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Abstract. Replicator dynamics serves for modelling 
many biological processes, e.g. evolution of animal be- 
haviour, but also selection in population genetics, and 
even prebiotic evolution. The Lotka-Volterra system is 
used in mathematical ecology to describe the interaction 
of two populations over time. Here, predator/prey situ- 
ations can be modelled as well as competition for a 
resource. After a short account on applications and rami- 
fications of planar classification results, a lacuna is closed 
which appeared in an earlier publication on classification 
(Biol Cybern 48:201-211, 1983). The now complete list of 
possible phase portraits under the replicator dynamics as 
well as under the Lotka-Volterra system is specified and 
contains, up to flow reversal, 49 qualitatively different 
cases for the former, and 110 or 67 for the latter dynam- 
ics, depending on whether or not one discriminates 
between different asymptotic slope behaviour. Further- 
more, a systematic investigation of the flow under the 
replicator dynamics exhibits a variety of non-robust 
models which illustrate dynamic aspects of some solution 
concepts in evolutionary game theory, a field that is 
receiving widespread interest in the recent literature. 

1 Introduction: the models and some applications 

Two dynamical models frequently employed in theoret- 
ical biology are the replicator system and the Lotka- 
Volterra equation. The planar case of the latter has been 
investigated extensively by many authors in the past, and 
several attempts have been made to achieve a complete 
classification, e.g. Reyn (1987) and the references therein. 
In an article published more than 10 years ago, Bomze 
(1983) attacked the problem of completely classifying the 
possible planar flows of both the replicator dynamics and 
the Lotka-Volterra system. The aim of this note is to give 
an account of related subsequent work; of different 
approaches to classification; of new relationships between 
these systems and dynamical aspects of evolutionary 
game theory; to provide an explicit complete classifica- 
tion of the planar Lotka-Volterra flows; and - last but 

not least - -  to close a lacuna in the above-mentioned 
paper. 

For  the convenience of the reader, I shall now sketch 
very roughly the main features of the topic. For  more 
details, notation and terminology, see Bomze (1983). 
Replicator dynamics were introduced by Taylor and 
Jonker (1978) to model evolution of behaviour in intras- 
pecific conflicts under random pairwise mating in a large, 
ideally infinite population. It formalizes the idea that the 
growth rates 2i/x~ of relative frequency x~ of the ith 
behaviour pattern (i = 1 . . . . .  n) is equal to the (dis)ad- 
vantage 

ei" A x  - x" A x  = Z a o x j  - Z XkakjX~ 
j j ,k 

measured by incremental fitness relative to the average 
performance within the population in state x = I x 1 , . . . ,  x,]. 
Here a/j denotes incremental individual fitness attributed 
to an/-individual when encountering a j-individual, and 
A = [ai~] is the resulting fitness matrix. Throughout  the 
paper, a dot" denotes derivative w.r.t, time t. In the main 
body of the article, I shall concentrate on the case of 
n = 3 behaviour patterns. These patterns are often called 
'pure strategies' in evolutionary game theory, in which 
context the matrix A is termed the 'payoff matrix'. So 
interest is focussed on the system of cubic differential 
equations 

operating on the state space S = S 3, where for general n 

S" = {x = Ix1 . . . . .  x,-]: xi >~ O, all i, ~ , x i  : 1} 
i 

denotes the standard simplex in n-dimensional Euclidean 
space. 

As and example for application in models of behav- 
ioural evolution, we derive the payoffmatrix from a 'live- 
scenario', considering the well-known Hawk-Dove- 
Retaliator game (Maynard Smith 1982), in which animals 
are contesting a resource of value V > 0: 
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The first pattern (called 'Hawk') represents an escalating 
behaviour: escalation will be continued until injury 
(which costs C > 0) or retreat of the opponent; 
The second behavioural pattern (called 'Dove') consists 
of displaying in a ritual way. A Dove retreats if the 
opponent escalates; 
Individuals following the third pattern (called 'Retaliator') 
behave like a Dove against a Dove and like a Hawk 
against a Hawk, but never escalate first. 

Assume that each of two escalating opponents have 
a 50% chance of injuring the other one and obtaining the 
resource, and a 50% chance of being injured. Similarly, 
two displaying contestants will have a 50% chance of 
winning the resource. Now it is easy to derive A: 

V - C  V V - C  
2 2 

A = 0 V/2 V/2 

V - C V/2 V/2 
2 

If, for example, V = 2 and C = 4, then 

- 1  2 - 1  

A =  0 1 1 

- 1  1 1 

which yields under (1) the flow as depicted in Fig. 1 of 
Bomze (1983). The analysis there shows that any mixed 
population will evolve according to its initial state: either 
to one of a set of possible populations where Hawks are 
extinct and with at most twice as many Doves as Retali- 
ators, or to a 1:1 mixture of Hawks and Doves, where 
Retaliators are extinct. The latter will happen if there are 
sufficient Doves at the start, so that Retaliators can 
survive only if there are just a few Doves from the 
beginning. 

Population genetics is a second important field for 
the application of replicator dynamics. Indeed, consider 
a game of partnership in which the two contestants share 
their outcome equally, which means a o = aji, for all i and 
j. If xi are the frequencies of n possible alleles for a given 
chromosomal locus, and a u is the fitness of genotype (ij), 
then (1) is nothing else than the well-known Wright- 
Fisher-Haldane equation for continuous time (Hadeler 
1974). The average payoff x . A x  here is mean fitness and 
increases with time, and every population approaches 
some fixed point (Akin and Hofbauer, 1982). For 
example, a simple three-allele model where the hetero- 
zygote is fitter than the homozygotes yields 

1 2 2 

A =  2 1 2 

2 2 1 

which generates the flow under (1) depicted in [ ]  of Fig. 6 
in Bomze (1983), where all three gene types will converge 
in frequency to 1/3. Another example of a selection PP is 

[ ]  in Fig. 1 below, where the final state again depends 
on the initial state. In contrast to [7], here sensitivity to 
the initial conditions is quite drastic in that not only the 
(inevitable) extinction of one allele, but also the final 
balance between the remaining ones depends on their 
starting value. 

In modelling prebiotic evolution, the simplest pos- 
sible hypercycle consists of three interacting species of 
macromolecules with concentrations Xa,X2,X3, respec- 
tively. Assume that by a catalytic mechanism species 
2 favours the growth of species 1, which in turn favours 
species 3, which again favours species 2. Schuster and 
Sigmund (1983) show that (1) then describes the time 
evolution of this model if 

0 kl 0 

A =  0 0 k2 w i t h k i > 0 ,  for a l l i  

k 3 0 0 

The corresponding PP is [ ]  in Fig. 6 of Bomze (1983). 
As in PP ['7], every state evolves to an interior equilib- 
rium with positive concentrations of all three species, so 
that here also cooperation results. The difference between 
[ ]  and [ ]  is the spiralling motion in the latter corres- 
ponding to damped oscillations of frequencies, which 
increase or decrease monotonically in [ ] .  

The planar Lotka-Volterra system describes evolu- 
tion of two interacting populations with densities x/> 0 
and y >~ 0: 

2 = x[a  + bx + cy]~ (2) 

= y [d + ex + fy]  J 

This is the simplest formal description of interaction 
since the growth rates 2/x and ~/y depend linearly on the 
densities x and y, the signs of b , c , e , f  representing 
growth enhancing (if positive), indifference (if zero), or 
inhibiting effect (if negative) of one species upon itself or 
the other one. Choosing an appropriate sign structure 
one obtains, e.g. predator/prey models or competition 
models for resources that decrease linearly with the dens- 
ities, cf. Sect. 2.4 in Bomze (1983). For instance, the model 
investigated originally by Lotka and Volterra exhibits an 
interior fixed point, the predator-prey equilibrium, which 
is surrounded by closed orbits corresponding to endless 
periodic oscillations in the densities. 

To show equivalence of the replicator dynamics (1) 
and the Lotka-Volterra system (2), Hofbauer (1981) used 
the transformation 

1 x y 
- -  , X 2  - -  , X 3  - -  XI l + x + y  l + x + y  l + x + y  

(3) 

which maps trajectories under (2) onto those under (1) 
with [ 00] 
A = b c (4) 

e f 



respecting the direction of flow. For instance, the classi- 
cal Lotka-Volterra model described above would via (3) 
be transformed into PP [ ]  in Fig. 1 below. 

Since (1) has the advantage of operating on the com- 
pact set S while (2) is of a simpler analytic form, the 
projective transformation (3) enabled exploitation of the 
advantageous features of either system in Bomze (1983) 
with the aim to obtain a complete classification of both 
dynamics by distinquishing cases according to the fixed 
point structure (i.e. a number, position and stability 
properties of fixed points). A similar but different com- 
pactification approach is followed by Reyn (1987), who 
uses a variant of polar coordinates instead of the trans- 
formation (3). A more detailed account on this work is 
deferred to Sect. 4. 

The results of Bomze (1983) have been used in several 
publications since then, mostly in connection with ques- 
tions concerning bifurcation, perturbation and charac- 
terization of chaotic attractors in low dimensions (which 
of course cannot occur in the planar systems investigated 
here), or application to (human non-cooperative) game 
theory. Section 2 will shortly comment on these, and also 
on recent ramifications in flow classification. Last but not 
least, a lacuna in the paper of Bomze (1983) will be closed 
here, adding two more (non-robust) cases to the list 
specified there. Section 3 is concerned with dynamical 
properties of certain sets of fixed points which typically 
can occur in non-robust situations, and which are closely 
related to a set-valued solution concept in evolutionary 
game theory that is receiving increasing interest in recent 
literature. Here, a complete account is given to the differ- 
ent cases related with the specified payoff matrices A, 
which may be helpful in constructing counter-examples 
for more general assertions. In Section 4 an explicit 
systematic classification of planar Lotka-Volterra flows 
is specified, which takes into account also some differ- 
ences in asymptotic slopes. As a consequence, in some 
cases two phase portraits (PPs) are distinguished from 
each other, although they are isomorphic in a topo- 
logical sense. Section 5 forms the conclusion while the 
Appendix contains results which are used in Sect. 3, but 
which are valid also for the general case of n behaviour 
patterns. 

2 Classification: applications, ramifications and 
a correction 

Stadler and Schuster (1990) investigated small auto- 
catalytic reaction networks and used the classifications in 
Hofbauer et al. (1980) and Bomze (1983) in a systematic 
search for all egeneric bifurcations, but also for major 
classes of degeneracies. Fortunately (see below), from the 
latter paper they do not use assertions on pointwise fixed 
straight lines in the relative interior of S. 

Schnabl et al. (1991) established the simplest strange 
attractors possible in Lotka-Volterra systems with three 
species, and replicator systems with n = 4, respectively, 
investigating a two-dimensional subspace of the twelve- 
dimensional parameter space. In order to systematically 
establish robust saddle-point connections on the planar 
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boundary of S 4, these authors also use results from 
Bomze (1983). 

In their paper on mutation in autocatalytic reaction 
networks dealing with perturbation analysis of the repli- 
cator equation, Stadler and Schuster (1992) use facts from 
their article (1990) referred to above, and correctly report 
that the number of PPs under (1) specified in Bomze 
(1983) is 47. However, the complete list of possible PPs 
under (1) contains 49 different cases (see below). 

Relating classical non-cooperative game theory to the 
approach of evolutionary stability, Bomze (1986) as- 
serted that non-regular ESSs are degenerate also from 
a dynamics point of view (cf. the paragraph preceding 
Example n). As Fig. 1 shows, the argument used there 
remains valid also under the corrected classification (see 
below). 

In a recent paper on quality patterns in public con- 
tracting, Antoci and Sacco (1995) used the classification 
from Bomze (1983) for qualitative analysis of dynamics of 
a game where a firm has three choices of quality levels in, 
e.g., building bridges. Also here, no case of interior 
straight line of fixed points occurs, so that their results 
are not afflicted by the lacuna. 

Recently, Christopher and Devlin (1993) proposed an 
alternative, efficient and attractive way of classifying all 
matrices generating robust flows of (1), which were al- 
ready classified by Zeeman (1980). They argue that there 
and in Bomze (1983), only one example per PP was 
presented. While this might be true for Zeeman's classi- 
fication, this assertion ignores in some sense the appendix 
in Bomze (1983). Apart from the fact that the efficiency of 
Christopher and Devlin's (1993) method appears to be 
confined to the 19 robust cases, it seems to be a matter of 
taste whether to use their approach or to proceed as 
follows, applying the classification results in Bomze 
(1983). 

If a replicator system (1) is given by the matrix A, first 
standardize it by subtracting alj from each column 
j = 1, 2, 3. This transformation does not alter the behav- 
iour of (1) and results in a matrix with zeroes in its first 
row, as in (4). For a Lotka-Volterra system (2), this is the 
initial situation. Next determine the sign structure of the 
four coefficients a, b, d, f  (recall that positive coefficients 
signify growth enhancing, while negative ones represent 
inhibiting effects), together with those of the differences 
e -  b, c - f ,  and of the product differences b d -  ae, 
a f - c d ,  b f -ce .  Due to Propositions 1,2, 5 and 6 in 
Bomze (1983), this information already suffices to deter- 
mine all the eigenvalues of vertices and to establish the 
existence and eigenvalues of all other isolated fixed 
points in S. Finally, use the systematic approach there, 
distinguishing cases according to the number of point- 
wise fixed lines or fixed points in the relative interior of S, 
to obtain a PP compatible with the stability structure of 
fixed points established previously. 

However, due to a wrong argument in Bomze (1983), 
a subcase of case I.b (exactly one pointwise fixed straight 
line ~ which is not an edge) was excluded erroneously. As 
a consequence, the classification there has a lacuna cor- 
responding to two further PPs, which can be viewed as 
limiting cases of [ ]  and []  : indeed, if ~ intersects the 



450 

0-I 1 0 0 0 

[] 1 0-1 [] 0 0-1 

0 1 1 0 - 2  1 
[ ]  0 0 2  ~ 0 0 - 2  

0-1 1 0 2 0 0 1 0 

[ ]  0 0 - 1  [ ]  2 0 0  r ~  I 0 0  

Fig. 1. Phase portraits of the replicator equation (1): correction of 
Fig. 6 in Bomze (1983) 

relative boundary of S in a vertex, say Ca, and also the 
edge joining el and e2, then necessarily by Propositions 
2, 5 and 6 of Bomze (1983): ab < 0; bd = ae; c = f =  0; but 
neither d = 0 nor d = a (otherwise an edge would be 
pointwise fixed). The general solution of (2) is therefore in 
this case 

y ( x )  = C x  d/" 

and all points [ -  a/b, y], y/> 0, are fixed. Depending on 
the sign of d, one so obtains, up to geometric equivalence, 
for 0 < d/a < 1 the PPs [ ]  and - [ ]  (related to PP [57, 
appropriately rotated), and for d/a < 0 or d/a > 1 the 
PPs [ ]  and -[4--~ (related to [ ]  ), which are depicted in 
Fig. 1. As in Bomze (1983), representative matrices are 
specified. Unfortunately, the lacuna was accompanied by 
a series of misprints in the entries of the matrices adjacent 
to the PPs r ~ ,  [~], ~ ] ,  [ ]  and [ ]  in Bomze (1983). 
Therefore, in Fig. 1 also specify these PPs again, together 
with the corrected matrices. 

Let us close this section by a further observation 
concerning different approaches of proving completeness 
of the classification: in Bomze (1983) it was argued that in 
cases II.b, II.c, II.d and III.c, non-robust flows can only 
occur if both eigenvalues of one vertex, say [1,0,0] or 
[0, 0] for (2), vanish. This can be seen directly by noting 
that in any other case, the sign of 2 and/or .f remains 
constant in a neighbourhood of [0, 0], thus ruling out the 
possibility of elliptic sectors around that fixed point. 
However, this argument also follows from far more gen- 

eral principles on central manifolds, see e.g. Carr (1981) 
or Wiggins (1990, Chapter 2): indeed, since only robust 
flows on the edges can occur, Theorem 2 of Carr (1981) 
yields the result if the boundary flow is compatible with 
a source or a sink, while relation (4) on p. 29 of Carr 
(1981) settles - together with a short reasoning concern- 
ing trajectory slopes - the case of a flow compatible with 
a saddle point, so that indeed the vertex must be of the 
type indicated. Finally, the case of vertices with two" 
vanishing eigenvalues is treated completely in Bomze 
(1983). 

3 Evolutionarily stable sets and neutrally stable states 

In the recent literature on evolutionary game theory, 
a solution concept called 'evolutionarily stable (ES) set' is 
receiving increasing interest. See for example the excel- 
lent recent monograph by Cressman (1992), where the 
following formal definition is given [the notion was in- 
troduced by Thomas (1985) who used an equivalent yet 
different definition originally]: a set of states ~ is said to 
be an ES set if for every p 6 ~ we have 

x .Ap <~ p 'Ap for all x e S", 

and 

x ' A x  < p.Ax,  i f x r  with x 'Ap  = p 'Ap 

ES sets are the set-valued counterpart to ES states p in 
the sense that p is an ES state in the sense of Maynard 
Smith (1974) if and only if the singleton {p} is an ES set. 
Thus, p is an ES state (cf. Hofbauer and Sigmund 1988) 

x .Ap <~ p.Ap for all x s S", 

and 

x . A x  < p.Ax,  if x =~ p with x .Ap = p.Ap 

If one relaxes the strict inequality above, one arrives at 
the weaker concept of neutrally stable states. 

Many games of interest in economics do not possess 
any ES state. This problem is particularly pertinent in 
(undiscounted) repeated games and 'cheap talk' games 
alike. In such games, players can 'signal intentions' to 
each other without cost by either deviating in a finite 
number of periods or sending pre-play messages, respec- 
tively. Due to these possibilities, no strategies meet the 
strict inequality in the criterion of evolutionary stability. 
Therefore, researchers have turned to weaker stability 
concepts such as neutral stability or ES sets. See e.g. 
Farrell and Ware (1988), Fudenberg and Maskin (1990), 
Binmore and Samuelson (1991), W~irneryd (1991, 1993), 
Blume et al. (1993). For a discussion of the relevance of 
neutral stability for extensive-form analysis, see Van 
Damme (1987). 

From the viewpoint of qualitative dynamic proper- 
ties, ES sets are asymptotically stable sets consisting 
entirely of fixed points under the replicator dynamics (1), 
see Cressman (1992). Hence, an ES state is always an 
asymptotically stable fixed point under (1), as was noted 
already by Taylor and Jonker (1978). However, if a 



connected component of an ES set has more than one 
point, none of them can be an ES state, since it can be 
approximated by other fixed points. In this case, the 
states in such an ES set are still neutrally stable (see 
Theorem 2 of the Appendix), and as such Lyapunov 
stable, according to Thomas (1985), who uses the term 
'weakly ES state' instead of 'neutrally stable state'. 

A systematic investigation of the flows under (1) 
shows that not every subset consisting of neutrally stable 
states is an ES set. Furthermore, there are attracting sets 
of fixed points which are not ES sets. For singletons, i.e. 
ES states, this was already observed by Zeeman (1981). 

�9 Similarly, a set of Lyapunov stable states must not con- 
tain neutrally stable states. However, since any attracting 
fixed point on an edge or a vertex of S occurring in Fig. 6 
of Bomze (1983), and Fig. 1 above, is hyperbolic, Proposi- 
tion 1 (see the Appendix) guarantees that any such fixed 
point is an ES state. For the sake of completeness, we 
now list (a) the PPs where, under the matrix A specified, 
there are ES sets with connected non-singleton compo- 
nents; (b) the PPs with attracting sets (also the singletons) 
that are not ES; (c) the PPs where neutrally stable states 
occur which do not belong to ES sets, showing that the 
converse of Theorem 2 is not true in general; (d) the PPs 
where Lyapunov stable states occur which are not neu- 
trally stable. The notation (--) [ ]  means that PP [ ]  and 
also the PP - [ ]  obtained by flow reversal from 
[ ]  belong to this class. 

(a) ~ ] ;  - [~ ] ;  -D"9]; and [~] .  

(b) [3]: ~ = {P:Pl = �89 is attractive, but no ES set, 
since no p ~ ~ is neutrally stable; ['9"], [1[1[~: p = [�89 �89 �89 is 
no ES state, but globally attracting; [i'~: this is Zeeman's 
(1981) counterexample; ~"6]: ~' = {P:Ps = 0} is attract- 
ive.z.consists of neutrally stable states, but is no ES set; 
--1301: ~ = (.P:P3 = 0} is attractive, but is no ES set, 
since it contains no neutrally stable states except [1, 0, 0]. 

(c) []-8], [ ~ ,  - [ ~ :  every p with P2 -- 0 is neutrally 
stable, but there is no ES set. since there is no asymp- 
totically stable set; - ~ ,  - ~ , r ~ , r ~ :  as ~ ] ,  but 
with Pl instead of p2; Zl~..4.1, - Zl~dl, IZ~l, ~ : every p with 
P3 ---- 0 and pl > �89 is neutrally stable, but there is no ES 
set, since there is no asymptotically stable set; - [ ~ ] ,  
l ~ - 1 2 - - ~ ,  - I ~ :  as 12121~, but with P2 instead of Pl; 
-1301: see (b); 

(d) ['3], ( - ) [ ~ ,  ( - ) [ ~ ] :  p = [�89189 is Lyapunov 
stable, but not neutrally stable; [!~]: as ~], but with 

r_3 ! !1. 1"5"], ['9"], [ ]  [~]: see (b); I'GI: all p with P = k5 ,  5, 5_1, 

P l  = �89 a n d  P2 > t a r e  Lyapunov stable, b u t  n e i t h e r  o f  
these states is neutrally stable; [ ]  : all p with p~ = P2 > 0 
are Lyapunov stable, but only those with �89 ~< Pl ~< �89 are 
also neutrally stable. 

4 Expfieit classification of the planar Lotka-Volterra 
flows 

Apparently being unaware of Bomze (1983), Reyn (1987) 
provided a long list of possible PPs under (2) on the 
whole plane, i.e. for arbitrary signs of x and y. Note that 
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this can be accomplished using the results presented here 
by considering the following four parameters constella- 
tions, cycling clockwise through the four quadrants: 

(a,b,c,d,e,f); (a,b, -c,d,e, - f ) ;  

(a, -b,  -c,d, -e,  - f ) ;  (a, -b,c,d, -e ,  f )  

However, Reyn's (1987) list does not contain, e.g. the 
cases I.a or III.a below, since interest was focussed on 
a finite number of fixed points there. Here we specify in 
a systematic way a representative list of PPs under (2) 
which emerge from the PPs under (1) in Fig. 6 from 
Bomze (1983), and completed by Fig. 1 above. To this 
end, we project a PP [ ]  from the left, upper or right 
vertex, respectively, and denote the corresponding PPs 
by [ ]e ,  []N and [ ]w,  respectively. Up to coordinate 
permutation, the projections are given by inversion of 
formula (3), i.e. x = Xz/Xl, y = x3/xl, which applies to 
[]g. 

Since in most applications, not only the limiting be- 
haviour of x(t), y(t) as t --, + co or t ~ - oo is important 
but also the asymptotic slope in case of unbounded 
trajectories, i.e. the limit of y(t)/x(t) as t ~ _ oo, it seems 
reasonable to proceed as in Reyn (1987), namely to dis- 
tinguish PPs from each other if they are topologically 
equivalent, given that they exhibit different asymptotic 
slope behaviour. However, we also indicate which PPs 
should be identified from a purely topological point of 
view. 

Any PP under (2) which does not occur below can be 
obtained by one PP of the following list by exchanging 
x with y (denoted by x ~ y) and/or by flow reversal, 
replacing t with - t .  

To proceed in a systematic way, we follow the ap- 
proach in Bomze (1983) using the case distinctions there. 
In parentheses we specify the numbers of different cases 
and the robust PPs among them, if applicable (note that 
these can only occur in cases II and III.c below): 

Case 0: anything fixed. [0"]E (1) 
Case I: straight line of fixed points in the positive quad- 
rant 
Case I.a.l: one fixed edge, single fixed point on the other 
edge. IT]e, 1"3"]E (2) 
Case I.a.2: one fixed edge, no fixed point on the other 
edge. ['~'] w, ['3-]w, [-4"]E (3) 
Case I.b.l: two single fixed points on edges. []']N, [3']~, ["6]r 
(3) 
Case I.b.2: one single fixed point on an edge, none on the 
other edge. ['2-IN, [-5IN, ['5"]W, ['6IN (4) 
Case 1.b.3: no fixed points on edges. [-4"IN, [~]N, ~-8]N (3) 
Case II: a single fixed point in the positive quadrant 
Case II.a: two single fixed points on edges. ["]]e, ['gin, ['gIN, 
['9-IN, fr0]N, [ ]  N, [ ]  N, [ ]  r (8/7 robust) 
Case II.b: one single fixed point on an edge, none on the 
other edge. ['9"]E, I'9"] w, [ ]  n, [ ]  w, [ ]  e, [ ]  e, [ ]  w, [ ]  N, 
['i--4] E, 1"i-'51 e, 1"1"5"1 w (11/10 robust) 
Case II.c: no fixed points on edges. [ ]  N, [ ]  S, [ ]  E, [ ]  e 
(4/3 robust) 
Case III: no fixed point in the positive quadrant 
Case Ill.a: two fixed edges. [ ]  E, [ ]  e, [ ]  n (3) 
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Case III .b. l :  one fixed edge, a single fixed point  on the 
o t her edge. r2-0] s ,  1,2--f] r ,  1"2T] w, 1~2"2] e, 1"2"J] E, r2--4] r ,  r25'] E, i-~--6"1 E, 
IZZ] (10) 
Case III.b.2: one fixed edge, no fixed point  on the other  
edge. ~ ] N ,  ~ ] N ,  [1"~ W, ['2"~ W, ['2--4] W, ~ ] W ,  ['2--6q W, [ ~ W ,  
r2g] w, 130] E, 1"3"-0"] w, ['J'i'] E, r3-~ E, 13~] w, 13~ ~ (15) 
Case III .c.l :  two single fixed points on edges. [ ]  N, [ ]  N, 

N,I  w, [ ]  [ ]  N, [ ]N,  [ ]N,  [ ]  N, [ ]  (11/9 
robust) 
Case III.c.2: one single fixed point  on an edge, no  fixed 
point  on the other  edge. [ ]  s, [ ]  s,  [ ]  s, [ ]  s ,  [ ]  N, 
[]N,  lY61 w, [YTlw, 
[ ]  r ,  [ ]  w, [ ]  E, [ ]  N, [ ]  s ,  [ ]  w (20/11 robust). 
Case III.c.3: only [0, 0] is fixed. [ ]  s ,  [ ]  s,  [ ]  s,  [ ]  s,  
rJ'J]m [T0]N, [ ] m  [T~]N, [ ~ E ,  [ ] E ,  [T6]E, g'6qN (12/5 
robust) 

F r o m  a topological  point  of  view, the following PPs  
are indistinguishable from each other: 
['I'IN and I-SqE; [~]N and [5]N(X*--~y), ['~[]E and ['q]N; I-8-]E and 
-[]-]']~v; I'ff]N and []-0"IN; lT:)']r, and ['f'5']w; fr0]w, 
- [ IT]  E (x *-~ y),  and [1-4] E; ['I3] N and f f ' / ] E ( x ~ y ) ;  --[T'g]N, 
--ff'gq N, ['2"~I w (X '--~ y), and ['3~ w (X *-, y); ['i-9] w ,  

[ ] E ( X  *---r y),  and 1"3-'1] ~ (x*--~y); I ' ~ N ( x  ~--~ y),  [ ] e ,  I ' ~ ,  
and r2"6]E; - - [ ] U ,  r3-4]u, ['3-Sle(x~--~y), 137]u, and 
13r~u(X~y);  12-]lw and I'~??]E; [ ] E  and 12"3]e; -r'24]u, 
1'2"-6]N, 1"3-9] e (x ~--, y),  - - [ ]  w ,  and -g"2]e;  --[~]N, 
[3"8] w (x  ~ y),  and [ ] N ;  r27]u, r2-g]N, 13r-6]~, --[3-7]w, 
--f fO]E(x~--~y),  and [ ] w ;  r2-9] N, [ ]  u, [~]N, and --[T2] N; 

['J'I']N, ['3"~]N, I'J'J]N, [ ] N ,  and --I-4"6]N; --[Y4]w and 
rJ~ N (X "--~ y); 13"g] e and --1"2[-51N. 

As a consequence we obtain  67 topologically different 
PPs  of  (2). 

5 Conclusion 

The replicator dynamics (1) arises if one equips a certain 
game theoretical model  for the evolution of behaviour  in 
animal conflicts with dynamics. It  serves to model  many  
biological processes not  only in animal behaviour,  but  
also in popula t ion genetics, and even in prebiotic evolu- 
tion. On  the other hand, the Lotka-Vol ter ra  system (2) is 
used in mathematical  ecology to describe the interaction 
of  two populat ions  over time. Here, predator /prey  situ- 
ations can be modelled as well as compet i t ion for a 
resource. Since both  dynamics are equivalent f rom 
a qualitative point  of view which focuses on the analysis 
of long-term behaviour,  classification of  all possible 
planar  flows has a wide range of  applications. 

After a short  account  on applications and ramifica- 
tions of planar  classification, a lacuna in the classification 
from Bomze (1983) is closed, so that  the complete list of  
possible PPs  under  (1) now counts  49 qualitatively (up to 
flow reversal) different cases: 19 robust  ones and 30 
non-robust .  Th rough  a systematic investigation of these 
flows, we obtained a class of  models which illustrate the 
asymptot ic  behaviour  under  the replicator dynamics  of 
certain solution concepts in evolut ionary game theory. 
Finally, a complete explicit classification of the flows 
under  (2) is presented: there are 42 robust  PPs  and 68 
non-robus t  PPs,  summing up to a total of 110 PPs. If 

one ignores different asymptot ic  slope behaviour,  then 
one arrives at 67 topologically different PPs  under  (2), up 
to flow reversal. 
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Appendix 

Proposition 1: 
Let p be a hyperbolic fixed point on an edge of S". Then the 

following assertions are equivalent: 

(a) p is asymptotically stable; 
(b) p is an ES state. 

Proof: see, e.g. Bomze (1986), Theorem 30. [] 

Theorem 2: 
If p belongs to an evolutionarily stable set .~', i.e. if 

x.Ap<~p.Ap for al lx�9 

and 

x .Ax  < p.Ax, i fxr  

then p is neutrally stable, i.e. 

x.Ap<~p'Ap for a l lx �9  

and 

x .Ax  <~ p.Ax, if x.Ap = p.Ap 

Proof: All we have to show is x .Ax  <~ p.Ax whenever x �9 ~ and 
x.Ap = p.Ap. But since ~ is an ES set, p'Ax <~ x.Ax. So assume that 
this inequality is strict and put y = (1 - ~)x + ep �9 S" for some small 

> 0. Then y A p  = (1 - e)x.Ap + ep.Ap = p.Ap = x.Ap and therefore 

x .Ay  - y .Ay = e[x.Ap - y.Ap] + (1 - e)[x.Ax - y.Ax] 

= (1 - e)~: [x .Ax - p.Ax] > 0 

so that y r ~ results. Thus, evolutionary stability of ~ and the relation 
p �9 ~ yields the contradiction 

0 < p.Ay - y .Ay = (1 - ~) [p.Ay - x.Ay] 

= (1 - e) 2 [ p A x  - x .Ax] < 0 

Hence, we have even shown the following property: if both x and 
p belong to an ES set, then either both quantities x.Ap - p . A p  and 
p.Ax - x .Ax  are strictly negative or both vanish. [] 
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