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Abstract. Presented here is a basic biophysical cell 
model for bursting, an extension of  our previous model 
(Av-Ron et al. 1991) for excitability and oscillations. 
By changing a limited set of model parameters, one can 
describe different patterns of bursting behavior in terms 
of the burst cycle, the durations of oscillation and 
quiescence, and firing frequency. 

1 Introduction 

This is a second paper in a series aimed at constructing 
canonical models for neurons that exhibit different 
firing patterns. More precisely, as stated in the first 
paper of the series (Av-Ron et al. 1991, hereafter 
referred to as paper I), we aim to show that a common 
biophysical cellular model, but with different parameter 
values, can exhibit different observed cellular behaviors. 
(By biophysical model we mean a model where every 
variable or process can be associated with a biophysical 
mechanism.) In subsequent publications our model neu- 
ron cells will be used to simulate, and to gain an 
understanding of, the behavior of small neuronal net- 
works. To this end, for reasons discussed in paper I, we 
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have chosen to focus on the cardiac ganglion of  the 
lobster. 

In paper I we presented a minimal cellular model 
that exhibits excitability and oscillatory behavior. Fur- 
thermore, by analyzing the effects of parameter varia- 
tion, we ascertained the main biophysical processes that 
(according to our model) determine whether a cell is an 
oscillatory or an excitable cell. 

However, neurons not only show oscillation or ex- 
citability. In addition "burster" neurons exhibit inter- 
vals of high frequency oscillations, which alternate with 
periods of quiescence. An example of  such a behavior is 
shown in Fig. 1, which depicts typical behavior of  the 
neurons of the lobster cardiac ganglion (Bullock and 
Terzuolo 1957). To obtain bursting behavior, we must 
extend the minimal model of paper I. 

A number of authors have considered bursting 
models; for reviews see Rinzel and Lee (1987) and 
Rinzel and Ermentrout (1989). Our approach supple- 
ments earlier work mainly because of  its focus on 
striving to explain a variety of  observed cellular behav- 
iors with a single model and its efforts to keep the basic 
model as simple as possible. Hence, our strategy in 
constructing the basic model for bursting is to base it 
on the minimal model of  paper I. We then will choose, 
from several possible biophysical mechanisms that seem 
capable of turning an oscillator into a burster, those 
that seem most justified for the cardiac ganglion of  the 
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Fig. 1. a Intracellular voltage recording from a 
large cell of the cardiac ganglion of the lobster 
Panulirus interruptus, b Enlargement. Scales in a 
(right): 10mV, 500 ms. Taken with permission 
from Bullock and Terzuolo (1957) 
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lobster. We will determine which of the biophysical 
parameters  are mainly responsible for variation in the 
neurobiologically significant burst properties, that is the 
frequency of  firing within the burst, the duration of  the 
firing period (oscillation) and the interval between the 
firing periods (quiescence). 

In a third paper  we will apply the conclusions 
obtained in this paper  to model the neurons of  the 
lobster cardiac ganglion. 

2 A minimal cell model 

The minimal cell model of  paper I is based on the work 
of  Hodgkin and Huxley (1952) and Rinzel (1984). The 
model involves three types of  current: an inward 
sodium current IN~, an outward potassium current IK 
and a leak current IL. An ion current /~ can be de- 
scribed by the product  of  its maximal conductance ~ ,  
of  activation and inactivation variables, and of the 
driving force ( V -  V~). The system is represented by 
two variables, the voltage variable V and a recovery 
variable W. W is called a recovery variable because it is 
a linear combination of  the two Hodgk in -Hux ley  vari- 
ables h and n that are responsible for ending the action 
potential and returning the membrane to its resting 
potential. As was shown in paper  I, the use of  W -  
which dates from FitzHugh (1961) - r e d u c e s  the num- 
ber of  variables in the model, allowing for simpler 
mathematical  analysis (phase plane and stability), while 
not significantly altering the model dynamics. 

The minimal model of  paper I is composed of two 
differential equations: 

V dW W~(V) - W 
Cm d t  --  I --  INa --  IK -- IL,  d t  - -  

rw(v) 
(1, 2) 

The current-voltage equations are 

IN a ~. ~ N a m  3 ( V ) (  1 --  W ) (  V --  VN,)  (3a) 

IK = g K ( W / s ) 4 ( V  - -  VK) ,  IL = g L ( V  --  VL) (3b, c) 

The following equations give the voltage dependence of  
the steady-state recovery (W~),  the steady-state sodium 
activation (m~) and the relaxation time for recovery 
(~w): 
W ~ ( V )  = (1 + e x p [ - - 2 a ~ w ) ( v  - V1/2)])~) 1 (4) 

m ~ ( V )  = (1 + exp[ -2a(m)(V - V~'~})])-' (5) 

z~(V) = (2 e x p [ a ~ 1 7 6  v~-')~l r 

+ 2 e x p [ - - a ~ ) ( V  ~w) - l  -- V,/2)]) (6) 

The steady-state functions of  (4) and (5) are modeled as 
sigmoid curves. The parameter  Vj/2 is the voltage for 
the half-maximal value and the parameter  a controls 
the slope of  the curve at this midpoint (inflection 
point). For  further detail see paper I. 

The model, (1 ) - (6 ) ,  can exhibit excitability, in that 
a suprathreshold stimulus will cause it to generate an 
action potential. For  other parameter  regimes the 
model yields oscillatory behavior. 

2.1 The  m i n i m a l  m o d e l  a d j u s t e d  to the lobs ter  
cardiac  neurons  

In paper I we showed the visual fit of the minimal cell 
model to the lobster giant axon action potential. As our 
long-term goal is to model the lobster cardiac ganglion, 
we choose here parameters that yield agreement with 
existing data concerning the lobster cardiac neurons. 
Compared to the giant axon, the cardiac ganglion 
neurons have a higher resting potential (between - 5 0  
and - 6 0  mV) (Bullock and Terzuolo 1957) and a lower 
threshold (between 1.3 and 11 mV) (Otani and Bullock 
1959). There are no voltage clamp data on the cardiac 
nerve cell axons, so that there are numerous ways to 
achieve a model with these constraints. To select among 
them, we arranged that there be a reasonable fit to 
observations of  the I-V curves of  lobster giant axon, as 
it is known that I-V curves tend to be quite similar 
among various cell types (Hille 1992). An action poten- 
tial that results when the parameters fitting the lobster 
cardiac neuron (1 ) - (6 )  are employed is presented in 
Fig. 2. 

3 A minimal bursting model 

The qualitative behavior of  the minimal model (1 ) - (6 )  
depends on the parameter  values. Three relevant behav- 
iors can be found: (i) There is a globally stable steady 
state, i.e. no matter  what the initial conditions are, as 
time goes on all solutions approach closer and closer to 
the steady state. (ii) There is a globally stable limit 
cycle, i.e. with time, all solutions tend toward a particu- 
lar well-defined oscillation. (iii) Bistability exists in the 
form of two (locally) stable states, a steady state and 
an oscillation. Bistability is illustrated in Fig. 3. The 
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Fig. 2. A single action potential of the minimal lobster cardiac model 
(1)-(6). The action potential is triggered by raising the membrane 
potential past threshold, to -50mV, at t =0.5ms. The resting 
potential is -56mV. Model parameters: VC~'g = - 3 1  mV, a (') = 
0.065, VIp'S=-46mV, a(W)=0.055, ~[=0.08, s =  1. All other 
parameters take the Hodgkin and Huxley (1952) values (with 
V = V~n - 60): C m = 1/~F/cm 2, gJva = 120 mS/era ~, gx = 36 mS/cm 2, 
gL=0.3mS/cm 2, V2va=55mV, V K=-72mV,  V L=-50mV.  
(Note Hodgkin-Huxley V L = -49.4 mV) 
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Fig. 3. Bistability of the minimal lobster cardiac model Nullclincs for 
(I) and (2) with corrcsponding stable steady-state point (heavy dot) 
and stable limit cycle (solid line) traversed counterclockwise. Unstable 
limit cycle (dashed line) bounds shaded domain of attraction of 
steady-state point. Parameters as in Fig. 2 except that gK = 15 mS/ 
cin 2 

shaded area of  this figure corresponds to the domain of 
attraction of the steady state, namely the set of  initial 
conditions starting from which solutions tend to the 
steady state. The unshaded area corresponds to the 
domain of attraction of the limit cycle oscillation. 

For  definiteness, let us consider what qualitative 
behaviors are possible for a range of  values of  the 
maximal potassium conductance gK- These behaviors 
are evident from the so-called bifurcation diagram of 
Fig. 4a. F rom left to right, there is a parameter  domain 
where the steady state is globally stable, then (for 
1.3 < gK < 3) a region of bistability, then a region with 
a globally stable limit cycle, then another region of  
bistability, and finally (for ~/~ > 16) another region 
where the steady state is a global attractor. 

In overall terms, bursting can be obtained by sup- 
plementing the minimal model by a process that shifts a 
parameter  such as gK in a cyclic manner  back and forth 
between a region associated with oscillations and a 
region associated with a steady state. Suppose that this 
process is slow compared to the changes described by 
the minimal model. Then the qualitative results for the 
minimal model should remain valid, so that the system 
will switch back and forth between virtual quiescence 
and oscillation, as is observed in bursting. It  turns out 
that a parameter  region exhibiting bistability is impor- 
tant if one is to obtain a minimal burster model. This 
point will be discussed further below. 

3.1 M i n i m a l  bursters 

The question now arises of  what should be the "control  
parameter"  whose alteration produces bursting. In 
paper  I we found that the most  natural  parameter  to 
alter the model dynamics is the maximal conductances 
of  the different ions, i.e. gNa, gK and ~/ .  Altering the 
conductances was therefore a "natura l"  thing to do 
because they have a strong effect on model dynamics 
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Fig. 4. a Bifurcation diagram as a function of gK, the maximal 
potassium conductance per unit area. b Bifurcation diagram as a 
function of gN,, the maximal sodium conductance per unit area. 
Depicted are steady states that are stable (heavy solid line) and 
unstable (heavy dashed line) as well as minimum and maximum 
voltages for limit cycle solutions, both stable (light solid line) and 
unstable (light dashed line). The dark closed curve schematically 
corresponds to the course of a burst (see text). Fixed parameters as in 
Fig. 2. 

and can be modified by biophysically plausible mecha- 
nisms. It  was these parameters  that we concentrated on 
as a basis for bursting. 

As an aid to choosing suitable modifications of  the 
conductances, in Fig. 4 we present bifurcation diagrams 
based on the parameters  gK and gua" Both have an 
extensive region of bistability. 

A bifurcation diagram based on ~/, (not shown) can 
be made to exhibit a relatively small region of  bistabil- 
ity by reducing the maximal potassium conductance to 
a value below 3 mS/cm 2. This is because with the de- 
fault parameter  value ~ = 36 mS/cm 2 altering gL does 
not provide sufficient change in the leak current, rela- 
tive to the potassium current, to alter the model stabil- 
ity from stable to unstable. Only after drastically 
reducing gK does the leak current have such an effect 
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with consequent unacceptable changes in resting poten- 
tial, threshold and the I-V curve. Because of this find- 
ing, we do not pursue further the possibility that 
bursting can arise through shifting of  the leak current. 

Comparing the gK and gu, bifurcation diagrams 
(Fig. 4a, b), we see that a burster can in principle be 
constructed based either on the left or on the right 
portion of  the gK bifurcation diagram. I f  the right (left) 
portion is employed, gK must decrease (increase) during 
the quiescent period, with opposite behavior during 
oscillations. Analogous considerations apply to the gN~ 
bifurcation diagram, taking into account that it is qual- 
itatively a mirror  image of  the gx diagram. But apply- 
ing physiological constraints, only the right portion of 
the gK bifurcation diagram can be used since the resting 
potential on the left side is above physiological values. 
(Similar considerations rule out the gN, right portion, 
not shown in Fig. 4b.) The other possibility (based on 
the left portion of the gN, diagram) will be considered 
below. Also see Rinzel (1987) where both possibilities 
(and others) are considered as part  of  a classification of 
bursting mechanisms. 

To gain the maximal degree of understanding as to 
the principles governing bursting, we wish to examine 
an overall scheme for obtaining bursting. This scheme 
is the generation of  bursts by "automat ic"  voltage- 
driven oscillations of  a key parameter  through a 
bistable region. For  definiteness, we base our discussion 
on the qualitative features of  the right portion of the 
bifurcation diagram in Fig. 4a. 

Upon  examination of  the right half of  the bifurca- 
tion diagram in Fig. 4a, we notice once again that in 
order to obtain bursting gK must increase during oscil- 
lation and decrease during quiescence. It  is important  at 
this point not to stray from essentials in discussing 
which biophysical mechanisms might be responsible for 
the appropriate  behavior of  g,v. To generate the re- 
quired behavior of  gK in a simple manner, we thus 
postulate the following phenomenological equation: 

d ( ~ K ) / d t  = S ( V ) ( V  - Vrest ) - -  d ( g  K - - g ( ~ e s t ) ) .  (7) 

The first term of  (7) is a voltage-dependent "source" 
which tends to increase gK" The second term is a 
voltage-independent decay term, with rate of  decay d. 
Note that when V = Vre~,, g,K has the steady state value 
~ " ) .  The choice of  ~,e,,) thus can place the parameter  
gK in an appropriate  range of  values, which will deter- 
mine the type of  burster behavior (see below). 

To decrease gK during quiescence and to increase g/~ 
during oscillations we postulate a source term in (7) 
that is relatively large during the relatively high average 
voltage oscillatory period. Thereby gK increases by a 
certain amount  during each action potential and decays 
between action potentials. We took S(V) = S �9 Soo (V), 
a constant source term S multiplied by 
S ~ ( V )  = (1 + exp[ - 2 a ( ~ ) ( V  -- V]~)2)]) -~, a sigmoid 
function dependent on voltage. We chose parameters so 
that the source is turned on only when V significantly 
exceeds V,e, ,. Without Soo (V) the increase of  gx when V 
exceeds V~e, , would be lost during the refractory period 
when the voltage is below Vr~,, so that the factor 

V -  Vres, in (7) is negative. The decay term was chosen 
such that during quiescence gK is reduced and during 
oscillation gK increases. Otherwise, if the decay term 
exceeds the source term, gK would remain near its 
steady state value ~ " ) .  

3.2 Burst ing behavior as de termined  by gK 

We will show two types of  bursting behaviors employ- 
ing (7) together with our minimal model (1)- (6) .  The 
first type of bursting behavior is that of an endogenous 
burster. Such a burster is a cell that does not require an 
external input to burst and continually alternates be- 
tween an oscillatory state and quiescent state (see Fig. 
5a). The second type of bursting behavior is that of a 
conditional burster. This cell requires a brief external 
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Fig. 5a, b. Membrane voltage (solid line) and g,x (dashed line), a An 
endogenous bursting model, based on the minimal lobster cardiac 
model (see Fig. 2) and (7) with g~,,)= 8. The points .4-D here 
correspond to the like-designated points in Fig. 4a. b A conditional 
bursting model, as in a but g~st) = 10.6. At left, the last two spikes 
of a burst and the subsequent approach to quiescence. The second 
burst was triggered by a 5/zA/cm 2 pulse at t = 800 ms for 0.5 ms. 
Model parameters (I)-(6) as in Fig. 2. Parameters of (7): S = 0.04, 
V(S) _ --20 mV, a (s) = 0.2, Vrest = --56 mV, d = 0.008 i/2 - -  



input to enter its oscillatory state. After firing several 
action potentials the cell will return to its quiescent 
state, where it will remain until further input. Merely by 
changing ~e~,), a conditional burster can be obtained, 
as shown in Fig. 5b. 

We now wish to dissect the bursting behavior, by 
means of the bifurcation diagram. To aid in this effort 
we have superimposed a closed heavy line on the bifur- 
cation diagram of Fig. 4a. Traversal of this line in the 
direction of the arrow schematically indicates the time 
course of ~ ,  and of solution behavior during a brust. 
Letters A - D  in Fig. 4a are placed to refer to corre- 
sponding points in Fig. 5a. 

Let us first discuss the time course of a burst in 
broad terms (leaving certain discrepancies between Fig. 
4a and Fig. 5a to be explained later). We start at A in 
Fig. 4a, where it is seen that gK is at its minimum value 
among all points on the heavy line. Oscillations com- 
mence (see Fig. 5a). (Note that in Fig. 4a the presence 
of oscillations is symbolized by placing the heavy line 
close to the point that corresponds to the minimum 
voltage during the oscillation.) The oscillations induce 
an increase in ~/r into a region wherein oscillations are 
no longer possible; thus at point B oscillations cease. As 
seen in Fig. 4a there is a transition to C, a steady 
(quiescent state). During quiescence, gt~ decreases until 
it drops into a region where the steady state is no 
longer stable. Indeed, the system moves from a quies- 
cent state at D to oscillations at A. 

There are certain differences between the behavior 
expected from the bifurcation diagram of Fig. 4a and 
the actual behavior observed in the simulations of Fig. 
5a. For example, according to Fig. 4a, oscillations 
should cease when gK exceeds 16.3, while according to 
Fig. 5a the oscillations actually terminate when gK 
exceeds 17. This seeming discrepancy occurs because 
the schematic heavy line in Fig. 4a does not indicate 
that the progress of gK is not monotonic, but oscilla- 
tory. In the penultimate spike of a burst, gK briefly 
exceeds the critical value 16.3 above which oscillations 
become extinguished. But before the "extinction pro- 
cess" has time to take place, gK has dropped below 
16.3. During the next spike, however, gK remains above 
16.3 for long enough to induce extinction of the oscilla- 
tions. 

Another discrepancy is that in Fig. 5a quiescence 
continues to point D, while according to Fig. 4a oscilla- 
tions should commence earlier, when gK drops below 
10. The reason for this behavior follows from the 
observation that oscillations inevitably develop if gK is 
held at a fixed value slightly below 10, but simulations 
show that it takes on the order of 3000 ms for the 
oscillations to appear. Thus oscillations indeed start 
developing when expected, but so slowly that no effect 
can be discerned in Fig. 5a until gx has dropped well 
below 10. 

We emphasize that the present model for bursting is 
based upon the existence of a bistable region. This can 
be seen by looking once again at the heavy closed curve 
in Fig. 4a. As we have seen, when the conductivity 
drops below gK = 10.5 then the steady (quiescent) state 
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ceases to be stable, so that the system moves toward an 
oscillatory state. The ensuing oscillations bring about 
an increase in gK, which soon exceeds the value of 10.5. 
Because of the existence of bistability, the system does 
not return to quiescence. Quiescence is indeed a stable 
steady state when gK exceeds 10.5, but so is oscillatory 
behavior. Because the system is in (or very near) an 
oscillatory state when gK exceeds 10.5 it will remain in 
this s t a t e -  for to attain a quiescence state the system 
must begin in the domain of attraction of that state. A 
similar argument describes what occurs in transitions of 
gK above and below 16, the value at which there is a 
change in the stability of the oscillatory state. 

Figure 5b shows a conditional bursting behavior 
and the corresponding change in g~o To achieve this 
behavior we merely altered the value of ~est) in (7) so 
that the steady state value of g~ now resides within the 
bistable region (see Figs. 3, 4a). A burst is initiated by 
ensuring that gk is in the bistable range and by supply- 
ing a suitable initial condition. During the burst the 
variable g~c increases, to gx > 16.3, which halts the 
oscillations, and then begins to decrease until it reaches 
the value set by ~%e~t), in this case ~/~ = 10.6. The model 
stays at this steady state and only an external input will 
shift the system into an oscillatory state. 

In the remainder of this article, we shall deal only 
with endogenous bursters. 

3.3 Biophysical processes for varying g,K 

We have shown that suitable alteration of the parame- 
ter gK in the minimal excitatory-oscillatory model of 
paper I can provide bursting. Since ~/~ quantitates the 
maximal potassium conductance, gK can be altered by 
changing the channel density. But it seems quite unrea- 
sonable that with each action potential the number of 
channels changes. From a broader perspective, how- 
ever, changes in gK achieve their effect by modifying the 
total potassium conductance g]~176 =-(W/s) 4. We 
thus ask what other biophysical processes might modify 
g~;,o,,t). There is evidence of the existence of calcium- 
dependent potassium channels that play a role in cell 
bursting (for example HiUe 1992; Schwarz and Passow 
1983). We have therefore chosen to incorporate a cal- 
cium-dependent potassium channel to produce a bio- 
physically plausible bursting model. 

With the incorporation of a new potassium channel, 
the total potassium conductance g~O,,,t) is obtained by 
summing the contributions from the original potassium 
channels and the newly postulated calcium-dependent 
potassium channels. The required modification of 
g]O,,Z) is implemented by an increase in intracellular 
calcium, mainly during spikes, and continuous calcium 
removal between spikes. Thus, to the two model equa- 
tions (1) and (2) for the voltage V and the recovery 
variable W, we now add a third equation for the 
calcium concentration C. 

We use calcium to activate the calcium-dependent 
potassium channels and therefore are only interested in 
the intracellular calcium concentration. The essence of 
our assumption concerning calcium is that its entry is 
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via a channel that both opens and closes on the time 
scale of  an action potential, for this implements the 
discrete increase of  gK [in (7)] during each action poten- 
tial. As at present we are investigating a calcium chan- 
nel that possesses the same time course as the sodium 
channel, we assume for simplicity that during the spike 
calcium enters via the sodium channels. Such an as- 
sumption bypasses the necessity to add equations to 
describe independent calcium channels. We thereby ad- 
here to our policy of  keeping the number of processes 
to a minimum and of  adding complexity only when 
required. No change in our results is anticipated if we 
postulate separate fast calcium channels (see below). 

We thus introduce a new variable to describe the 
intracellular calcium concentration that is used to con- 
trol the calcium-dependent potassium channels. The 
increase in corresponding current Ix~c~) will halt the 
oscillations. Upon the removal of calcium, oscillations 
will resume. The calcium-dependent potassium current 
IK(C~) is described, following Plant (1978), as the 
product of  the maximal conductance gK(~), a saturating 
function of  intracellular calcium C / ( C + K a )  to de- 
scribe the fraction of  maximal conductance, and the 
driving force (V - VK ): 

IK(C,) =gl~(C~) Ka+ C ( V - -  VK) (8) 

The calcium enters via the sodium channels, so that, 
paralleling (3a), 

Ic~ = gc~m3 ( V ) ( 1 -  W ) ( V -  Vc,) (9) 

The internal calcium concentration is modeled by 

dC/dt = Kp( - I co )  - R �9 C (10) 

where R is the removal rate constant and Kp is a 
conversion factor from current to concentration. We 
denote this model [ (1)- (6)  and (8)-(10)]  the minimal 
bursting model. Note that with (8) the total potassium 
conductance is given by 

g~O~O~) = g,~(W/s)~ + g,~(c~ " c / ( c  + K~) 

The conductances g/~ and gK(c~) are determined so as to 
retain the fundamental idea of  our bursting model, that 
potassium conductance traverses a region of bistability. 

Calcium is incorporated into our model solely for 
its effect on the Ca-dependent potassium channels; the 
calcium current is important  only as a means for regu- 
lating the intracellular calcium concentration. Thus we 
choose the parameters, gc~, Kp and R in (10) so that 
there is a reasonable [Ca]~ at rest [0 .05#M in our 
model; 0.02-0.3 #M according to Hille (1992)] and so 
that calcium increases sufficiently above rest to suitably 
affect the total potassium conductance. 

3.4 Properties of  the minimal bursting model 

Figure 6 shows the bursting behavior obtained with our 
present model [ (1)- (6)  and (8)-(10)].  We note that, as 
expected, the results correspond to those obtained using 
(7) (see Fig. 5a). The oscillatory behavior depicted in 
Fig. 6 (top) corresponds to the period of  increasing 
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Fig. 6. The minimal bursting model based on the minimal lobster 
cardiac model (see Fig. 2). Top: Membrane voltage (solid line) and 
intracellular calcium concentration (dashed line). Bottom: The effect 
on intracellular calcium concentration of  a 10% increase in calcium 
removal R (short-dashed line) and calcium influx K r (long-dashed 
line). Model parameters (1) - (6)  as in Fig. 2 with gK = 8 mS/cm z. 
Parameters of (8)-(10):  gK(c~>=O.25mS/cm2, Kd=0.5 ,  ~c~ = 
5 mS/cm z, Vc~ = 124 mV, Kp = 0.00052, R = 0.0045 

intracellular calcium until a threshold is attained where 
the oscillation is halted. Calcium is removed during the 
quiescent period, until oscillations resume. 

To examine the properties of the minimal bursting 
model we note that there are three primary features that 
characterize a burster: the duration of  the oscillatory 
period (Tosc), the duration of  the quiescent period (Tqui) 
and the frequency ( f )  of the oscillation. Of course 
Tosc + Tqui = T where T is the period of  the burster. It 
is natural to inquire which of the model parameters 
strongly affects each of these features. Tq,i should be 
principally affected by the removal parameter R that 
governs the speed at which C decreases. Tosc should 
depend primarily on the amount by which C increases 
during each spike, that is, primarily on the calcium 
influx parameter Kp [see (10)]. Figure 6 (bottom) 
demonstrates that R and Kp indeed have the expected 
effects. A 10% increase in the removal parameter R 
leads to a decrease in the quiescent duration from 
270 ms to 225 ms as well as increasing the oscillations 
by 25 ms and one action potential. A similar increase in 
calcium influx Kp reduces the burst duration and num- 
ber of action potentials from 155 ms with nine spikes to 
115 ms with seven spikes; the quiescence duration is 
unaltered. 

Of course, similar modifications of To~c and Tqui can 
be obtained by changing the corresponding parameters 
d and S of (7) (not shown). Therefore the variation of  
the source term in the gK equation (or its biophysical 
implementation) alters Toc s, while variation of the decay 
term (or its biophysical implementation) alters Tqui. 

Significant alteration of the frequency f c a n  only be 
accomplished by changing the parameters in the mini- 
mal cell model of  paper I. Indeed, in paper I we studied 
the influence of parameters and concluded that alter- 
ations in gx, Vx and input current I could influence the 



frequency of oscillation. Only very large changes in g r  
would cause any appreciable frequency change, (and an 
undesired by-product  of  this change would be alter- 
ations in the qualitative behavior of  the system). The 
same applies to V~, since the resting potential shifts 
by 10 mV for every two-fold change in concentration. 
The input current variable was found to be most  suit- 
able for frequency alteration, and this direction will be 
pursued. 

4 A basic bursting model 

4.1 An inward current 

The minimal bursting model described above includes 
parameters  that control burst duration, the length of 
the oscillatory and quiescent periods. However, the 
third major  feature of  bursts, the frequency of firing 
during the burst, is fixed. Moreover,  based on the 
model in paper I we find the input current to be the 
most  suitable variable for altering frequency. Since, for 
other reasons, calcium has already been introduced in 
the minimal bursting model we will use calcium for our 
input current. Recall that in the minimal bursting 
model calcium entered via a fast channel during the 
action potential. As the peak Ica is less than 10% of the 
peak Ina, the calcium current played a negligible role in 
the currents that contributed to the system dynamics. 
For  Ica to have a significant effect, it is not sufficient for 
calcium ions to flow through channels that  remain open 
only for the extent of  an action potential, such as the 
sodium channels that were used for simplicity above. A 
new slow calcium channel has to be introduced to allow 
a flow of  calcium for a time much longer than the 
duration of  an action potential. Then the inward cal- 
cium flow will act as an inward current and cause an 
alteration of  the firing frequency. We describe the new 
calcium current as 

Ic .  = gc= " X .  ( r  - Vc . )  (11) 

similarly to our other currents. Paralleling (2) and (4) 
we assume 

d X / d t  = ( X ~ ( V )  - X ) / r x  with Xoo(V) 

Zoo(V)  = ( 1  + exp[--2a(~)(V - V]~)~)]) ' (12) 

where Zx is taken to be constant. We denote this model 
[(1)-(6) ,  (8) and (10)-(12)]  the basic bursting model. 

The parameters  of  the calcium activation variable X 
will be discussed in the following section. 

4.2 Effects  o f  calcium activation 

The role of  the variable X is to keep the calcium 
channels open for a long period of  time, between the 
action potentials. This allows for a constant calcium 
flow of  a long duration. Therefore, even though the 
maximal calcium conductance is small in comparison to 
the maximal sodium conductance, the calcium flow that 
occurs between action potentials (when very little 
sodium flows) greatly increases the importance of this 
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inward current. As a consequence, changing the value 
of  the calcium conductivity gca " X is a means of  alter- 
ing the inward current and thereby the level of  depolar- 
ization for the duration of  the calcium flow, which 
alters the firing frequency during the burst. 

We first confirm that if r~ is of  a short duration, e.g. 
1 ms, i.e. the same time scale as that of  an action 
potential, we achieve the same behavior as was previ- 
ously shown (see Fig. 6 (top)) when the calcium flowed 
through the sodium channels. To this end the parame- 
ters of  the activation variable X, V(~ and a ~), were 
chosen so that the influx of  calcium corresponds to the 
previous results of  the minimal bursting model. Figure 
7a shows the membrane  potential V, intracellular cal- 
cium C and X variable for the resulting burster (with 
z~ -- 1). The burst cycle is similar to that of  the minimal 
burster in durations (To~ and Tq,~) and frequency. 
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gK = 8 mS/cm 2. Parametcrs of (8), (10)-(12): gK(ca) = 0.25 mS/cm 2, 
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R = 0.0045, V]~)2 = -20 mV, a (x) = 0.2 



94 

Table 1. Comparison of basic model for altered z~ and gc. 

gc~ z~ Burst period To~ ~ Tq~ i Peak f 
(mS/cm 2) (ms) (ms) (ms) (ms) (Hz) 

0.5 1 425 165 260 57 
0.5 50 1235 185 1050 I10 
1.0 50 1540 260 1280 139 

We now show the role of  X in keeping the calcium 
channels open for a long period. Figure 7b shows a 
bursting model with Zx = 50 ms (cf. Fig 7a). Table 1 
compares the salient features of  the two bursting mod- 
els, with a calcium activation variable that is fast 
(zx = 1 as in the minimal bursting model) and slow 
(rx = 50; basic model). Once a slow current has been 
created, its magnitude becomes influential. In particular 
(as is also illustrated in Table 1) by increasing gc, we 
achieve a somewhat higher frequency and period of 
oscillation. This is caused by a larger calcium current 
which also extends the burst period, both with a longer 
To~c and with an extended Tqu i. 

A comparison of  Fig. 7a and Fig. 7b shows that 
with a longer relaxation time, Zx = 50 ms, the change of 
intracellular calcium is greatly altered. The range of  
[Ca]~, from its peak (at the end of  the oscillations) to its 
minimum (just before oscillations) is large, over a 50- 
fold change in magnitude. This compares with a three- 
fold change with zx = 1 ms. 

The change in the activation variable X shows the 
direct effect of the altered relaxation time. In Fig. 7b X 
is active for the duration of  the burst, although the 
peak activation with the long relaxation time is much 
lower than for the fast relaxation case. Indeed, the slow 
relaxation time causes the X variable to increase slowly 
and stay high for a long time, in comparison with the 
time scale of  an action potential. 

5 Bursting behavior as determined by gNa 

Our preceding development of  a basic bursting model 
was based on a minimal burster that alters the total 
potassium conductance. It follows from Fig. 4b that the 
sodium conductance gNa could also be a suitable 
parameter for achieving bursting using (1 ) - (6 )  and (7) 
with gK replaced by a suitable equation inolving gNa. 
Based on Fig. 4b, we would like gu~ to incease during 
quiescence and decrease during oscillation. To that end 
we have to reverse the leading signs of  the terms in (7); 
the term sensitive to voltage should now reduce gNa, 
and the term that brings about  the steady-state value of 
gNa should increase gN," With this alteration of  roles, 
we achieve a burster using (1 ) - (6 )  and a modified (7) 
(not shown). 

5.1 A biophysical alteration of g ~  

We do not know of  a process that increases sodium 
flow during quiescence and decreases its flow during 
oscillation. A process that could play such a role is an 

inward current (or leak) with calcium-dependent inacti- 
vation. If we identify the "control parameter" for burst- 
ing with the total inward currents, then we can 
incorporate a new current that will change its maximal 
flow during the course of a burst cycle. This can mimic 
the desired behavior of  gNa in Fig. 4b. When the total 
maximal inward conductance, denoted by 6Nart(t~ is lOW 
g~O,aO < 113 mS/cm 2, the system possesses a globally 
stable steady state. This is the result of a high intracel- 
lular calcium level, which will cause strong inactivation 
of the "new" inward channels. As calcium is removed 
during quiescence, the inactivation will decrease and 
thereby allow an increase of inward conductance. Dur- 
ing this increase in conductance the bistable region will 
be traversed with the membrane voltage as its steady 
state. Eventually, the system will reach a sufficiently 
high inward conductance (g~~ > 155 mS/cm 2) so that 
the steady state becomes unstable (see Fig. 4b) and the 
system will begin to oscillate. During the oscillation the 
bistable region will be traversed again. Calcium will 
enter and increase the Ca-dependent inactivation. Upon 
sufficient inactivation the inward conductance will de- 
crease such that the steady state is globally stable and 
oscillations will halt. 

Such behavior can be described by adding one 
process to the minimal model of  paper I [(1)-(6)]. An 
inward current or leak, which is inactivated as intracel- 
lular calcium increases, will bring about the behavior 
described above. This will be similar to the minimal 
bursting model presented earlier. The duration of  oscil- 
lations and quiesence can be altered by modifying 
model parameters, following the arguments presented 
previously. To alter the frequency of  firing, we can 
repeat the previous procedure by incorporating a cal- 
cium channel with an activation variable X of a long 
time scale in comparison with the duration of an action 
potential. We will not implement the above model, but 
merely note that it is possible to achieve a basic model 
using the inward conductance as a cyclic variable for 
bursting. 

6 Summary and discussion 

In our study of bursting we took a two-pronged ap- 
proach, gaining understanding independent of  specific 
mechanisms and only then suggesting and examining 
mechanisms that are at once biophysically reasonable 
and of minimal complexity. We have shown that the 
minimal cell model of paper I can be extended to 
produce bursting behavior. The bursting mechanism 
that we have employed depends on the existence of a 
bistable region for some parameter domain. By incor- 
porating a process that alters the conductance of any of 
the three currents that play a role in the nerve model, a 
minimal bursting model can in principle be designed. 

Choosing potassium as the "control current" we 
implemented a bursting model, using a biophysically 
known process, a calcium-dependent potassium chan- 
nel, to alter the total potassium conductance during the 
burst cycle. 



W i t h  such a burs t ing  m o d e l  one can  al ter  the  dura -  
t ion o f  osci l la t ion and  the du ra t i on  o f  quiescence,  but  
no t  the osci l la t ion frequency.  To achieve a burs te r  m o d e l  
tha t  can  in add i t i on  show different frequencies o f  oscil- 
la t ion  an add i t i ona l  process  was needed,  namely  an 
inward  current .  W e  implemen ted  this r equ i rement  by 
in t roduc ing  calc ium channels  tha t  r emain  open long 
af ter  the classical  sod ium channels  close. In  this m a n n e r  
we can al ter  the ca lc ium influx dur ing  the osci l la t ion 
pe r iod  and have a b a c k g r o u n d  depo la r i za t i on  o f  differ- 
ent  intensit ies,  depend ing  on gca- The  poss ib i l i ty  o f  
a l ter ing the ca lc ium cur ren t  al lows for  different  frequen- 
cies o f  osci l la t ion.  

W e  have indica ted  tha t  a l ter ing the max ima l  sod ium 
conduc tance  can also p rov ide  a burs t ing  mechanism.  
This  possibi l i ty  seems b iophys ica l ly  more  difficult to 
implement ,  as it requires  tha t  the to ta l  i nward  conduc-  
tance should  increase dur ing  quiescence and decrease 
dur ing  osci l la t ion.  One poss ibi l i ty  is for  a new inward  
leak  (o r  current)  tha t  has  ca lc ium-dependen t  inact iva-  
t ion to p rov ide  for  the change  in conductance .  In  
add i t ion ,  some process  for  a l ter ing the f requency of  
osci l la t ion is needed,  but  this could  be implemen ted  in 
the same way  as for the CK-dependent  burs t ing  model .  
One  poss ible  cand ida te  for  the inward  cur ren t  is a 
calc ium current .  I t  is k n o w n  tha t  some calc ium channels  
have ca l c ium-dependen t  inac t iva t ion  and  p lay  a role in 
burs t ing  neurons  (Hil le  1992). Indeed,  Rinzel  and  Lee 
(1987) have presented  a burs t ing  mode l  using calc ium 
inac t iva t ion  o f  a ca lc ium conduc tance .  

The  next  step in our  p r o g r a m  will be to m o d e l  the 
behav io r  o f  our  "case  s tudy"  neurons ,  the lobster  car-  
d iac  gangl ion  cells. These cells show different burs t ing  
character is t ics ,  in terms o f  the burs t  cycle, bo th  oscil la- 
t ion and  quiescence dura t ions ,  as well as firing frequen-  
cies. The cells seen in the gangl ion  are ei ther  endogenous  
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bursters ,  cond i t iona l  burs te rs  o r  fo l lower  cells. The  
results  o f  pape r  I and  this p a p e r  p rov ide  us with the 
means  to mode l  these cells by  a single bas ic  mode l  whose  
pa rame te r s  can be a l tered in a quest  to p rov ide  the 
observed  behavior .  
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