’s (solid line} and the Wiener-FPT pdf’s (IG
densitis, dashed line). (8} m113 neuron during BIR; (b) m171 neuron
during PS

6o) and (4, 6,,) estimated via the OU model and the
Wiener model, respectively, are also reported. We have
set Xo =0mV, §=15mV, and 7 = 5ms. We have as-
sumed that the firing process also during PS is a renewal



218

LLOET— O100T— ISTLI— 96%bT— LEOLI—  S9L6—  L99L—  STLS 016 —  6SIT—  9LT— 11g4¢ 66v1 001 00°ST 00°ST 00's1 00'sT 00°¢T 00°¢1 0008
LUSTT— LLL61— S¥691— STEVT — 08811 — 196 —  SSSL—  9E9¢ — ep8e—  LUIT—  pLT— £6'ET 6671 00T 00'StT 00°ST 00°s1 0061 00°s1 00'sT 00'8Y
oSTC—  $ES61— 08U —  LTTVI— LILII—  T6V6—  OvpL— EVes—  pLle— eL0T— TLT— plel 66'v1 0051 00°ST 00°sT 0061 0061 001 00'S1 00°9%
€9TT— TRT6I— 9091 — TE6El — LPSIT—  8¥€6—  OTEL—  LPVS— TOLE— STOT— OLT— 16°¢1 8691 00°S1 00°ST 00°S1 00°S1 00°sT 00°ST 00'ST 00'FY
L96IT— BI'061— ELTOT— OTLELI— OLEIT—  L6T16—  SEIL—  LVES—  LT9E—  TR6T—  L9T— STEL 1734 00°ST 00°ST 001 0051 00°ST 00°¢T 00'sT 00Ty
8§9IC— TVL8I— 6T09T— CUGEl— ORTII— ObO6— S90L—  €pZS— QSSE—  vE6T—  $9T— 96'C1 96'v1 0051 00°ST 00°S1 00°ST 00°ST 001 00'sT 000y
PEEIT— €SP8I — ELLST— 88TeI— T66OI—  9L88—  6769—  SETIS— OLPE—  S88I— 19C— £9°71 1{34! 001 00°ST 00§51 00°ST 00°S1 00°ST 00'ST 00'8¢
P660T — 6VIBI— VOSST— €S0ET— 68L0T—  POLB—  98L9— TTOS—  98EE—  PEBI—  8ST— Y44 16%1 00°S1 00°S1 00°S1 00°ST 00'¢T 0051 00's1 009¢
SE90T— 6T8LT— ITTST— 90°8C1— 9L'S0T — ET68—  LE99— £0'6b — 86T —  08LI— PST— 1284 88Vl 0051 00°ST 0061 00'sT 00'st 00°¢T 00's1 00%E
SSTT—  T6vL1— €T6PI— SPSTI— ISE0I—  €E€8— 9899 — 8LLy— 90T —  STLI— 0ST— 6£°T1 [4:34¢ 66'v1 00°S1 0061 00°ST 00°S1 0051 00°ST 00'Z¢€
€686 — €EILI— 909FI— 69TZI— CUTOT—  TEI8—  PIE9— L9 —  QUIE—  L99T—  SHT— 0601 YLYI 66v1 001 0061 0061 00°ST 00°ST 00°ST 00'0€
STP6T —  TSLOT— OLTPL— 9L61T— 19'86— 66— 6£19—  60SF—  O10E—  LO9T— OVI— LE0T €Il 861 00°ST 00°S1 00°ST 00°s1 00'sT 91 00'8C
89681 — SYE9T— TT6El— €9911— €666— €69L—  ¥S6S—  €9eh— £0'6C el —  eeT— 86 144 961 00T 00°61 00°¢1 0061 00°¢1 00'ST 00'9C
LLY81 606ST— 8USET— 6TEIT— 90°€6 — ISYL—  9S°LS — 80Ty — 16— 8Ly1— 9TT— ¥T'6 LTp 14348 6671 00°ST 00°ST 001 0osT 00°ST 00'%T
8V6l—  BEPST— VITEI— 69601 — L6638 — EIL—  ppss—  TWovy— 1LW9T— 80vi—  81T— $9'8 86°€1 6871 66v1 00°¢T 0061 00°ST 00's1 00°ST 00T
TLELL— 8T6PI— 999T1— 08601 — +998— re9— 9IS —  v9'8¢ — EVST—  pEEl— 80T — ¥0'8 09°¢l 18%1 86'v1 00°¢1 0061 00'sT 00°st 00'S1T 000
EVLOl — ILepT— LTI —  SSTI0T —  Z0'€8 — 6099 —  6905—  E€L9E—  LOPT—  ¥STI— 96T — erL el 891 [1:34¢ 66V 00°ST 0061 00°S1 00°ST 0081
6V09T — 9S°Lel— 8E9IT— 6896—  SO6L— 8LT9 — 08—  S9ve—  6STC— 6911 — 18T — £8'9 0s°Ct 12448 0671 86v1 00°S7 0061 00°S1 0061 0091
PLTST —  TLO0ET— 6E0IT— TLT6—  S9pL— Ires— sospb—  LeTe— 860C— 9L0T—  €91-— 9T9 8L'11 1454 08'v1 96'v1 86'v1 00°ST 00°ST 00°ST 00'v1T
86¢hl — 86TTI— V9LOI— 06S8—  ZTL69— wss—  SLW—  ¥86T—  0T61— eL6— 8¢'T — eLS 9601 S9°€l (424 0671 8671 661 0051 00°ST 001
88EET — OIVIT— 06S6—  ST6L—  OI'V9— 8E0S— v08E— Q0LT— OTLI—  LS8— o1 — 8T 6001 86'CI (414 LLYT £6'%1 861 00°S1 00°¢T 0001
OTIEr —  SC9TIT— 8LE6—  eVLiL—  95T9— ey— WLle— €9 — 99T —  ST8— 60— 81's L86 8LTT 811 wl 1671 86¥1 0061 00°ST 05’6
6181 — O160T— 9516—  €§SL— 9609 — SLLY—  L6SE—  TYST— 6091 — 164 — ¥80— 60°€ 996 85T S0v1 991 68°F1 Le¥] 66'F1 00's1 006
STSTI— €491 — ST68— SSEL— 6065 — w9 —  L8ve— 65V — 1§61 — 9SL— Lwo— ws N4 LETT 161 09v1 98¥1 96'v1 6671 00°ST 058
96121 —  +9€0l — T898— 8YIL—  SELS— 66vr—  elte—  TLET— 68¥1—  6TL— LS0— S6'b sT6 3441 9L’el [A% 4t [3:24¢ 132 6671 0061 008
198T1—  0L00T— 8T¥8— 169 —  €LSE— evey —  pSTE— 187C — SCPI—  089— Wo— 06y 90'6 €611 09°¢l 244 6LY1 1{32! 6671 1061 0S'L
80°STIT— 1946 — 1918~ T0L9 18°¢¢ — I61v—  8T1E— S®IT— LSET— 889 — €T0— L8V 888 I erel (3241 vLY1 (434 6671 10°61 00'L
SETIT— Sev6—  8L8L— 1999 — 6L'1S — IYor — 9667 — S80T—  S8TT—  €66— €00 — L8V €L'8 0S'11 STl (442! 69'%T 06T 6671 (4191 0s9
8e°L0l — 8806—  6LSL—  LOT9— S96b — 058 —  LS8T— 8L61—  60CI— PP — 1T0 68 658 et 80°¢l (1843 244} 6871 6601 €061 009
9T'e0T — 0718 — 19—  9¢65— 8Ly — P99t —  80LT— V98I — LTI 16V — 6v0 1134 058 A8 1671 66'€l 8Sv1 L8¥1 00°ST 1391 05°S
£9'86 sTe8 — 1769— 995 — 96y — S9veE—  6¥ST—  TYLl— 8801 —  Tev— 80 90'¢ A 66'01 9Lt 88'¢1 13941 L8V 061 60°ST 00's
SLe6—  Q06L—  ¥SS9—  vEES—  SETY — 1§ce— 8LeC— 6091 —  0b'6— §9'¢ — (A £TS Sv'8 0601 971 08¢l 4} g4 Lost STST oSy
SP88—  8EVL—  LSI9—  966b—  TI66E — 8T0E— 0617 €9Vl — 1€8 — 887 — oLt (143 123 6801 0971 LLETL 1571 1341 9161 sTsl 007
€978 —  T€69— 1TLs — ST —  ov9L— 19— €861 66T —  90L— 86’1 — [4%4 88'S SL'8 6601 91 [4: 328 (S 4¢ 90°sT [4%9! 144! 05t
LI9L—  69¢9— 9¢T8— TUW— T6TE— wye— Wil — - 65 — 980 — eTe Sv'9 145 9TTL 98Tt [£1248 [4:843 (429 196t SLST 00'e
$889—  TELS—  S89Y—  OpLE— €6'87 — 8¢'1T — ILyr— 988— 8L¢ — LSO 1544 wL 86 18711 Seel 1441 6T°S1 181 €191 6791 0sT
e09—  L86b—  BEOV—  €8TIE—  9IVT— eeLT— 6T 009 — o'l — 1324 06°S 0L'8 10771 98'C1 (434! WSl I LL91 1Lt 6CLY 00T
€86 —  L9Oy—  TETE— 6LVT— Y081 — wir—  699— 00T — 00T 65°S 658 [491¢ wel (434! 691 veLl A 3¢ 8981 $0'61 $T61 0s'1
L9se—  S6LL—  P60T— 1901 — 168 — 08¢ — 0Lo oLy 618 T 13:411 8091 S6'LT 05°61 Loz SL1T 17T L0eT SY'eT 99'€T 00'T
V6 — 85'¢ — 9Ly 799 €011 005t LS81 SLIT 39 74 Lz yT6T 1A 13 pLTE 1Tve STsE L19¢ 06'9¢ SyLE £8°LE S0'8¢ 050
00T 06’1 08’1 oLt 091 (U ov'1 0e'T 0Tl o1l 001 060 080 00 090 050 ov'o 0¢'0 0T’o 010 AOMN

61 =S ‘0= °X 198 2A®Y M 3ISH "AD pue

T sousnels LdA-NO PAZI[EWLIOU 9Y1 Jo uonounj € se 1 jo sanjea pajeunsy ‘¢ dqBL



Table 4. Estimated values of &ﬁ as a function of M, and CV for the same choice %o and § as in Table 3
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CV
M,

010 020 030 040 050 060 070 080 090 100 110 120 130 140 150 160 170 180 190 2.00

050 206 416 632 858 1095 1346 1612 1896 2198 2520 2864 3230 3621 4037 4480 4950 5450 5981 6543 7137
100 134 273 423 587 767 965 1184 1426 1692 1983 2302 2650 3029 3441 3887 4368 4886 5443 6040 66.79
150 095 198 315 449 604 781 982 1210 1467 1754 2073 2425 2814 3239 3704 4210 4758 5350 59.88  66.72
200 069 147 242 356 494 658 851 1074 1330 1620 1945 2308 2710 3153 3640 4170 4747 5372 6047 6771
250 050 110 187 286 411 566 754 976 1234 1529 1863 2238 2655 3116 3623 4178 4782 5436 6142 69.02
300 035 081 144 230 344 492 676 898 1160 1462 1806 2194 2626 31.05 3631 4208 4835 5516 6251 7041
350 025 060 110 184 288 429 610 833 1100 1410 1765 2165 2612 3107 3652 4248 4898 5602 6362 7179
400 018 043 084 147 241 374 552 777 1050 1369 1734 2147 2607 31.18 3680 4294 4964 5689 6472 73.13
450 012 031 064 117 201 327 501 728 1006 1334 1710 2135 2609 31.34 3712 4343 5030 5775 6578 7441
500 008 023 048 093 167 285 456 684 968 1305 1692 21.28 2615 3154 3746 4393 5097 5859 6681 7563
550 006 016 036 073 139 248 414 644 934 1279 1677 2125 2624 3175 3781 4443 5162 5940 6779 76.79
600 004 011 027 057 114 215 376 606 903 1257 1665 2124 2634 3198 3817 4492 5225 6018 6872 77.89
650 003 008 020 044 094 185 341 572 874 1238 1656 21.25 2647 3222 3853 4540 5287 6093 69.62 78.94
700 002 006 015 034 077 160 309 539 847 1220 1648 2128 2660 3246 3888 4587 5346 6166 7048 7993
750 001 004 o011 027 062 137 279 508 823 1204 1642 2132 2674 3271 3923 4633 5404 6235 7130 8088
800 001 003 008 021 050 117 251 479 799 1190 1637 2137 2689 3295 3957 4678 5459 6302 7208 8L79
850 001 002 006 0.16 041 100 226 452 777 1177 1634 2143 2704 3319 3991 4722 5513 6366 7283 8265
900 000 001 004 012 033 085 203 426 756 1165 1631 2149 2719 3343 4024 4764 5564 6428 7355 8348
950 000 001 003 009 026 072 182 401 736 1154 1629 2156 27.34 3367 4056 4805 56.14 6487 7424 8427
1000 000 001 002 007 021 061 163 377 717 1143 1628 2163 2749 3390 4088 4844 5663 6544 7491 8503
1200 000 000 001 002 009 031 102 292 646 1108 1627 2194 2810 3479 4206 4992 5841 6754 7733 8780
1400 000 000 000 001 003 015 062 222 584 1081 1632 2226 2868 3562 4313 5125 5999 6939 7945 90.19
1600 000 000 000 000 001 007 037 166 527 1058 1640 2259 2923 3638 4411 5244 6140 7102 8132 9230
1800 000 000 000 000 001 003 021 122 475 1039 1649 2291 2975 3709 4500 5352 6267 7249 8299 94.19
2000 000 000 000 000 000 002 012 088 427 1022 1660 2322 3023 3775 4582 5450 6383 7382 8450 9588
2200 000 000 000 000 000 001 007 063 382 1008 1672 2352 3070 3836 4658 5541 6489 7504 8588 9742
2400 000 000 000 000 000 000 004 044 340 996 1684 2381 3113 3893 4728 5625 6586 76.15 8714 9884
2600 000 000 000 000 000 000 002 031 301 984 1696 2409 3154 3946 4794 5703 6677 77.18 8830 100.14
2800 000 000 000 000 000 000 001 021 265 974 1708 2436 3193 3996 4855 5775 6761 78.14 8938 10134
3000 000 000 000 000 000 000 001 015 231 965 1720 2462 3230 4044 49.13 5843 6839 7904 90.39 10246
3200 000 000 000 000 000 000 000 010 201 957 1732 2486 3265 4088 4967 5907 69.13 7988 9133 10351
3400 000 000 000 000 000 000 000 007 174 949 1744 2510 3298 4131 5018 59.68 69.83 8067 9222 104.50
3600 000 000 000 000 000 000 000 005 150 942 1756 2533 3330 4171 5067 6025 7048 8141 9305 10543
3800 000 000 000 0.00 000 000 000 003 128 935 1767 2555 3360 4209 5113 60.79 7110 8211 9384 10630
4000 000 000 000 000 000 000 000 002 109 929 1779 2576 3390 4246 5157 6130 7169 8278 9459 107.13
4200 000 000 000 000 000 000 000 002 093 923 1790 2596 3417 4281 5199 6179 7225 8341 9530 10792
4400 000 000 000 0.00 000 000 000 001 078 917 1801 2616 3444 43.14 5239 6225 7279 8402 9597 10867
4600 000 000 000 0.00 000 000 000 001 066 9.2 1812 2635 3470 4346 5277 6270 7330 8459 9662 109.39
4300 000 000 000 0.00 000 000 000 000 055 908 1822 2653 3495 4377 5314 6313 7379 8515 9723 11007
5000 000 000 000 0.00 000 000 000 000 046 903 1832 2671 3519 4407 5349 6354 7425 8567 9782 11072

process (however, see Yamamoto et al. 1986), because our
aim in this section is to give an example of the application
of our estimation method and also to compare the input
parameters as estimated via the two alternative diffusion
models (Wiener and OU). The high reliability of the
available data as well as the existence of numerous ISIs of
very short duration have led us to ignore refractoriness,
as far as the present analysis is concerned. Analysis of the
sBontaneous activities of MRF neurons will be the object
of future investigations.

Let us focus our attention on the CV of the ISI. One
may classify the four neurons into two groups, depending
on whether CV is greater or less than unity. One group
(denoted as group I) consists of neurons m113 and m175,
in which CV < 1 for all three levels of consciousness. The
other (group II) consists of neurons m171 and m178, in
which CV > 1 for all three levels of consciousness. Figure
8 depicts the dependence of the estimated values of para-
meters on the levels of consciousness for each group.
Figure 8a and b refer to group I and Fig. 8c and d to
group II. For neurons in group I, though both models
yield positive estimates of the mean input y, the values of
[lo are much larger than those of fi,, and fi, attains
its minimum at the PS stage, whereas [, reaches its

maximum in the PS state for both neurons (Fig. 8a). The
changes of the estimates of ¢ for both models are instead
similar to each other for both neurons in this group, and
their sizes are rather close to each other for each stage
(Fig. 8b). For neurons of group II, the estimated values
[, are positive and orders of magnitudes are almost the
same as those for neurons of group I (see Fig. 8a, ¢ and
Table 2). On the contrary, the values of fi, are negative.
The values of 6, are much larger than those of ¢,, (Fig.
8d). Moreover, their behaviors when passing through the
different sleep conditions are fundamentally different for
the Wiener and the OU model.

By using 7 and the estimated parameters & and # which
are obtained in the estimation procedure (see Sect. 3.1), we
can also determine the estimated OU-FPT pdf. The ISI
histogram can, then, be fitted by the OU-FPT pdf. The ISI
histograms for neurons of group I are fitted well by both
OU-FPT pdf and by the IGD (i.e. the FPT pdf for Wiener
model), irrespective of the sleep stages (see Fig. 9a). On the
contrary, the fitting of the IGD to the ISI histograms for
neurons of group II is not as good as in the former case
(see Fig. 9b). Such results are in full agreement with the
conclusions earlier drawn on the theoretical comparison
of the two models (see also Fig. 6).
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5 Discussion

A quantitative analysis of spontaneous activities of single
neurons by means of the OU model in terms of the first
two moments of the ISIs has been proposed. The esti-
mated input parameters for this model can be obtained
either by encoding the above estimating procedure on
a computer or, more directly, by making use of Tables
3 and 4 for the estimated input parameters. Our tables
permit us to estimate the input parameters from the
sample ISI for the OU model no matter what values of
neuronal parameters are chosen. In such a sense, we may
say that Tables 3 and 4 provide the basic tool for neur-
onal parameters-fitting tasks.

We have checked the relation between the estimated
input parameters and the ISI statistics in the OU model.
The following conclusions clearly emerged

1. when the coefficient of variation is less than unity
(CV £ 1), an increase of the mean firing time does
not necessarily imply a decrease of the input mean fi.
A small amount of input noise considerably accelerates
the firing.

2. the value of the CV of the ISI plays a crucial role in
this estimation, and hence it would be a better indicator
of input parameters than the firing rate. Condition
CV < 1(CV = 1) roughly implies that ji, the mean input
per unit time, is positive (negative). For more details, see
text and also Tuckwell (1979), Wilbur and Rinzel (1983),
and Musila and Lansky (1991). The CV also reflects the
degree of irregularity in the input process.

The estimated parameters for the OU models with differ-
ent time constants and for the Wiener model have been
compared. The value of the time constant t affects con-
siderably the resulting estimated values of parameters. It
should be mentioned explicitly that in principle it is
possible to estimate input parameters u and o as well as
the time constant T by means of the first, second, and
third-order FPT moments for fixed values of x, and S.
This procedure has been explored by us and successfully
implemented. However, the parameters thus estimated
appear to be rather unreliable, being too much influenced
by small fluctuations of the FPT moments.

Comparison of estimated parameters for the two dif-
fusion models suggests that the Wiener model is not
suitable to mimic firing activities in which the firing rate
is rather low compared with the time constant (i.e. when
M, is not small), even if the fitness of IGD to the ISI
histogram is good. On the other hand, it appears that for
the estimation of input parameters the Wiener model can
be used in place of the OU model for neurons whose
membrane time constant is relatively large or for neurons
characterized by massive excitatory inputs and exhibi-
ting high frequency firing activity.

This estimation method has been applied to experi-
mental data of single neurons’ spontaneous activities in
the MRF of head-restricted cats during sleep and wake:
during slow-wave sleep, paradoxical sleep, and the at-
tentive state of bird watching (Yamamoto et al. 1986).
The time constant of the OU model was set to 5 ms, as

indicated in the literature for mammalian neurons (cf.
Wilbur and Rinzel 1983). Behaviors of estimated input
parameters when passing through the different sleep con-
ditions have been seen to be quite different for the Wiener
and OU models.
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List of symbols

X(t): The Ornstein-Uhlenbeck (OU) process

Ts: The first-passage time (FPT) to a constant boundary
§ for the OU process X(t) starting at x,

p: The constant drift of the OU process or the mean
input per unit time to a neuron for the OU model

i, fig: The estimate of u

fty: The estimated constant drift of the Wiener process
or the mean input per unit time to a neuron for the
Wiener model

g: The infinitesimal standard deviation of the QU pro-
cess or the input standard deviation per unit time to
a neuron for the OU model

d, o: The estimate of ¢

&, The estimated infinitesimal standard deviation of the
Wiener process or input standard deviation per unit time
for the Wiener model

Xo: The initial value of the OU process or the difference
of the initial membrane potential from the resting poten-
tial

S: The difference between the resting potential and the
threshold potential

7. The membrane time constant of a neuron

X0, S,and 7: A preassigned value for x,, S, and 1, respec-
tively

X'(t'): The ‘normalized’ OU process

&: The initial value of the ‘normalized’ OU process

n: The threshold value in the ‘normalized’ OU process

& and #: The estimate of & and n, respectively

g(t]S, xo): The FPT probability density function (pdf) of
the OU process X(t)

g'(t'|n,&): The FPT pdf of the normalized OU process
X't

my: The first moment about the origin of the FPT for the
OU process X(t) or the sample mean of the interspke
intervals (ISIs)

m,: The second moment about the origin of the FPT for
the OU process X (t) or the second sample moment of the
ISIs

M,: The first moment about the origin of the FPT for
the normalized OU process or the sample mean of the
ISIs normalized by © (M, = m/7)

CV: The coefficient of variation of the FPT of the OU
process X (t) and of the normalized OU process X'(t’) or
the sample coefficient of variation of the ISIs and of the



ISIs normalized by 7 (CV = standard deviation/mean)
PS, SWS, and BIR: paradoxical sleep, slow-wave sleep,
and the attentive state of bird watching

Appendix Tables of estimates

Tables 3 and 4 list values of 47 and &\/% as functions of the FPT mean
M, of the normalized OU process and of the CV, having fixed X, and
§ to the values 0 and 15, respectively. M, has been made to change in
the range of 0.5 ~ 50 and CV in the range of 0.1 ~ 2, both neuro-
physiologically meaningful. In those cases where values of x, = 0 and
§ = 15 are not appropriate for the neuron used in the experiment, the

estimates fiyT and &Nﬁ can be easily obtained from (15) as follows

. &Sy —n%on , Sy — Fon ,
ﬂN='—NlS—EON#n 0N=N—15(E‘7: (19

where Sy and Xy denote the new assumed values of the threshold and
of equilibrium state and where j, and &, denotes the estimated values
obtained from Tables 3 and 4. The values of & and # are obtained as

s_ 2 . . [2 -
(= [z, A= |5 k(15-7)
G; T liry

To illustrate our method for determing input parameters in the case of
arbitrary initial state and threshold, let us given an example. Suppose
we are given a set of data that we assume to be generated by a neuron
characterized by intrinsic parameters X, =0mV, §=10mV, and
7 = 5 ms. Let the sample mean m, of the ISI be 30 ms and its CV = 0.8.
Then the sample mean M, normalized by 7 equals 6. For the case

%o = 0and § = 15, the quantities /i and &ﬁ are obtained from Tables

3 and 4, respectively. We find 5, = 8.59 and \/E&, = 6.06, respectively.
As a consequence, fi, = 1.72 and &, = 2.71. These values correspond to
the choices X, = 0 and § = 15. From (19), we finally obtain fiy = 1.15

(mV/ms) and 6y = 1.81 (mV/,/ms) for the considered case § = 10 and

X():O-
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