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Abstract. For the Ornstein-Uhlenbeck neuronal model 
a quantitative method is proposed for the estimation of 
the two parameters characterizing the unkown input 
process, namely the neuron's mean input per unit time 
# and the infinitesimal standard deviation per unit time 
a. This method is based on the experimentally observed 
first- and second-order moments of interspike intervals. 
The dependence of the estimates ~ and # on the moments 
of the observed interspike intervals and on the neuronal 
parameters is clarified, and a comparison is made be- 
tween the estimates based on the classical Wiener model 
and those yielded by the Ornstein-Uhlenbeck model. 
Comprehensive tables are included in which the dis- 
played values of/) and ~ have been calculated in terms of 
physiologically realistic pairs of first- and second-order 
moments. Our method is finally applied to interspike 
interval data recorded from neurons in the mesen- 
cephalic reticular formation of the cat during hypotheti- 
cal sleep, slow-wave sleep stage, and wake stage. 

1 Introduction 

One-dimensional diffusion processes have been widely 
used as models to account for statistical features of spike 
trains recorded from single neurons belonging to com- 
plex networks in the brain. Among these, the Ornstein- 
Uhlenbeck (OU) process plays a central role because it 
naturally arises when starting from an equivalent electric 
circuit of the membrane potential of real neurons at 
subthreshold level. The corresponding neuronal model is 
thus referred to as the OU model. 

In general, diffusion models of neuronal activity arise 
when it is assumed, or proved, that the membrane potential 
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is described by a stochastic process X(t) that satisfies the 
stochastic differential equation 

dX(O = lt(X(t))dt + a(X(t))dW(t), P{X(0) = Xo} = 1 

(1) 

where W(O is the standard Wiener process,/~(') and a(-) 
are functions of X(t) accounting for neuronal input pro- 
cesses, and Xo denotes the initial potential. 

We assume that neuronal firing takes place, and con- 
sequently an action potential (spike) is observed, when- 
ever the neuron's membrane potential X(t) reaches the 
firing threshold S(t) and that the membrane potential is 
then instantly reset to the initial membrane potential Xo. 
The threshold potential S(t) is commonly taken to be 
a deterministic time function. However, we shall assume 
throughout this paper that it is constant, i.e., S(t) = S. 
The interspike interval (ISI) is then represented by the 
random variable 

Ts = inf{t t> 0: X(t) >>, S}, X(O) = Xo < S (2) 

namely, by the first-passage time (FPT) through S of the 
process X(t) conditional on the initial value Xo. Although 
we call X(t), Xo, and S the membrane potential, the initial 
potential, and the threshold, respectively, we assume in 
the sequel that these symbols imply the differences be- 
tween respective potentials and the membrane resting 
potential, for the sake of convenience. The FPT probabil- 
ity density function (pdf) 

a p{Ts<~t}  ' 0 ~ < t <  oo g(tlS, Xo) = -~ 

is thus appropriate to describe the time interval elapsing 
between successive spikes. In other words, it is assumed 
that the ISis are generated in accordance with a renewal 
process associated to the FPTs (Ts). Therefore, all theor- 
etical studies on diffusion neuronal models are ultimately 
focused on the FPT problem for the underlying process. 
Despite the conceptual simplicity of most diffusion mod- 
els, it is hard to solve the corresponding FPT problems as 
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in general they are analytically intractable and numer- 
ically difficult to handle. 

The first diffusion model for neuronal activity was 
suggested by Gerstein and Mandelbrot (1964). In this 
model - also known as the Wiener or perfect integrator 
neuronal model - the membrane potential X( t )  is de- 
scribed by a Wiener process with positive drift, i.e., by the 
diffusion process defined by (1) with 

~(-) = p > 0, o ( . ) = o > 0  (3) 

The parameters # and a denote, respectively, the mean 
input per unit time to the neuron and the positive square 
root of the variance per unit time (drift and infinitesimal 
standard deviation). The FPT pdf for this model, which is 
the theoretical counterpart of the ISI histogram, is the 
well-known inverse gaussian distribution (IGD). How- 
ever, it should be stressed that this is a model too simple 
to be realistically viewed as suitable to describe the neur- 
on's membrane potential in general. 

In the OU model, also known as the leaky integrator, 
the underlying diffusion process X(O is specified by 

x 
#(x) = - - + # ,  a(x) = a > O (4) 

T 

where # is the mean input per unit time to the neuron, a 2 
the variance per unit time, and z the membrane time 
constant ( - oo < # < oo, a < 0, z > 0). For any value 
of #, the first-passage through S is a sure event 
( P { T s  < oo } = 1). This model, that realistically includes 
the spontaneous decay of the membrane potential to the 
resting value, is generally accepted as the simplest and 
most reasonable compromise for modeling the spontan- 
eous activity of neurons in the central nervous system, 
and it is also used as a basis for the most common 
stochastic models of single neurons (Ricciardi 1976, 1977; 
Tuckwell 1988, 1989; Lhnsk~, et al. 1990; Rospars and 
Lfinsk~ 1993). 

The OU process, which is also appropriate to de- 
scribe a variety of fluctuating phenomena besides neur- 
onal discharges, has been widely analyzed. In particular, 
an expression for the Laplace transform of the FPT pdf 
has been obtained (Roy and Smith 1969), and by using 
a singular point analysis of the Laplace transform, the 
FPT pdf has been expressed as an infinite sum of ex- 
ponential functions with negative exponents (Ricciardi 
and Sato 1988). Numerical methods for the evaluation of 
the FPT pdf have also been proposed (Buonocore et al. 
1987), since manageable analytical results are scarce and 
fragmentary. Because of the unavailability of closed-form 
results for the FPT pdf, a considerable amount of work 
has been directed to the study of the FPT moments. 
Explicit moment formulas have been given (Keilson and 
Ross 1975; Nobile et al. 1985; Ricciardi and Sato 1988), 
while the asymptotic behavior of the pdf as well as of 
moments has been studied (Tuckwell 1982; Nobile et al. 
1985; Ricciardi and Sato 1988; Giorno et al. 1990). The 
formulas for the moments, however, are rather cumber- 
some, so that numerical evaluations constitute a formi- 
dable task. 

More realistic models, such as those that take into 
account the reversal potentials (Capocelli and Ricciardi 
1973; Hanson and Tuckwell 1983; Smith and Smith 1984; 
Lhnsk~ and L~mskh 1987; Giorno et al. 1988), have also 
been proposed, but it is usually impossible to obtain their 
FPT pdf's. In the rare cases where this can be done, the 
FPT pdf is in the form of a rather complicated function 
whose behavior is hard to discern. This is the reason why 
models more realistic than the Wiener one, such as the 
OU model, have not been analyzed so far with reference 
to real experimental data (Tuckwell and Richter 1978). In 
particular, the problem of the parameters estimation for 
the OU model has not been considered on a rigorous 
quantitative basis. 

As for the experimental evidence, we recall that the 
spontaneous firings of single neurons in the central ner- 
vous system have been often systematically recorded and 
analyzed (see, for instance, Correia and Landolt 1977; 
Anastasio et al. 1985; Lfinsk~, and Radii 1987; Levine 
1991; see also the references in Tuckwell 1988). Stationar- 
ity and independence of neuronal spike series have been 
discussed, and the frequency distribution of the observed 
ISis has been fitted by means of theoretical distributions 
such as gamma, IGD, and log-normal, and the goodness 
of fit has been discussed. 

According to the above investigations, the fitness of 
the data of IGD or log-normal distribution is good. 
However, this is a purely phenomenological approach in 
which values of physicobiological variables relevant to 
the real neuronal firings, such as the intensity or the 
variance of synaptic input, cannot be estimated because 
such distributions do not arise as a consequence of the 
consideration of any physicochemical process underlying 
spike generation. Instead, methods to estimate the values 
of parameters such as #(.) and a(-) have been proposed 
by observing not the extracellularly recorded spike se- 
quences but the intracellularly recorded subliminal mem- 
brane potential fluctuation (L~msk~ 1983; L~msk~ et al. 
1988; Habib 1992). 

In the present paper, we assume that the neuronal 
firing is modeled by the OU process and propose 
a method to obtain quantitative evaluations of the input 
parameters # and a from the first and second sample 
moments of ISI based on the OU model in which physio- 
logically plausible values of the 'intrinsic' parameters Xo, 
S and z are preassigned. The dependence of estimates 
ft and # on the assumed values of parameters Xo, S, and 

is then clarified on the basis of extensive and systematic 
numerical computation results. 

The relation between the moments of the observed 
ISis and the estimates ~ and ~ is established by using the 
mean ISI and its coefficient of variation (CV = standard 
deviation/mean). It should be stressed that the CV is 
widely used by both theoretical and experimental neur- 
obiologists as it is appropriate to quantify the degree of 
regularity, or of randomness, of a spike train. A table will 
be given in which the values of ~ and # have been 
estimated by means of physiologically plausible pairs of 
the first- and second-order moments. A comparison 
based on the Wiener model and on the OU model will 
finally be performed between the values of parameters 
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Fig. 1. Orns te in-Unlenbeck first-passage time probabil i ty density func- 
tions ( O U - F P T  pdf's) for var ious  pairs of/~ and a. All pdf 's  are obtained 
by setting xo = 0, S = 15, and ~ = 5. In (a) a = 1 and/~ = 2.5, 3.0, 3.5, 
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es t imated  for the ISis  observed f rom neurons  in mesen-  
cephalic ret icular  fo rma t ion  of cat  dur ing hypothet ical  
sleep, s low-wave sleep stage, and  wake  stage. 

2 The FPT problem for the OU neuronal model 

2.1 Normalization o f  the OU process 

As we have  seen in Sect. 1, the F P T  pdf  of the O U  process 
to a cons tan t  boundary ,  which is the theoretical  counter-  
pa r t  of the ISI  h is togram,  depends  on the five paramete rs  
#, a, S, Xo, and  T, where  p and a are related to the 
neuronal  input,  whereas  S, Xo, and r are intrinsic or  
characteris t ic  pa rame te r s  of  the neuron.  The  F P T  pdf 's  
for var ious  pairs  of  input  pa ramete r s  are plot ted in Fig. 1, 
where  we have  set Xo = 0, S = 15, and  T = 5. They  have 
been ob ta ined  numerical ly  by means  of the a lgor i thm 
p roposed  in Buonoco re  et al. (1987). 

T o  reduce the n u m b e r  of  pa ramete r s  in (1) with (4), we 
m a k e  use of  the t r ans fo rmat ion  

~' = 2, , , /3-)-~(x - , ' 0 ,  t' = _t (5) 

The  process X ( 0  defined as a solut ion of (1) with (4) is 
then t ransformed into the process X'(t ')  which satisfies 

dX ' ( t ' )  = -- X'( t ' )dt '  + x / ~ d W ( t ' ) ,  P{X'(O) = ~} = 1 

(6) 

with new initial s tate ~ and  new threshold  17 given by 

= 2 . v / ~ ( X o  - /~T)  (7a) 

I 7 = J 2 / a 2 z ( S  -/~z),  -- oo < ~ < 17 < oo (7b) 

We  shall refer to X'(t ' )  as the 'normal ized '  O U  process. I t  
is not  difficult to prove  tha t  the following relat ions hold: 

g(S, t l xo) = g'(17, t' l ~) --~dt' ll =-zl g'(17, t/zl~) (8a) 
I 

m.(Slxo)  = ~"M.(171 ~) (8b) 

where g(S, tlxo) is the F P T  pdf  of  X(t), g'(17, t'l~) is tha t  of  
X'(t '),  and where for  n = 1 , 2 , . . .  

m.(Slxo) = S t"g(S, tlxo)dt, 
o 

oO 

M.(171~) = S (t')ng'(17, t'[~) dt' 
o 
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denote the moment of order n of the FPT of X(t )  and of 
X'(t), respectively. Note that X(t)  and X'( t ' )  possess 
identical coefficients of variation. Hence, in the sequel 
such a coefficient of variation will be denoted for both 
processes by the unique symbol CV. 

The FPT  of the normalized O U  process to a constant 
boundary r/is a random variable depending on the two 
parameters (~, r/), and hence via (8), the FPT of the O U  
process to a constant boundary S is a random variable 
depending on the triplet of parameters (~, t/, z). 

2.2 FPT  moments 

There exist several alternative formulas and analytical 
approximate results for the moments Mn(r/]~) of the 
normalized O U  process (Keilson and Ross 1975; Tuck- 
well 1982; Nobile et al. 1985; Ricciardi and Sato 1988). 
They are all very cumbersome and thus hard to use for 
reliable numerical computations. 

Let us employ the following explicit expressions by 
Ricciardi and Sato (1988) for the first two moments: 

M~(r/[ ~) = ~b~(r/) - ~bl(~) (9a) 

M2(r/[ ~) = 2~b2(r/)- ~ 2 ( ~ ) -  2~b1(r/)~l(~) + ~b2(~) (9b) 

where we have taken r/1> ~. In (9), the expressions for 
~pk(Z), k = 1, 2 are given by: 

~bk(Z) = ~ k n! F t'n̂ tk), (k = 1,2, . .  . ) (10a) 
n = l  

p~lj 1, _~2) = p .  = ~,(n/2) - ~,(1) (10b) 

where F(y) and $(y) denote the gamma function and the 
digamma function, respectively. Expressions (10) are use- 
ful for numerical calculation of Sk(Z) whenever z >/0 and 
Izl is rather small. If, instead, z < 0 and Izl is large, 
alternative expressions must be used, as we shall see in 
the sequel. Indeed, for z < 0, the evaluation of ~bk(Z), 
which is an alternating series [see (10)], becomes harder 
and harder as the value of [zl grows larger, because of 
canceling effects. Hence, a different method is needed to 
estimate qgk(Z) when z is negative and rather large in 
absolute value. Good  approximations of ckk(z) can be 
obtained in such cases, by making use of the following 
results due to Keilson and Ross (1975): 

~ ( z )  ~ - g~  + loglz[ + )-~ (l la)  
k = !  

4~e(z) ~- 2 K~ + g~loglzl + ~ (loglzl) e 

log Izl ~, Vk] ( l lb)  + b ~ - - ~  + ~ i  , 
k = l  k = l  

where Ka = 0.63518142, KD = 0.818578 and 

( -  1) k -  1 (2k - 2)! ak+ 
a k  = (k - -  1)! 2 k -  1 bk = -- 2---k- 

Ck =ak  + bk dk = C k - - ( 2 k - - 1 ) d k - ~  

gk = K~ b k a k  + 1 d k  

4k ~ 2k 

Expressions (10) and (11) have been used to evaluate 
C~k(Z) at z = -- 7, and results from both expressions are in 
excellent agreement. 

3 P a r a m e t e r  e s t imat ion  f r o m  first and second  
F P T  m o m e n t s  

3.1 Method o f  moments 

Suppose that first and second sample moments (ml, ma) 
of ISI are obtained from an experiment. Because the 
theoretical counterpart of the ISI is the FPT  in the O U  
model, we can equate sample and FPT moments: 

ZMl(r/[ ~) = ml (12a) 

z2M2(r/I ~) = m2 (12b) 

or, alternatively to (12b), 

x/M2(r/[ ~) - M~(r/[ ~) = CV (12c) 
Mx(r/I ~) 

Let us now assign a reasonable value to z, which is 
legitimate since z is one of the intrinsic neuronal para- 
meters. Making use of analytical and/or approximate 
expressions (9) for the moments Ml(r/I ~) and M2(r/[ ~), 
we can then obtain estimates ~" and ~ by numerically 
solving (12). Finally, by virtue of (7), we are led to the 
estimates/~ and 8 of the input parameters from the 
estimates ~and  4: 

: S -  -Xo 1 ~ ; o  - ~ S  ~ = _ _  (13) 

where ~o, S, and ~ denote the assumed values of intrinsic 
neuronal parameters Xo, S, ~. The difference S between 
threshold and resting potential can be assumed to be of 
the order of 10-20 mV and the time constant z to range 
from 1 to 20 ms in different neurons (see, for example, 
Kandel and Schwartz 1985). The difference Xo between 
the initial membrane potential and the resting potential 
will be taken as zero in the simplest case. 

The FPT pdf g'(~,t/ f[~) can then be obtained by 
a numerical method (see, for instance, Buonocore et al. 
1987), and hence via (8a) one can obtain the FPT pdf 
g(S, t l Xo) which corresponds to the ISI histogram of the 
neuronal model with assumed S, ~o, and ~ as the values of 
its intrinsic parameters and with/~ and ~ as the estimates 
of input parameters. 

When one solves (12), due to the circumstance that 
Ml(r/[ ~) and M2(r/l~) have been obtained as sums of 
power series in ~ and ~/, their derivatives with respect to 

and r /can be calculated. Equations (12) can then be 
solved with respect to ~ and r/by standard methods, such 
as Newton's method. [Approximate expressions for 
dc~k(z)/dz when z is negative and large in absolute value 
can also be obtained by formally differentiating the right- 
hand side of (11) with respect to z.] However, it must be 
pointed out that for an effective implementation of New- 
ton's method, an appropriate choice of the initial value is 
required. To overcome the difficulty inherent in the 



Table 1. Estimated parameters ~ and ~ obtained from the FPT moments via (12). The FPT moments have been computed by 
means of the moment formulas (9) via (Sb) for choices (~*, ~*, t/*). The computed FPT moments m~ = z*Ml(t/*l~* ) and 
m2 = r I ~*) were obtained numerically in two ways, i.e. by an accuracy to five decimal digits (m~ s) and rn~ s)) and two 
decimal digits (ra~ 2) and m[Z)). The estimates ~(s) and ~ts) are obtained from m~ s) and ra(, s) and ~(z) and ~(2) from m~ ~) and m~z ~) 
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1 3 84.838 14616 1.0000 3.0000 85 15000 1.4 3.0 
- 3 - 1 0.88044 1.0684 -- 3.0001 - 1.0001 0.88 1.1 - 2.8 - 0.89 

choice of the initial point, Newton's method and a con- a 
tinuation method (see, for instance, Ortega and Rhein- 40- 
boldt 1970) have been combined. 

In order to check the validity and effectiveness of our 20- 
numerical computation mentioned above, we have ap- S " " "  o -  
plied it to some test cases. The values z*, ~*, and t/* of ,~, 
parameters ~, ~, and t/have been preassigned, and the ,=t -20- 
FPT moments r*Ml(r/*l~* ) and r*ZM20/*l~*) have 
been computed numerically with different accuracies for ~o- 
such choices by means of(8b) and (9). By m~ 5) and m~ 5), we -60 - 
indicate an accuracy to five significant digits by m~ 2) and 
m(z z) an accuracy to two significant digits. The results are -80- 
shown in Table 1. It is evident that the estimates ~s) and 
0 (5) are characterized by an excellent precision. It is also 
clear that estimates ~2) and 0 (2) do not differ too drasti- 

5) (5) (5) (5) cally from estimates ~ and ~ of ml and m2 �9 This 
indicates that our method is not very sensitive to the 
measurement error of the sample moments m~ and m2 
and that it is stable. 

3.2 Dependence of estimates on FPT moments 

Let us consider the quantities ~{ = ~{(MI,CV) and 
bx /~=  #x/~(M1, CV) as compound functions of the 
normalized mean MI( = ml/z) and of the coefficient of 
variation (CV)' = CV of the FPT. From (13), we have 

^_ r~o - ~S ~x/~ = x/~ ~ -  Xo (14) 
/~= ,~_~ , ~-~ 

Note that the estimated mean input ~ and its variance 
~2~ per time duration ~ depend only on the two quantit- 
ies M1 and CV. Using this remark, we shall provide 
numerical tables (cf. Tables 3 and 4) in which ~ and #x/~ 
are displayed for a variety of values of M~ and CV. For 
any fixed ~ the desired estimates of/~ and 8 will then 
follow. Although we have set g = 15 and ~o = 0 as a real- 
istic possibility to obtain Tables 3 and 4, the effect of 
different choices of g and ~o on the estimates/~ and # will 
be considered in the following section. 

Figures 2 and 3 show the dependence of the estimated 
input mean /~  and the standard deviation #x/~ on the 
normalized FPT mean M: and CV for the choice (~o, 
S-) = (15, 0). As shown in Fig. 2a, when CV/> 1, /~ 
decreases as M1 increases and is negative except for small 
values of M~. The sign of ~ changes around M1 = 6.5 
when CV = 1, and the value of M1 where a change of 
sign takes place becomes smaller as the CV grows larger, 
as shown in Fig. 2a. When CV < 1,/~ decreases as Mx 
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Fig. 2a, b. Dependence on the normalized FPT mean MI of the esti- 
mated input parameters for various fixed values of the coefficient of 
variation (CV), with ~o --- 0 and • = 15. (a) Dependence on MI of the 
estimated mean input/~? per time duration ?; (b) dependence on MI of 
the square root of the estimated input variance 82 ~ per time duration 

increases to reach its minimum and then increases to 
approach asymptotically the threshold value (S = 15). 
Figure 4a shows the minimum of ft~, (~)min, for various 
choices of CV < 1. Note that ~ is almost always positive 
when CV < 1. From the plots of the results of our com- 
putations it is evident that an increase of the FPT mean 
does not necessarily imply a decrease of the input mean 
~ :  A result that is as interesting as unexpected and that 
appears to have passed so far unnoticed. 

As for the quantity #x/~, this has a minimum for each 
CV > 1 (see Fig. 2b). Such a minimum, (#x/~)min, has 
been indicated in Fig. 4b. In contrast to the behavior of 
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(~)min, the relation between CV and (8"~/~)mi. appears to 
be almost linear. The estimate bx/~ strongly depends on 
the CV, and the diversity of the means seems to be rather 
ineffective (cf. Fig. 3b). If (SX/~)m~. is estimated via CV, 
then a rough approximation of t~x/~ also follows. Indeed, 
as Fig. 2b shows, for each fixed CV the corresponding 
quantity bV/~ does not vary rapidly with M1. Moreover, 
the estimated quantities bx/~ remain clearly distinct as 
CV is varied. 

It is meaningful to remark that, as Fig. 2a and Fig. 3a 
indicate, for most of the region of variability of MI and 
CV the ensuing estimated quantity ~ is below the firing 
threshold (S = 15 in figures). Under such conditions no 
output would be released by the model neuron in the 
absence of randomness [namely, if a --+ 0 in (4)], i.e., in 
the limit of a deterministic model. The presence of ran- 
domness thus ensures the existence of a firing activity by 
the model neuron (see Fig. 2b). 

3.3 Dependence of  estimates on intrinsic parameters 

For  the estimation of the input parameters /~ and a, 
values for the intrinsic parameters S, Xo, and z must be 
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Fig. 4a, 5. The minimum of the estimated input parameters for various 
choices of CV. (a) The minimum of ~ for various choices of CV < 1; 
(b) the minimum of ~'V/~ for various choices of CV > 1 

assumed. As is well known, the values of S and z in 
general depend both on the type of neuron and on its 
state. Although the initial state Xo is often set to zero, we 
can set it to any value. For  instance, by setting 
Xo = - 10 mV the effect of afterhyperpolarization can 
be taken into account. We shall now discuss the depend- 
ence of ~ and b on the values of Xo, g, and ~. 

First of all, consider the effect of the assumed values 
Xo and g on the estimates ~ and b. Suppose now that/~1 
and bl are the estimates obtained from the choices ~, 
Xo = Xol and S = Sx, and ~2 and bz are those from ~, 
Xo = Xo2, and S = $2. From (13), we obtain the relation 
between ~1 and ~2 and that between bl and b2: 

- -  = , - -  = - -  ( 1 5 )  

In the particular case Xol = Xo2 = 0, from (15), we have 
the simple linear relations 

~1 51 81 51 
~-~=~-~z' ~z Sz (16) 

The dependence of the estimated input parameters on 
the time constant ~ is more complicated. Figure 5 shows 
the changes of the estimated input parameters ~ and b as 
a function of ~ for fixed values of the F P T  moments 
(ml = 20, CV = 0.5, 0.8, 1.0, 2.0), where we have set 
~o = 0 and S = 15. We recall that the O U  process yields 
the Wiener process in the limit when the time constant 
z tends to infinity [see (3) and (4)]. In Fig. 5, ~w and ~w 
denote the mean input per unit time to the neuron and 
the standard deviation per unit time for the Wiener 
model estimated from the same values of moments via 
the closed from expressions 

S -  ~o 
~., = ~ (17) 

]~z  -- m~ = (g _ 2o) CV (18) 
8"w = (S--  Xo) q m - ]  x/~x 

Parameter/~w is proportional to the firing rate (m/- 1) and 
is always positive. The estimated standard deviation bw 
of the input per unit time is proportional to CV for fixed 
ml and decreases as ml increases. 
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Fig. 5a, b. Dependence of the estimated input parameters on the preas- 
signed time constant ~ for fixed values of the FPT moments, where we 
have set m~ = 20 and CV = 0.5, 0.8, 1.0, and 1.2, respectively, and with 
the choices ~o = 0 and S = 15. (a) Dependence of ~ on ~, where ~ 
denotes the estimated drift for the Wiener model; Ca) dependence of 

on ~, where #~ denotes the estimated infinitesimal variance for the 
Wiener model 

The estimated parameters for the OU model depend 
nonlinearly on the assumed value ~. Indeed, the estimates 

= ~(~) and # = #(~) change largely with ~ for small 
values of ~ with modalities that vary according to the 
values of CV. Indeed, as shown in Fig. 5,/~(~) decreases 
monotonically when CV < 1 and increases when CV i> 1 
to approach ~w in both cases. In particular, we note that 
the sign of ~(~) depends on the assumed value of z when 
CV/> 1. Since the sign of ~(~) indicates whether excita- 
tory inputs prevail over inhibitory inputs, or vice versa, 
an observed change of the sign of ~(~) when the assumed 
value ~ is changed does indicate a qualitatively significant 
different result for the estimated parameter. As for the 
estimate ~, Fig. 5b shows that for CV >/1, ~(~) decreases 
to approach bw asymptotically, whereas if CV < 1, #(~) 
initially increases and then decreases to approach 8w 
asymptotically. Note that the speed of convergence to #w 
decreases as CV increases. Hence, the assumed value of 
z used in the estimation considerably affects the resulting 
estimated values of parameters. 

Figure 6 depicts the dependence of the estimated F P T  
pdf on { for the OU model. Figure 6a shows the case 
when mt = 20 and CV = 0.5, Fig. 6b refers to the case in 
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Fig. 6a--e. Dependence of the estimated FPT pdf on ~ for the OU 
model: ( a )ml  = 2 0  and C V = 0 . 5 ;  (b)mt  = 2 0  and C V = 0 . 8 ;  
(e) ml = 20 and CV = 1.2 

which ml = 20 and CV = 0.8, while Fig. 6c depicts the 
case ml = 20 and CV = 1.2. It should be remarked that 
the dependence of the pdf on ~ is much greater in the case 
of CV = 1.2 (Fig. 6c) than in CV = 0.8 (Fig. 6a) and 
CV = 0.5 (Fig. 6b), which pinpoints the critical role 
played by CV in this respect. Furthermore, we remark 
that the shapes of pdf's for different values o f i  in the case 
of CV = 0.8 look alike. 

3.4 Comparison of  the estimates of input parameters 
between the Wiener model and the OU model 

In this section, we compare the estimated input para- 
meters (~o, #o) for the OU model with those (~w, #w) for 
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rnl for CV = 1.2 

the Wiener model. Figure 7a and c show the values of ~w 
and ~o for ~ = 1, 5, 20 as functions of ml for fixed values 
of CV. Similarly, the values of #w and #o have been 
plotted in Fig. 7b and d. In agreement with a straightfor- 
ward theoretical argument, for very small values of ml, 
the estimated parameters for both models are similar, 
and the range of similarity widens up with ~. As ml grows 
larger, the difference in behavior of~w and ~o depends on 
the values of CV, as for instance shown for ~ = 1, 5 in Fig. 
7a (CV = 0.8) and in Fig. 7c (CV = 1.2). Moreover, when 
CV i> 1,/~o for ~ = 1, 5 is negative unless ml is very small, 
whereas ~w is always positive, whatever mr. A remark- 
able different behavior of #w and 8o is instead observed in 
the case CV = 1.2 for ~ = 1, 5 (see Fig. 7d). On the 
contrary, it is apparent that the estimated parameters for 
both models behave similarly for ~ = 20 over a wide and 
physiologically significant range of ml, even though their 
differences increase with m:. 

In conclusion, the role of time constant ~ is to en- 
hance similarities between the OU and Wiener models 
for large ~ and discrepancies for small ~. Hence, if the 
ratio M~ = ml/f is small, the OU and Wiener models 
yield similar input parameters. On the other hand, if MI 

is large, one is led to relevantly different estimates of the 
neuronal input parameters ~ and #2. 

4 Analysis of experimental data 
Spontaneous activities of several neurons in the mesen- 
cephalic reticular formation (MRF) of head-restricted 
cats have been recorded in order to investigate their 
dynamic properties during sleep and wake: during slow- 
wave sleep (SWS), paradoxical sleep (PS), and the attent- 
ive state of bird watching (BIR) (Yamamoto et al. 1986). 
In this experiment, one could extract activities of a single 
neuron even though recording was done extracellularly. 
A set of data consists of 5000 ~ 50 000 ISis depending on 
the neurons and their states of consciousness. All ISI 
histograms constructed from these data exhibit unimodal 
shapes. We have compared the OU and Wiener neuronal 
models by determining if the changes of the values of the 
estimated input parameters are indicative of the varying 
level of consciousness of the cat. Such a goal has been 
achieved without any need to proceed to a detailed quant- 
itative comparison of the estimated values of parameters. 



Table 2. Statistics of the interspike intervals (ISis) for meseneephalic reticular formation (MRF) neurons under 
different states of consciousness and the input parameters estimated via the OU model and the Wiener model. By PS, 
S W S  and BIR we have denoted the states of consciousness during paradoxical sleep, slow-wave sleep, and the 
attentive state of bird watching respectively 
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Group Neuron State ml CV ~o ~4, Oo ~ ,  

I m 113 PS 15.9 0.73 2.09 0.94 3.24 2.76 
SWS 65.9 0.73 2.67 0.23 0.53 1.36 
BIR 22.3 0.66 2.32 0.67 1.95 2.11 

m175 PS 20.2 0.69 2.23 0.74 2.32 2.29 
SWS 49.4 0.57 2.90 0.30 0.20 1.21 
BIR 127 0.66 3.00 0.12 0.00 0.88 

II m171 PS 31.8 1.33 - 4.57 0.47 12.5 3.53 
SWS 37.2 1.41 - 6.77 0.40 15.0 3.48 
BIR 19.6 1.39 - 4.15 0.77 13.7 4.71 

m178 PS 28.4 1.07 - 0.70 0.53 6.96 3.02 
SWS 51.9 1.19 - 3.29 0.29 9.38 2.47 
BIR 35.8 1.13 - 1.74 0.42 8.01 2.84 

a 

3 O-- --0 

2 

0 I - - - O  

PS SWS BIR 
sate 

C 

1 

& I 
-3 0 / 0  

PS SWS BIR 
state 

b 
4 

I 
P$ $WS Bill 

state 

d 
15 !/x~l 

51 I 

ol  I 
PS SWS BIR 

stata 

Fig. 8a-d. Estimated values of the input parameters for each MRF 
neuron at each level of consciousness. Solid and dashed lines correspond 
to the estimates for the OU and Wiener model, respectively. (a) Values 
of ~w and ~o for each unit in group I. The cross corresponds to m113 
neuron and the circle to m175 neuron. (b) Values of t~,, and ~o for group 
I neurons. (c) Values of/~,  and ~o for each unit in group II. The cross 
corresponds to m171 neuron and the circle to m178 neuron. (d) Values 
of d-,, and t~o for group II neurons 

Indeed, one of the aims to analyze the firing activities of 
a neuron in the central nervous system by means of 
mathematical models is to monitor any significant cha- 
nges that might occur temporally of its input process as 
a consequence of the change of the perception level, the 
presence of long duration constant stimuli, etc. 

In Table 2, the mean ISis and their coefficients of 
variation are shown for four MRF neurons (neurons 
ml  13, m175, m171, and m178). The input parameters (~o, 

50x10 ~ 
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Fig. 9a,b. ISI histograms from the MRF neurons in cat (circles) fitted 
with the OU-FPT  pdf's (solid line) and the Wiener-FPT pdf's (IG 
densitis, dashed line). (a) ml13 neuron during BIR; (b) m171 neuron 
during PS 

#o) and (~w, #w) estimated via the O U  model and the 
Wiener model, respectively, are also reported. We have 
set )70 = 0 mV, g = 15 mV, and ~ = 5 ms. We have as- 
sumed that  the firing process also during PS is a renewal 
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Table 4. Estimated values of #x/~ as a function of Mt and CV for the same choice Xo and S as in Table 3 

C M  ~N~NV 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 

0.50 2.06 4.16 6.32 8.58 10.95 13.46 16.12 18.96 21.98 25.20 28.64 32.30 36.21 40.37 44.80 49.50 54.50 59.81 65.43 71.37 
1.00 1.34 2.73 4.23 5.87 7.67 9.65 11.84 14.26 16.92 19.83 23.02 26.50 30.29 34.41 38.87 43.68 48.86 54.43 60.40 66.79 
1.50 0.95 1.98 3.15 4.49 6.04 7.81 9.82 12.10 14.67 17.54 20.73 24.25 28.14 32.39 37.04 42.10 47.58 53.50 59.88 66.72 
2.00 0.69 1.47 2.42 3.56 4.94 6.58 8.51 10.74 13.30 16.20 19.45 23.08 27.10 31.53 36.40 41.70 47.47 53.72 60.47 67.71 
2.50 0.50 1.10 1.87 2.86 4.11 5.66 7.54 9.76 12.34 15.29 18.63 22.38 26.55 31.16 36.23 41.78 47.82 54.36 61.42 69.02 
3.00 0.35 0.81 1.44 2.30 3.44 4.92 6.76 8.98 11.60 14.62 18.06 21.94 26.26 31.05 36.31 42.08 48.35 55.16 62.51 70.41 
3.50 0.25 0.60 1.10 1.84 2.88 4.29 6.10 8.33 11.00 14.10 17.65 21.65 26.12 31.07 36.52 42.48 48.98 56.02 63.62 71.79 
4.00 0.18 0.43 0.84 1.47 2.41 3.74 5.52 7.77 10.50 13.69 17.34 21.47 26.07 31.18 36.80 42.94 49.64 56.89 64.72 73.13 
4.50 0.12 0.31 0.64 1.17 2.01 3.27 5.01 7.28 10.06 13.34 17.10 21.35 26.09 31.34 37.12 43.43 50.30 57.75 65.78 74.41 
5.00 0.08 0.23 0.48 0.93 1.67 2.85 4.56 6.84 9.68 13.05 16.92 21.28 26.15 31.54 37.46 43.93 50.97 58.59 66.81 75.63 
5.50 0.06 0.16 0.36 0.73 1.39 2.48 4.14 6.44 9.34 12.79 16.77 21.25 26.24 31.75 37.81 44.43 51.62 59.40 67.79 76.79 
6.00 0.04 0.11 0.27 0.57 1.14 2.15 3.76 6.06 9.03 12.57 16.65 21.24 26.34 31.98 38.17 44.92 52.25 60.18 68.72 77.89 
6.50 0.03 0.08 0.20 0.44 0.94 1.85 3.41 5.72 8.74 12.38 16.56 21.25 26.47 32.22 38.53 45.40 52.87 60.93 69.62 78.94 
7.00 0.02 0.06 0.15 0.34 0.77 1.60 3.09 5.39 8.47 12.20 16.48 21.28 26.60 32.46 38.88 45.87 53.46 61.66 70.48 79.93 
7.50 0.01 0.04 0.11 0.27 0.62 1.37 2.79 5.08 8.23 12.04 16.42 21.32 26.74 32.71 39.23 46.33 54.04 62.35 71.30 80.88 
8.00 0.01 0.03 0.08 0.21 0.50 1.17 2.51 4.79 7.99 11.90 16.37 21.37 26.89 32.95 39.57 46.78 54.59 63.02 72.08 81.79 
8.50 0.01 0.02 0.06 0.16 0.41 1.00 2.26 4.52 7.77 11.77 16.34 21.43 27.04 33.19 39.91 47.22 55.13 63.66 72.83 82.65 
9.00 0.00 0.01 0.04 0.12 0.33 0.85 2.03 4.26 7.56 11.65 16.31 21.49 27.19 33.43 40.24 47.64 55.64 64.28 73.55 83.48 
9.50 0.00 0.01 0.03 0.09 0.26 0.72 1.82 4.01 7.36 11.54 16.29 21.56 27.34 33.67 40.56 48.05 56.14 64.87 74.24 84.27 

10.00 0.00 0.01 0.02 0.07 0.21 0.61 1.63 3.77 7.17 11.43 16.28 21.63 27.49 33.90 40,88 48.44 56.63 65.44 74.91 85.03 
12.00 0.00 0.00 0.01 0.02 0.09 0.31 1.02 2.92 6.46 11.08 16.27 21.94 28.10 34.79 42.06 49.92 58.41 67.54 77.33 87.80 
14.00 0.00 0.00 0.00 0.01 0.03 0.15 0.62 2.22 5.84 10.81 16.32 22.26 28.68 35.62 43.13 51.25 59.99 69.39 79.45 90.19 
16.00 0.00 0.00 0.00 0.00 0.01 0.07 0.37 1.66 5.27 10.58 16.40 22.59 29.23 36.38 44.11 52.44 61.40 71.02 81.32 92.30 
18.00 0.00 0.00 0.00 0.00 0.01 0.03 0.21 1.22 4.75 10.39 16.49 22.91 29.75 37.09 45.00 53.52 62.67 72.49 82.99 94.19 
20.00 0.00 0.00 0.00 0.00 0.00 0.02 0.12 0.88 4.27 10.22 16.60 23.22 30.23 37.75 45.82 54.50 63.83 73.82 84.50 95.88 
22.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.63 3.82 10.08 16.72 23.52 30.70 38.36 46.58 55.41 64.89 75.04 85.88 97.42 
24.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.44 3.40 9.96 16.84 23.81 31.13 38.93 47.28 56.25 65.86 76.15 87.14 98.84 
26.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.31 3.01 9.84 16.96 24.09 31.54 39.46 47.94 57.03 66.77 77.18 88.30 100.14 
28.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.21 2.65 9.74 17.08 24.36 31.93 39.96 48.55 57.75 67.61 78.14 89.38 101.34 
30.00 0.00 0.00 0.00 0.00 
32.00 0.00 0.00 0.00 0.00 
34.00 0.00 0.00 0.00 0.00 
36.00 0.00 0.00 0.00 0.00 
38.00 0.00 0.00 0.00 0.00 
40.00 0.00 0.00 0.00 0.00 
42.00 0.00 0.00 0.00 0.00 
44.00 0.00 0.00 0.00 0.00 
46.00 0.00 0.00 0.00 0.00 
48.00 0.00 0.00 0.00 0.00 
50.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.01 0.15 2.31 9.65 17.20 24.62 32.30 40.44 49.13 58.43 68.39 79.04 90.39 102.46 
0.00 0.00 0.00 0.10 2.01 9.57 17.32 24.86 32.65 40.88 49.67 59.07 69.13 79.88 91.33 103.51 
0.00 0.00 0.00 0.07 1.74 9.49 17.44 25.10 32.98 41.31 50.18 59.68 69.83 80.67 92.22 104.50 
0.00 0.00 0.00 0.05 1.50 9.42 17.56 25.33 33.30 41.71 50.67 60.25 70.48 81.41 93.05 105.43 
0.00 0.00 0.00 0.03 1.28 9.35 17.67 25.55 33.60 42.09 51.13 60.79 71.10 82.11 93.84 106.30 
0.00 0.00 0.00 0.02 1.09 9.29 17.79 25.76 33.90 42.46 51.57 61.30 71.69 82.78 94.59 107.13 
0.00 0.00 0.00 0.02 0.93 9.23 17.90 25.96 34.17 42.81 51.99 61.79 72.25 83.41 95.30 107.92 
0.00 0.00 0.00 0.01 0.78 9.17 18.01 26.16 34.44 43.14 52.39 62.25 72.79 84.02 95.97 108.67 
0.00 0100 0.00 0.01 0.66 9.12 18.12 26.35 34.70 43.46 52.77 62.70 73.30 84.59 96.62 109.39 
0.00 0.00 0.00 0.00 0.55 9.08 18.22 26.53 34.95 43.77 53.14 63.13 73.79 85.15 97.23 110.07 
0.00 0.00 0.00 0.00 0.46 9.03 18.32 26.71 35.19 44.07 53.49 63.54 74.25 85.67 97.82 110.72 

process (however, see Yamamoto et al. 1986), because our 
aim in this section is to give an example of the application 
of our estimation method and also to compare the input 
parameters as estimated via the two alternative diffusion 
models (Wiener and OU). The high reliability of the 
available data as well as the existence of numerous ISis of 
very short duration have led us to ignore refractoriness, 
a~ far as the present analysis is concerned. Analysis of the 
s~ontaneous activities of MRF neurons will be the object 
of future investigations. 

Let us focus our attention on the CV of the ISI. One 
may classify the four neurons into two groups, depending 
on whether CV is greater or less than unity. One group 
(denoted as group I) consists of neurons ml  13 and m 175, 
in which CV < 1 for all three levels of consciousness. The 
other (group II) consists of neurons m171 and m178, in 
which CV > 1 for all three levels of consciousness. Figure 
8 depicts the dependence of the estimated values of para- 
meters on the levels of consciousness for each group. 
Figure 8a and b refer to group I and Fig. 8c and d to 
group II. For  neurons in group I, though both models 
yield positive estimates of the mean input p, the values of 
~o are much larger than those of ~w, and ~o attains 
its minimum at the PS stage, whereas ~w reaches its 

maximum in the PS state for both neurons (Fig. 8a). The 
changes of the estimates of ~r for both models are instead 
similar to each other for both neurons in this group, and 
their sizes are rather close to each other for each stage 
(Fig. 8b). For neurons of group II, the estimated values 
~,, are positive and orders of magnitudes are almost the 
same as those for neurons of group I (see Fig. 8a, c and 
Table 2). On the contrary, the values of ~o are negative. 
The values of t~o are much larger than those of t~w (Fig. 
8d). Moreover, their behaviors when passing through the 
different sleep conditions are fundamentally different for 
the Wiener and the OU model. 

By using ~ and the estimated parameters ~ and ~ which 
are obtained in the estimation procedure (see Sect. 3.1), we 
can also determine the estimated OU-FPT pdf. The ISI 
histogram can, then, be fitted by the OU-FPT pdf. The ISI 
histograms for neurons of group I are fitted well by both 
OU-FPT pdf and by the IGD (i.e. the FPT pdf for Wiener 
model), irrespective of the sleep stages (see Fig. 9a). On the 
contrary, the fitting of the IGD to the ISI histograms for 
neurons of group II is not as good as in the former case 
(see Fig. 9b). Such results are in full agreement with the 
conclusions earlier drawn on the theoretical comparison 
of the two models (see also Fig. 6). 
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5 Discussion 

A quantitative analysis of spontaneous activities of single 
neurons by means of the OU model in terms of the first 
two moments of the ISis has been proposed. The esti- 
mated input parameters for this model can be obtained 
either by encoding the above estimating procedure on 
a computer or, more directly, by making use of Tables 
3 and 4 for the estimated input parameters. Our tables 
permit us to estimate the input parameters from the 
sample ISI for the OU model no matter what values of 
neuronal parameters are chosen. In such a sense, we may 
say that Tables 3 and 4 provide the basic tool for neur- 
onal parameters-fitting tasks. 

We have checked the relation between the estimated 
input parameters and the ISI statistics in the OU model. 
The following conclusions clearly emerged 

1. when the coefficient of variation is less than unity 
(CV ~< 1), an increase of the mean firing time does 
not necessarily imply a decrease of the input mean ~. 
A small amount of input noise considerably accelerates 
the firing. 
2. the value of the CV of the ISI plays a crucial role in 
this estimation, and hence it would be a better indicator 
of input parameters than the firing rate. Condition 
CV < 1 (CV f> 1) roughly implies that ~, the mean input 
per unit time, is positive (negative). For more details, see 
text and also Tuckwell (1979), Wilbur and Rinzel (1983), 
and Musila and L~nsk~ (1991). The CV also reflects the 
degree of irregularity in the input process. 

The estimated parameters for the OU models with differ- 
ent time constants and for the Wiener model have been 
compared. The value of the time constant z affects con- 
siderably the resulting estimated values of parameters. It 
should be mentioned explicitly that in principle it is 
possible to estimate input parameters/~ and a as well as 
the time constant T by means of the first, second, and 
third-order FPT moments for fixed values of Xo and S. 
This procedure has been explored by us and successfully 
implemented. However, the parameters thus estimated 
appear to be rather unreliable, being too much influenced 
by small fluctuations of the FPT moments. 

Comparison of estimated parameters for the two dif- 
fusion models suggests that the Wiener model is not 
suitable to mimic firing activities in which the firing rate 
is rather low compared with the time constant (i.e. when 
M~ is not small), even if the fitness of IGD to the ISI 
histogram is good. On the other hand, it appears that for 
the estimation of input parameters the Wiener model can 
be used in place of the OU model for neurons whose 
membrane time constant is relatively large or for neurons 
characterized by massive excitatory inputs and exhibi- 
ting high frequency firing activity. 

This estimation method has been applied to experi- 
mental data of single neurons' spontaneous activities in 
the M R F  of head-restricted cats during sleep and wake: 
during slow-wave sleep, paradoxical sleep, and the at- 
tentive state of bird watching (Yamamoto et al. 1986). 
The time constant of the OU model was set to 5 ms, as 

indicated in the literature for mammalian neurons (cf. 
Wilbur and Rinzel 1983). Behaviors of estimated input 
parameters when passing through the different sleep con- 
ditions have been seen to be quite different for the Wiener 
and OU models. 
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List of symbols 

X(t): The Ornstein-Uhlenbeck (OU) process 
Ts: The first-passage time (FPT) to a constant boundary 
S for the OU process X(t) starting at Xo 
/~: The constant drift of the OU process or the mean 
input per unit time to a neuron for the OU model 
~, ~o: The estimate of/~ 
~w: The estimated constant drift of the Wiener process 
or the mean input per unit time to a neuron for the 
Wiener model 
tr: The infinitesimal standard deviation of the OU pro- 
cess or the input standard deviation per unit time to 
a neuron for the OU model 
8, So: The estimate of tr 
#w: The estimated infinitesimal standard deviation of the 
Wiener process or input standard deviation per unit time 
for the Wiener model 
Xo: The initial value of the OU process or the difference 
of the initial membrane potential from the resting poten- 
tial 
S: The difference between the resting potential and the 
threshold potential 
z: The membrane time constant of a neuron 
Xo, S, and ~: A preassigned value for Xo, S, and z, respec- 
tively 
X'(t'): The 'normalized' OU process 
~: The initial value of the 'normalized' OU process 
~/: The threshold value in the 'normalized' OU process 

and ~: The estimate of ~ and r/, respectively 
#(t[ S, Xo): The FPT probability density function (pdf) of 
the OU process X(t) 
g'(t'ltl, ~): The FPT pdf of the normalized OU process 
x'(c) 
ml: The first moment about the origin of the FPT for the 
OU process X(t) or the sample mean of the interspke 
intervals (ISis) 
m2: The second moment about the origin of the FPT for 
the OU process X(t) or the second sample moment of the 
ISis 
MI: The first moment about the origin of the FPT for 
the normalized OU process or the sample mean of the 
ISis normalized by ~ (M1 = ml/~) 
CV: The coefficient of variation of the FPT  of the OU 
process X(t) and of the normalized OU process X'(t') or 
the sample coefficient of variation of the ISis and of the 



ISis normalized by ~ (CV = standard deviation/mean) 
PS, SWS, and BIR: paradoxical sleep, slow-wave sleep, 
and the attentive state of bird watching 

Appendix Tables of estimates 

Tables 3 and 4 list values of ~ and 8x/~ as functions of the FPT mean 
Ma of the normalized OU process and of the CV, having fixed ~/o and 
$' to the values 0 and 15, respectively. MI has been made to change in 
the range of 0.5 ~ 50 and CV in the range of 0.1 ~ 2, both neuro- 
physiologically meaningful. In those cases where values of Xo = 0 and 
S = 15 are not appropriate for the neuron used in the experiment, the 
estimates ~N ~ and 8N%t/~ can be easily obtained from (15) as follows 

/)N = 15~ /z,, ~s 1-'-'7" tr, (19) 

where ,,r and s denote the new assumed values of the threshold and 
of equilibrium state and where/), and #z denotes the estimated values 
obtained from Tables 3 and 4. The values of ~ and ~ are obtained as 

~ = ~ ~,~, ~ = ~ / ) , ( 1 5 -  ~) 

To illustrate our method for determing input parameters in the case of 
arbitrary initial state and threshold, let us given an example. Suppose 
we are given a set of data that we assume to be generated by a neuron 
characterized by intrinsic parameters ~o = 0 mV, ,~= 10 mV, and 

= 5 ms. Let the sample mean ml of the ISI be 30 ms and its CV = 0.8. 
Then the sample mean Mt normalized by ~ equals 6. For the case 
Xo = 0 and g = 15, the quantities ~ and #x/~ are obtained from Tables 
3 and 4, respectively. We find 5~z = 8.59 and x/~8"r = 6.06, respectively. 
As a consequence,/~ = 1.72 and #~ = 2.71. These values correspond to 
the choices xo = 0 and $ = 15. From (19), we finally obtain ~N = 1.15 
(mV/ms) and ~'N = 1.81 (mV/x/-~) for the considered case g = 10 and 
Xo = 0.  
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