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Abstract. Magnesium-rich olivine (Mgo.9Feo.1)2SiO4 is con- 
sidered to be a major constituent of the Earth's upper man- 
tle. Because of its major geophysical importance, the tem- 
perature and pressure dependence of its crystal structure, 
elastic and dielectric constants, long-wavelength phonon 
modes and specific heat have been measured using a variety 
of experimental techniques. Theoretical study of lattice dy- 
namics provides a means of analyzing and understanding 
a host of such experimental data in a unified manner. A 
detailed study of the lattice dynamics of forsterite, Mg2SiO4, 
has been made using a crystal potential function consisting 
of Coulombic and short-range terms. Quasiharmonic lattice 
dynamical calculations based on a rigid molecular-ion mod- 
el have provided theoretical estimates of elastic constants, 
long-wavelength modes, phonon dispersion relation for ex- 
ternal modes along the three high symmetry directions in 
the Brillouin zone, total and partial density of states and 
inelastic neutron scattering cross-sections. The neutron 
cross-sections were used as guides for the coherent inelastic 
neutron scattering experiment on a large single crystal using 
a triple axis spectrometer in the constant Q mode. The ob- 
served and predicted phonon dispersion relation show ex- 
cellent agreement. The inelastically scattered neutron spec- 
tra from a powder sample have been analyzed on the basis 
of a phonon density of states calculated from a rigid-ion 
model, which includes both external and internal modes. 
The experimental data from a powder sample show good 
agreement with the calculated spectra, which include a mul- 
tiphonon contribution in the incoherent approximation. 
The computed phonon densities of states are used to calcu- 
late the specific heat as a function of temperature using 
both the rigid molecular-ion and rigid ion models. These 
results are in very good agreement with the calorimetric 
measurement of the specific heat. The interatomic potential 
developed here can be used with some confidence to study 
physical properties of forsterite as a function of pressure 
and temperature. 

1. Introduction 

Magnesium-rich olivine, (Mgo.9Fe0.1)2SiO4, is considered 
to be the major component of the Earth's upper mantle, 
whose thermoplasticity is responsible for the movement of 
the continental plates. The olivine to spinel phase transition 
at high pressures and temperatures is believed to be respon- 

sible for the seismic discontinuity at a depth of 400 Km. 
Olivine is also a primary condensate of the solar nebula 
and an important component of the moon, Mercury and 
the chondritic meteorites. In view of its major geophysical 
importance, its physical and thermodynamic properties 
have been investigated by a number of techniques. The elas- 
tic constants and their temperature and pressure derivatives 
have been determined by ultrasonic techniques (Verma 
1960; Kumazawa and Anderson 1969; Graham and Barsch 
1969; Suzuki et al. 1983). The crystal structure of forsterite, 
Mg2SiO 4, at high temperatures and high pressures has been 
investigated by x-ray diffraction (Smyth and Hazen 1973; 
Hazen 1976; Tak6uchi et al. 1984; Kudoh and Tak6uchi 
1985). The nature of the electronic charge distribution and 
chemical bonding has been studied by x-ray diffraction (Fu- 
jino et al. 1981; Sasaki et at. 1980, 1982), nuclear magnetic 
resonance (Derighetti et al. 1978) and quantum mechanical 
calculations (McLarnan et al. 1979). Dielectric constants 
and the polarization behavior at high temperatures have 
been determined by Cygan and Lasaga (1986). Calorimetric 
measurements of the specific heat of forsterite have been 
made by Robie et al. (1982). The long-wavelength lattice 
vibrations have been studied by infrared absorption (IR) 
and Raman scattering (Paques Ledent and Tarte 1973; Ser- 
voin and Piriou 1973; Oehler and Giintherd 1969; Iishi 
1978; Jeanloz 1980; Beeson et al. 1982; Hofmeister 1987). 
A number of studies have been made to computer model 
the crystal structures, elastic constants, and IR and Raman 
frequencies of olivine and spinel polymorphs of Mg2SiO 4 
based on a variety of interatomic potentials (Price and 
Parker 1984; Price et al. 1987; Matsui and Busing 1984). 

Most of the physical and thermodynamic properties 
mentioned above are macroscopic properties representing 
various kinds of averages over the interatomic forces or 
correlated atomic vibrations which depend on them. Pro- 
vided the interatomic forces are properly characterized, 
these properties and their temperature and pressure deriva- 
tives can be calculated from lattice dynamics (see Born and 
Huang 1954; Br/iesch 1982). The interatornic forces can be 
directly probed by optical techniques (IR, Raman), but they 
provide information about a limited set of atomic motions, 
the optically active long-wavelength vibrations (zone center 
phonons). For a stringent test of the interatomic force mod- 
el, a knowledge of the phonon dispersion, i.e. the phonon 
modes throughout the Brillouin zone is necessary. The low- 
frequency phonon modes and their dispersion are important 
because they contribute significantly to the low-temperature 
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specific heat. They can be measured by coherent inelastic 
neutron scattering from a single crystal because the energy 
(~25 meV) and wavelength (~  1.8 A) of thermal neutrons 
from a nuclear reactor are comparable to the phonon energy 
and interatomic spacings in crystals. Measurement of high- 
frequency internal modes require higher energy (~  200 meV) 
neutrons from a pulsed spallation source; the frequency 
spectrum including external and internal modes (generalized 
density of states) can be measured by the time-of-flight tech- 
nique on a powder sample. 

We have carried out a lattice dynamical calculation of 
the phonon dispersion relation of the external modes along 
the three principal directions of the Brillouin zone of forster- 
ite (orthorhombic, space group Pnma, 28 atoms in the unit 
cell) using a rigid-'molecular' ion model (Venkataraman 
and Sahni 1970), where the [SiO4] group is assumed to 
be a rigid unit. This model has been used successfully to 
calculate phonon dispersion relations for the external modes 
of e-KNO3 and LiKSO4 (Rao et al. 1978; Chaplot et al. 
1984). The interatomic potential of forsterite consists of a 
Coulombic and a short-range repulsive term. The calculated 
phonon dispersion relation and one-phonon dynamic struc- 
ture factors and their polarizations were used as guides to 
measure the dispersion of the acoustic and a number of 
low-lying optic modes in a large single crystal of forsterite 
using the triple axis spectrometer at the High Flux Beam 
Reactor at Brookhaven National Laboratory. The general- 
ized phonon density of states, G(E), has been measured us- 
ing the Intense Pulsed Neutron Source (IPNS) at Argonne 
National Laboratory. G(E) has been derived theoretically 
from the phonon density of states, g(co), calculated from 
a rigid-ion model, where the rigidity condition has been 
relaxed and the covalent S i - O  interaction has also been 
taken into consideration. Finally, the specific heat has been 
calculated from g(c~) and compared with the calorimetric 
measurements. The very good agreement between theoreti- 
cal and experimental results in all three cases indicates that 
the interatomic force model developed here can be used 
to predict the physical properties of forsterite and their tem- 
perature and pressure dependences with some confidence 
(Narayani Choudhury et al. 1988). 

A computer program DISPR (Chaplot 1978) has been 
used to compute the phonon frequencies of various wave- 
vectors in the Brillouin zone. The input are the crystal struc- 
ture, group theoretical symmetry vectors and the optimized 
crystal potential. The program can also evaluate the phonon 
density of states, free energy as a function of temperature, 
specific heat, inelastic neutron cross-section, etc. 

The outline of the paper is as follows: The crystal struc- 
ture of MgzSiO4 is described in Section 2. The group theo- 
retical analysis to classify the lattice modes and their eigen- 
vectors is presented in Section 3 and the nature of the crystal 
potential and its parameters in Section 4. The experimental 
results are given in Section 5, followed by a discussion in 
Section 6 and a summary in Section 7. Short reports of dif- 
ferent aspects of this work have appeared earlier (Rao et al. 
1985b, 1987; Ghose et al. 1987). 

2. Structure 

The crystal structure of forsterite Mg2SiO4 (Smyth and Ha- 
zen 1973; Fujino et al. 1981) consists of isolated [SiO~] tet- 
rahedra linked by the divalent magnesium cations in six-fold 
oxygen anion coordination. There are four Mg2SiO4 formu- 
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Fig. 1. Crystal Structure of forsterite, Mg2SiO4 (Matsui and Busing 
1984) 

la units per unit cell and the space group is Pnma. The 
four Mg ions are in two crystallographically distinct posi- 
tions 4(a) and 4(c), which are designated as M1 and M2 
respectively. Silicon atoms reside at 4(c) and the oxygens 
at position 4(c) (O 1 and 02)  and 8(d)(O3). The point sym- 
metry of 4(a) is 1, of 4(c) m and of 8(d)i. The coordination 
polyhedra around the two non-equivalent six-coordinated 
magnesium atom positions at M1 and M2 are distorted 
from regular octahedral symmetry. The M 1 octahedron is 
elongated along the O 3 -  O 3 axis whereas the M 2 octahe- 
dron is slightly irregular. The arrangement of atoms is 
shown in Figure 1. The structure has mirror planes at y = 1/ 
4 and y = 3/4 (parallel to the page in the figure). The discrete 
SiO4 tetrahedra have Si, O 1, and O 2 atoms on the mirror 
plane and pairs of O 3 atoms above and below the mirror 
in general positions. M 1 atoms are situated at the inversion 
centers and M2 atoms on the mirror planes. 

For consistency with the standard space group notation, 
Prima (D~ 6) as given in the International Tables of Crystal- 
lography (1952) and for comparison of certain features with 
the other crystals like c~-KNO3 studied earlier (Rao et al. 
1978), we have adopted the crystal structure information 



Table 1. Lattice constants, fractional Coordinates and labelling of 
atoms and 'molecules' in the unit cell. Orthorhombic space group 
Pnma Z=4.  a=  10.1902, b = 5.9783, c=4.7534 

Atom X Y Z Atom Molecule 
label label 

MgI 0.00000 0.00000 0.00000 1 
MgI 0.50000 0.50000 0.50000 2 
MgI 0.00000 0.50000 0.00000 3 
MgI 0.50000 0.00000 0.50000 4 

MgII 0.27740 0.25000 --0.00830 5 
MgII 0.77740 0.25000 0.50830 6 
MgII 0.72260 0.75000 0.00830 7 
MgII 0.22260 0.75000 0.49170 8 

Si 0.09400 0.25000 0.42650 9 
O1 0.09160 0.25000 0.76590 10 
02  -0.05290 0.25000 0.27840 11 
03  0.16310 0.03300 0.27750 12 
04  0.16310 0.46700 0.27750 13 

Si 0.59400 0.25000 0.07350 14 
O1 0.59160 0.25000 -0.26590 15 
02  0.44710 0.25000 0.22160 16 
03  0.66310 0.46700 0.22250 17 
04  0.66310 0.03300 0.22250 18 

Si -0.09400 0.75000 0.57350 19 
O1 -0.09160 0.75000 0.23410 20 
02  0.05290 0.75000 0.72160 21 
03  -0.16310 0.53300 0.72250 22 
0 4  -0.16310 0.96700 0.72250 23 

Si 0.40600 0.75000 -0.07350 24 
O1 0.40840 0.75000 0.26590 25 
0 2  0.55290 0.75000 -0.22160 26 
03  0.33690 0.96700 --0.22250 27 
0 4  0.33690 0.53300 -0.22250 28 

10 

11 

12 

given in Table 1. The space group operat ions of Pnma are 
given in Table 2. 

3. Group Theoretical Analysis 
of Lattice Modes of Mg2SiO 4 

Maradud in  and Vosko (1968) have outlined the method 
of group theoretical  analysis of lattice vibrat ions of crystals 
making use of Irreducible Mult ipl ier  Representations.  The 
scheme for group theoretical  analysis of the external modes 
in crystals containing a toms and rigid 'molecules '  is given 
by Venka ta raman  and Sahni (1970). Sieskind (1978) dis- 
cussed how one can simplify the evaluat ion of group theo- 
retical information making use of the Group of  Neutral  Ele- 
ments o f  crystal Sites (GNES). This elegant method has 
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Table 3. Group of wavevectors along I;, A and A directions and 
their irreducible representations 

Z'(~, 0, 0) Go(Z): R1 R2 R7 R8 
A (0, ~, 0) Go(A): R1 R3 R6 R8 
A (0, 0, ~) Go(A): R1 R4 R6 R7 

Representation 

Z 1 A I A 1  1 1 1 1 
Z 2 A 2 A 2  1 1 - 1  - 1  
Z 3 3 3 A 3  1 - 1  1 - 1  
Z 4 3 4 A 4  1 --1 --1 1 

R1, R2 etc. are the point group operations associated with the 
space group operations S 1, $2 etc. given in Table 2 

been extended to cover the study of crystals containing 
atoms and 'molecules '  (Rao et al. 1982). The G N E S  is used 
to analyse the symmetry aspects of lattice modes in 
Mg2SiO4. 

We have studied the phonon dispersion relat ion along 
the three symmetry directions, 12, A and A. The group of 
the wavevectors and their representat ions along these three 
directions are given in Table 3. There are no degenerate 
branches along any of the three directions. The symmetry 
vectors of normal  vibrat ions along the three symmetry di- 
rections and at q = 0 are derived using the method of Rao  
et al. (1982). These symmetry vectors, given in the Appendix,  
have been used in block diagonalising the dynamical  matrix,  
representat ion by representation, and for checking other 
aspects of the numerical  evaluations. The symmetry vectors 
are also useful in visualising the nature of the atomic vibra- 
tions for various modes. However,  the eigenvectors associat- 
ed with normal  modes could be linear combinat ions  of the 
symmetry vectors that  belong to a par t icular  representation. 

4. Lattice Dynamical Calculations 

4.1. Potential  Function f o r  M g z S i O  4 

The lattice dynamical  calculations are carried out  corre- 
sponding to both the rigid molecular- ion model  and the 
rigid ion model. In the rigid molecular-ion model  the mag- 
nesium ions are associated with t ranslat ional  degrees of free- 
dom whereas the silicate groups are assumed to be rigid 
units capable of translat ions and rotat ions only; this model  
helps to identify the ro ta t ional  modes and their eigenvectors 
easily. In the rigid ion model, on the other hand, each ion 
is treated independently;  since each ion is associated with 
t ranslat ional  degrees of freedom in this model, the internal 
vibrat ions of silicates also are considered in detail  in this 
model. [ F o r  details of these two models, see Venkataraman 

Table 2. Space group operations of MgzSiO~(Pnma ) 

Space group S1 $2 $3 $4 
operation 

$5 $6 $7 $8 

In Seitz's {E/O} {C2(x)/V1} {C2(y)/V2} 
notation 

International (x y z) (x -- y -- z~ V 0 ( - x y - z~ V 1 ) 
Tables 

{C~(z)/V3} {i/o} {~(x)/Vd {~2(y)/v2} {o2(z)/v3} 

(-x-yz/V3) ( - x - y - z )  (-xyz/V 0 (x-yz/V2) (xy-z/V3) 

V I =(1/2 I/2 I/2); V2=(O 1/2 0); V 3 =(i/2 0 1/2) 
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and Sahni (1970), Rao et al. (1978), and Venkataraman et al. 
(1975).] 

The form of the interatomic potential function chosen 
to describe the interaction between two non-bonded atoms 
k in 'molecule' K denoted as (Kk) and the atom k' in 'mole- 
cule' K' denoted as (K' k') separated by a distance r is given 
by, 

e 2 Z(Kk)Z(K'k ')  ~ br , 
V(r)-4ZCeo r t-a exp , - - R ( K k ) + R ( K  k')J 

(1) 

where 1/(4~eo)=9.0 x 1 0  9 nt-m2/coul 2. As a result of study 
of a large number of complex crystals (see Rao and Chaplot 
(1985c) and references cited therein), we find that values 
of a equal to 1822 eV and b equal to 12.364 are appropriate 
in all these systems. The choice of these constants has been 
discussed by Rao et al. (1978). Z(Kk) and R(Kk) are the 
fractional charge and radius parameters associated with 
atom k belonging to the rigid unit K. The radius parameters 
are scaled from Shannon's crystal radii. This form of the 
potential function is the simplest one with a minimum 
number of parameters to use in the study of the dynamics 
of complex ionic 'molecular '  solids like Mg2SiO4. 

After the form of the potential was chosen, the following 
criteria governed the optimisation of the parameters of the 
potential: 

(i) lattice constants and atomic positions should corre- 
spond to the experimentally determined structure; 

(ii) the ionic charges and radius parameters should be 
close to those derived from x-ray diffraction studies; 

(iii) the forces on the atoms and molecules and torques 
on molecules must vanish; 

(iv) the internal stresses due to the chosen unit cell and 
atomic parameters should be minimum; 

(v) the eigenvalues must be positive; 
(vi) the calculated elastic constants should agree with 

the experimental values within reasonable limits; the long- 
wavelength optic modes should span the range of experi- 
mental observations from Raman and infrared spectra. 

There are two sets of interatomic potential parameters 
available for computations: (a)those determined by Iishi 
(1978) on the basis of IR and Raman data and (b) those 
arrived at through x-ray diffraction data analysis by Fujino 
et al. (1981). Iishi (1978) has studied the IR and Raman 
data on the basis of a purely short range (SR) model, a 
rigid ion (RI) model and a polarisable ion (PI) model. The 
force constants were fitted to reproduce the experimental 
q = 0  mode frequencies. His rigid ion and polarisable ion 
models explained reasonably well the L O - T O  splittings. 
However, his charge parameters when used in our rigid 
molecular-ion model yielded elastic constants which were 
one order of magnitude less than the experimental values; 
the agreement with the optic data was also rather poor. 
His charge parameters were found to be roughly 60 percent 
of our final optimised charge parameters. 

We, therefore, resorted to a second computation with 
the charge parameters given by Fujino et al. (1981). Fujino 
et al. have determined the net atomic charges from the elec- 
tron density distribution by direct integration of the electron 
density within the sphere of a newly defined radius, the 
Effective Distribution Radius (EDR) for each cation. Their 
results for MgzSiO4 are given in Table 4 under Model II. 
Using this set of charge parameters, we again optimised 

Table 4. Effective charges and radii used in lattice dynamical com- 
putations 

Mg(l) Mg(2) Si O(1) 0(2) 0(3) 
a: 0(4) 

Model I 
Iishi (1978) 

Charges 0.93 0.93 0.7 -0.63 -0.63 -0.63 
Radii 0.96 0.96 0 .685  0 .960  0 .960  0.960 

Model II 
Fujino et al. (1981) 

Charges 1.76 1.74 2.11 - 1.52 - 1.29 - 1.40 
Radii (EDR) 0.93 0.93 0.94 0.96 0.96 0.96 
Model III 
This work-optimum parameters 

Charges 1.60 1.80 1.0 - 1.2 - 1.0 - 1.10 
Radii 1.68 1.73 1.0 1.55 1.45 1.50 

the short-range parameters on the basis of minimizing forces 
and torques in the system. The values for the elastic con- 
stants improved although there were some residual forces 
on all the atoms. Also the pressure on the system was quite 
large (~15 GPa). At this stage, the charges were lowered 
by about 10 percent from Fujino's values and the charges 
and radii of MgI and MgII were varied individually. The 
pressure was down to 1 GPa. However, in order to reduce 
the torque on SiO4, the group had to be rotated by about 
0.3 degree. In Table 4 the optimised potential parameters 
are given under Model III;  this set of parameters has been 
used in all the calculations. With these changes the following 
observations were made: 

(a) the pressure on the system is quite low, equal to 
0.4 GPa; 

(b) the comparison of elastic constants as calculated 
with experimental data is fair (see Table 5); 

(c) the long-wavelength optic modes span the range of 
the experimental data from IR and Raman spectroscopies 
(see Tables 6 and 7); 

(d) the forces and torques on the constituents of the 
unit cell are quite small although non-vanishing 

(e) the cohesive energy is reasonable, equal to - 2 4 5  ev/ 
unit cell; 
and 

(t) all eigenvalues are positive. 
As already stated, in the rigid ion model, in addition 

to the external degrees of freedom, the internal degrees of 
freedom are also accounted for. The silicate group, in this 
model, is no longer rigid; we allow for S i - O  and O - O  
interactions in the silicate groups. The Si--O bond stretch- 
ing potential is taken to be of the form 

{ n (rsi_o-- ro)2~ (2) 
V ( r s i - o )  = - -  CD exp 2-C rsi_ o ) 

with parameters C, D, n and r0. In order to simulate the 
O - S i - O  bond bending potential, we have assumed an 
O -  O interaction of the following form for any two oxygen 
atoms of the same silicate unit, as in our earlier work on 
LiKSO4 : 



e 2 Z2(O) ( - b r o - o )  w 
V(ro o):47~% ro -o  ~-saexp~ ~ - j >  r6o_ ~ (3) 

with parameters s and w. The parameters Z(O), R(O), a 
and b were identical with the optimum parameters chosen 
in the rigid molecular-ion model. The parameters 
C, D, n, ro, s and w were optimised to reproduce the experi- 
mental long-wavelength data. The final set of parameters 
is C = I ,  D=3.4eV,  n= 10 .5A  -1, r o= l . 61A,  s=55  and 
w = 1250 eV ~6. 

The dynamical equations given in Section 6 of Rao et al. 
(1978) have been used along with the potential discussed 
above to derive the phonon frequencies and eigenvectors. 
The programme DISPR (Chaplot 1978) has been used in 
the numerical computations. 

5. E x p e r i m e n t a l  

Raman and infrared spectroscopies provide somewhat lim- 
ited information on lattice dynamics as they are probes 
for studying only the long-wavelength modes; they are also 
restricted by certain selection rules which may not permit 
probing all long-wavelength modes. In principle, coherent 
inelastic neutron scattering techniques allow us to probe 
all the normal modes across the Brillouin zone. Two types 
of experiments can be carried out using the techniques of 
neutron scattering: by analysing the energy of the scattered 
neutrons, (i) from a polycrystalline sample over a wide angu- 
lar range, one can measure the one-phonon density of states, 
and (ii)from a single crystal, one can measure the phonon 
dispersion curves along specific directions in Q - c o  space. 
The one-phonon density of states as well as the phonon 
dispersion curves can be used to test the validity of the 
model calculations. We have carried out both of these exper- 
iments on ~ -  Mg2SiO4. 

5.1. Inelastic Neutron Scattering 
from Polycrystalline Mg2Si04, Phonon Density of States 

The Low Resolution Medium Energy Chopper Spectrometer 
(LRMECS) at the Intense Pulsed Neutron Source (IPNS), 
Argonne National Laboratory, was used for measuring the 
inelastic neutron spectra from a powder sample of Mg2SiO 4 
by the time-of-flight method. Figure 2 gives the schematic 
layout of LRMECS. The chopper has a body of beryllium 
with aluminium end-caps; a boron fiber/aluminium com- 
posite defines the slits. A suitable electronic control system 
maintains the chopper in a fixed phase relative to the accel- 
erator source. Approximately 100 3He proportional 
counters detect scattered neutrons. The signals are pro- 
cessed by the IPNS Data Acquisition System and the data 
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are analysed on the VAX 11-780 computer using general 
purpose programs (Price 1982). The analysis consists of con- 
verting the data from the sample into the scattering function 
S(qS, E) (@scattering angle, E-energy loss of scattered neu- 
trons) after correcting for background and contribution 
from the empty sample container. S(O,E) is obtained on 
an absolute scale by comparing with standard vanadium 
data and taking into account the efficiency function of the 
detectors. In order to compare with theory, one can convert 
S(qS, E) to S(Q, E), Q being the momentum transfer from 
the neutrons to the sample in the scattering process, and 
apply suitable corrections for energy and momentum reso- 
lution. 160 detector inputs were grouped into 42 detector 
subgroups in the range of scattering angle - 1 0  ~ to 116.4 ~ 
The sample transmission was 91.1 percent at the incident 
neutron energy of 200.0 meV. The nominal sample tempera- 
tures in two sets of experiments were 14 K and 300 K. The 
large incident energy helped to cover the full range of one- 
phonon modes with a Q-range of about 6-13 A 1. The ener- 
gy transfer and wavevector transfer resolution were approx- 
imately 12 meV and 0.5 A -  1. 

Coherent inelastic neutron scattering measures the scat- 
tering function in terms of Q and E which in the convention- 
al harmonic phonon expansion can be written as (Carpenter 
and Price 1985) 

S(Q, E) = S (~ + S (1) ~- S (m). (4) 

S (~ S (1) and S (m) represent elastic, one-phonon and multi- 
phonon scattering. S (~ and S (1) are given by 

1 _ b~ bj 
S~ E) = ~  .~. ~ exp { -(W~+ Wj)} exp {iQ.(R,-Rj)} 

t j ~  
(5a) 

1 _ b~ bj 
S(1)(Q, E ) = ~  ( ~  exp { - ( W / +  Wj)} exp {iQ.(R,-R~)} 

xzh(Q'~I)(Q'~})(n,+l)6(E--hco,). (5b) 
t c o ~  Mj 

Expression (5b) is for neutron-energy-loss processes. 
Here W~ is the Debye-Waller factor and M~ the nuclear 
mass associated with atom of species i, R~ its equilibrium 
position, b~ its scattering length, and ~[,co~ and nz 
={exp(hcoz/kT)-l) -1 are the displacement vector, fre- 
quency and population factor of the normal mode I. In 
the incoherent approximation, one assumes that, when 
S(Q, E) is averaged over an extended range of Q, the correla- 
tion between motions of different atoms dies out and the i 2 12 factors (Q.~) (Q.~}) may be replaced by ~Q (~i) 5ij. In 
this case Eq. (5 b) takes the much simpler form 

6.2 m , . - ~  
PULSED 

CHOPPER 
NEUTRON 
SOURCE 

~ - - - - - - ~  ~x DETECTORS 

Fig. 2. Schematic layout of Low 
Resolution Medium Energy Chopper 
Spectrometer (LRMECS) 
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b z Q2 
(1) i e-  2 w, gi(~o) Si.o (Q, E) = ~ , , ~  (n + 1) (6) 

i ( b )  2M i E = h ~  

where gi(og) is the displacement weighted density of states 
for atoms of type i. 

5.2. Inelastic Neutron Scattering from Single Crystal 
Forsterite, Phonon Dispersion Relation 

The medium-resolution, medium-energy, triple-axis spec- 
trometer at Brookhaven National Laboratory was used for 
measuring the phonon dispersion curves along high symme- 
try directions of Mg2SiO4. A synthetic forsterite crystal of 
dimensions 3 • 1 • 1 c m  3, kindly made available by Prof. 
H. Takei of Tokyo University, Japan, was used in these 
experiments. The sample temperature was near 300 K. A 
germanium (111) monochromator with a mosaic spread of 
nearly 12 min and a pyrolytic graphite (004) analyser were 
used for the measurements. The collimation between the 
reactor and monochromator, monochromator and sample, 
sample and analyser, and analyser and detector were 20', 
20', 20', 40' in most of the measurements. The collimation 
between the monochromator and the sample was removed 
in a few measurements which resulted in doubling the neu- 
tron intensity. Incident neutron energies were fixed at either 
45.303 meV or 60.00 meV in these experiments. The mea- 
sured phonon groups were normalised to monitor settings 
varying from 400 to 10000 neutron counts. It took approxi- 
mately 16.5 min per point of neutron group at a monitor 
setting of 10000 counts. 

5.3. One-phonon Cross-Section 

The calculation of the lattice dynamics of Mg2SiO~ dis- 
cussed above helped to plan the coherent inelastic neutron 
scattering experiments from the single crystal. We evaluated 
the one-phonon neutron cross section for scattering from 
a single crystal for each mode in two of the three mutually 
perpendicular planes of the reciprocal space namely, in the 
planes (hk0), (hO1) and (Okl). The wavevector transfer lies 
in the range of Q = 0 to 8 ,~-~. These results, available in 
the form of tables for each mode around various reciprocal 
lattice vectors, were used as guides in the choice of recipro- 
cal space regions in which to measure the modes. From 
the actual measurements one could ascertain the mode fre- 
quencies. 

Figure 3 shows a few of the typical neutron groups from 
these experiments. 

6. Results and Discussion 

6.I. Phonon Dispersion Curves 
along High Symmetry Directions and Elastic Constants 

Having optimised the potential on the basis of the criteria 
given in section 4, the group theoretical information given 
in section 3 was used in diagonalising the dynamical matrix 
for wavevectors along the three high symmetry directions 
and in classifying the normal modes that belong to different 
representations. As already stated, program DISPR has 
been used in all these computations. The acoustic modes 
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Table 5. Comparison of theoretical and experimental elastic con- 
stants (101~ dynes/cm 2) 

Experimental Theoretical 

Graham Kumazawa Suzuki Iishi Present 
et al. et al. et al. (1978) work" 
(1969) (1969) (1983) 

Cll  200.5 199.5 199.8 215.7 194.6 
C22 236.3 235.3 235.5 207.2 235.0 
Ca3 329.1 328.4 328.7 273.4 279.2 
C44 81.1 80.82 80.57 74.4 94.2 
Css 81.4 81.2 80.95 74.5 80.6 
C66 67.2 65.15 66.78 71.6 76.1 
C~2 72.8 73.8 72.7 86.1 79.0 
C13 66.3 63.9 66.7 91.8 71.0 
Ca3 68.4 68.8 68.4 78.4 76.0 

" Calculated from the slopes of acoustic phonons in the rigid molec- 
ular-ion model; since the values obtained from the slopes of the 
relevent TA branches along different directions were slightly differ- 
ent, average values are presented here for C44., Css, C66 

are used to determine the elastic constants in the long-wave- 
length limit and compar ison of these with the experimental  
da ta  is given in Table 5. The agreement is good, with discre- 
pancies on the order  of 10 percent. Theoretical  phonon dis- 
persion curves were obtained along the three symmetry di- 
rections X, A and A (Fig. 4). The modes that  belong to differ- 
ent representat ions are plot ted separately in this figure. 

A comparis ion of results of the coherent inelastic neu- 
t ron scattering experiments from the single crystal with the 
theoretical  results is shown in Figure 5. Experimental  data  
permit  us to make the comparis ion up to energies of the 
order  of 25 meV. The agreement between experimental  data  
and theoretical  predictions is quite satisfactory. A compari -  
son of neutron group intensities associated with each phon- 
on mode with the calculated one-phonon cross section (with 
suitable scaling factors) indicates that  the agreement be- 
tween the two is good, with an R-factor of nearly 0.3 without  
any fitting. This leads us to believe that  the model  with 

89 

30- 

20- 

10- 

0 
0 ~ 0 . 5 ( 1  ~ ~ - -  0 

a3 

~----~30- 

20- 

10- 

Z 

- ~ O 0  0.50 
&1 &4 A2 

W 0 ' 0 . 5 b *  ~ 0 0 " 0 . 5 b  * <  0 

g 
32 30- 
n 

2O 

10 0 " . 

PHONON WAVE VECTOR 
Fig. 5. Comparison of experimental and theoretical phonon disper- 
sion curves; continuous lines are from theory, full circles are experi- 
mental values. The theoretical curves are not fitted to experimental 
data but were predictions before the experiments were conducted 

:El % % =, A1 A4 A 2 A a A, A4 A2 A3 
6 0 0 600 600 ~ - 

400 ~ ' 

200 200 a ~ 200 ~ ~-~" 

0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 

Fig. 4. Theoretical phonon dispersion relation of Mg2SiO~ in external mode formalism. The figures are drawn in extended zone scheme 
for easy visualisation; group theoretical representations are indicated on top of the figure 



90 

its associated parameters is quite acceptable for further de- 
tailed studies. 

6.2. Phonon Density of States 

The phonon density of states gives us an overall view of 
the range and the extent of various phonon modes in the 
lattice. Detailed evaluation of the partial density of states 
in the lattice is useful in (i) understanding the dynamical 
aspects related to the translation of each atom and the 
translation and rotation of each rigid group and (ii) evaluat- 
ing the neutron cross-sections. 

The phonon density of states g(co) is defined by 

g(co)=A ~ Z6{co-o)j(q)} dq=AZ6{co-~oj(q) } dqp (7) 
BZ j jp 

where A is a normalisation constant such that ~g(@ d ~o = 1, 
~oj(q) is the phonon frequency of the jth normal mode of 
phonon of wave vector q, p is the mesh index in the discret- 
ised Irreducible Brillouin Zone (IBZ) and 6qp provides the 
weighting factor corresponding to the volume of the pth 
mesh in q-space. Space group symmetry allows the numeri- 
cal evaluations to be confined to wavevectors within the 
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Fig. 6a, b. Total one-phonon density of states (a)derived from 
the rigid molecular-ion model; (b) derived from the rigid ion model. 
The density of states is smoothened with a Gaussian with FWHM 
of 4 meV 

IBZ. Root  sampling method is used in obtaining g(@ and 
histograms of g(co) at intervals of A co = 2 cm - x are plotted. 
Detailed computations were carried out corresponding to 
the rigid molecular-ion model, sampling 125 wave vectors 
to obtain the density of states shown in Figure 6. Subse- 
quently, the density of states appropriate to the rigid ion 
model were also obtained in a much coarser mesh, sampling 
27 wave vectors in the IBZ. The density of states shown 
in Figure 8 at energies above the external mode region are 
identifiable with the internal modes of S i O  4 .  The density 
of states based on the rigid ion model was used in determin- 
ing the neutron intensity distribution expected from a 
powder as well as to evaluate the specific heat as a function 
of temperature. 

6.3. Partial Density of States 
and Neutron Intensity Distribution from a Powder 

Corresponding to the 48 degrees of freedom of external 
modes per unit cell in MgzSiOr there are 48 phonon modes 
(j is the mode index) for any wavevector q and there are 
48 eigenvector components associated with each one of the 
48 modes. The eigenvector i ~j,/,,(q) contains detailed infor- 
mation about the displacement components for each of the 
atoms and the molecules; the translational and rotational 
displacements of molecules are identifiable separately. The 
eigenvector ~j(q) is, therefore, a direct sum of the mass 
weighted (moment-of-inertia-weighted, for rotational dis- 
placements) partial eigenvectors i ~j,/m(q) of the atoms and 
molecules, that is, 

~g(q) = ~ {~r (q) | ~r m @ ~, .  (q)}. (8) 
n m  

Here n and m are the atomic and molecular indices, 
T and R represent translational and rotational components. 
Each partial eigenvector is a 3-dimensional vector consist- 
ing of translational or rotational displacement components 
along the cartesian axes. 

The partial density of states grin (o~) associated with each 
of the partial eigenvectors is defined by the relation 

{e)-coj(qp)}l~j,,/,,,,(qp)l dqp. (9) 
unit cell jp  

indicates that the summation is carried out over all 
unit cell 

the atoms or molecules of the s a m e  i th species in the unit 
cell. The partial density of states in the rigid molecular-ion 
model is shown in Figure 7. 

The computation of the neutron intensity distribution 
scattered from a powder involves estimation of the multi- 
phonon contribution for comparison with experimental 
data. However, for coherently scattering samples, estimation 
of the mult iphonon scattering taking into account interfer- 
ence effects in all orders has not been attempted so far. 
Instead, one resorts to what is referred to as the incoherent 
approximation, where one neglects the interference effects. 
S (m) in this approximation is given by 

S (m) (Q, E) = ~ Ai S! m) (Q, E) 
i Mi 

Oo) 

where the total mult iphonon scattering is assumed to be 
a sum of partial mult iphonon scattering from each species 
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of atoms weighted independently with the corresponding 
total scattering cross-sections. The computation of 
S!~)(Q,~e) is carried out assuming Sjolander's formalism 
(1958). SI~)(Q, o~) is given by 

Slm)(Q, c~ =e- z w' L G.(oJ)(2Wi)" n! (11) 
n=2 
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with 

Go (co) = c] (co); G1 (co) =g(co ) , 

the partial density of states, and 

(12) 

G,(e))= ~ gi(co-e)') G , _ t ( d  ) d o '  (13) 
--09 

giving the higher order terms. It may be noted that the 
elastic and one-phonon terms are excluded from the sum- 
mation as they are explicitly taken into account as S (m and 
S (1] in Equation (4) earlier. However if the terms corre- 
sponding to n equal to 0 and 1 are also evaluated, then 
the total scattering is automatically obtained. 

Figure 8 shows the comparison of the calculated neutron 
spectrum taking into account the one-phonon and multi- 
phonon contributions as outlined above with the experi- 
mental neutron spectrum at 300 K. The comparison is quite 
good in view of the assumptions made and helps us to 
understand the observed spectrum. The calculated intensity 
has been broadened with a uniform instrumental resolution 
of 12 meV. 

6.4. Comparison of Computed Long Wavelength Modes 
and L O -  TO Mode Frequencies 
with Experimental Data (external modes only) 

The optical data of forsterite has been determined by polar- 
ised infrared and Raman spectroscopies ([ishi 1978). A com- 
parison of our calculated q ~ 0 mode frequencies with exper- 
imental data along with our calculated eigenvector compo- 
nents corresponding to translations of MgI and MglI  
atoms, SiO4 groups and rotations of [SiO4] groups is given 
in Table 6 and 7. 

From the group theoretical symmetry vectors or calcu- 
lated polarisation vectors, one observes that the F1, F2, F3, 
F4 and Fs representations involve only nonpolar modes 
which do not exhibit any L O - T O  splitting. These nonpolar 
modes obtained in the rigid molecular-ion model are com- 
pared with optical data in Table 6. It can be seen that for 
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Table 6. Non-polar long-wavelength modes in Mg2SiO 4 

Repn. Phonon frequency (cm- 1) 

Exptl. Iishi This work 
(1978) 

Phonon eigenvector 

Iishi (1978) This work (eigenvector z ") 

MgI MgII SiO~ SiOa 
T T T R 

F~(Ag) 340 358 380 
329 288 342 
305 269 293 
227 225 252 
183 157 178 

Fz(Au) silent 458 
403 
359 
286 
233 
170 
105 

Fs(Blg ) 368 362 452 
324 306 314 
244 267 288 
142 166 213 

F4(B2~ 418 396 517 
318 316 367 
260 276 321 
224 230 264 
192 180 223 

F3(B3g) 376 367 382 
318 304 328 
272 277 256 
226 234 174 

R(SiO4, z) 0 0.83 0.09 0.08 
T(MgII, y) 0 0.44 0.10 0.46 
T(MgII, SiO4, x) 0 0.26 0.36 0.38 
T(SiO4, MgII, y) 0 0.09 0.90 0.01 
T(MglI, SiO4, x) 0 0.32 0.59 0.09 

0.15 0.67 0.03 0.15 
0.62 0.01 0.09 0.28 
0.47 0 0.06 0.47 
0.78 0.02 0.04 0.16 
0.19 0.15 0.08 0.58 
0.34 0.07 0.31 0.28 
0.45 0.08 0.40 0.07 

R (SlOg, y) 0 0.71 0.03 0.26 
R(SiO 4, x) 0 0.03 0.58 0.39 
T(SiO4, z) 0 0.19 0.13 0.68 
T(MglI, z) 0 0.08 0.27 0.65 

R(SiO~, z) 0 0.88 0.11 0.01 
T(MgII, y) 0 0.46 0.13 0.41 
T(MgII, SiO4, x) 0 0.42 0.06 0.52 
T(MgII, SiO~, x) 0 0.15 0.85 0 
T(MgII, SiO4, y) 0 0.12 0.83 0.05 

R (SiO4, z) 0 0.31 0.05 0.64 
R (SiO4, y) 0 0.25 0.47 0.28 
T(SiO4, z) 0 0.10 0.24 0.66 
T(SiO4, z) 0 0.34 0.25 0.41 

a Tand R represent translational and rotational components respectively 

most of the modes the agreement with the Raman data 
is within 10 percent. 

For  the representations F6, F7 and Fs, there is a macro- 
scopic electric field associated with certain vibrations which 
give rise to the L O - T O  splitting. We have used the ap- 
proach given by Rao et al. (1985a), to classify the LO and 
TO modes belonging to these representations. From the 
group theoretical symmetry vectors or the calculated polar- 
isation vectors, one notices that the atomic vibrations occur 
purely along the unique axis b* for the modes of the F8 
representation, whereas the atomic vibrations may occur 
along any direction in the a'e* plane for the F 6 and F 7 
representations. Clearly for the F 8 representation, the LO 
and TO modes are obtained for wavevectors (q>0)  along 
the b* axis and perpendicular to the b* axis (in the a * - e *  
plane) respectively. On the other hand, for the F6 representa- 
tion, even though the atomic vibrations may occur along 
any direction in the a * - e *  plane, it can be shown that 
the macroscopic field can occur only along the a* axis. 
Therefore, the LO and TO modes for the F6 representation 
are obtained for wavevectors (q >0)  along the a* axis and 
perpendicular to it, respectively. Similarly, for the F7 repre- 
sentation, the macroscopic field can occur only along the 
e* axis. Therefore, the LO and TO modes for the F7 repre- 
sentation are obtained for wavevectors (q > 0) along the e*- 
axis and perpendicular to the c* axis, respectively. 

In Table 7 we have compared our calculated LO and 
TO mode frequencies with experimental data. For  many 

of these modes, the eigenvectors are different linear combi- 
nations of symmetry vectors, making it difficult to assign 
its corresponding TO counterpart for a given LO mode. 
For  example, the highest 618 cm-1  LO mode in the B2u(Fs) 
representation may seem to correspond to the 414 cm -  a TO 
mode; however their eigenvectors are entirely different. 
Whereas the 618 cm-  ~ (LO) mode corresponds to transla- 
tions of both the magnesium atoms and the [SiO4] group, 
the 414 c m -  1 has a significant rotational component  of the 
SiO4 group in addition to the first magnesium atom transla- 
tions. 

For  the sake of completeness, we have included Iishi's 
(1978) calculated q ~ 0 frequencies and eigenvector assign- 
ments in Tables 6 and 7. It can be seen that his eigenvectors 
are very different from ours and this difference stems from 
the differences in the models considered. It should be 
pointed out that the same eigenvector assignments have 
been given by Iishi (1978) for the LO and TO modes even 
when the LO and TO frequencies differ appreciably. Table 8 
shows a comparison of neutron data at q = 0  with Raman 
and infrared results. 

6.5. Specific Heat 

The phonon density of states g(o)) was used to compute 
the specific heat C~ given by 

d 1 do)}. (14) 



Table 7. Polar long-wavelength modes in Mg2SiO 4 ; phonon frequencies in cm 1 

Repn. Exptl. Iishi (1978) This work-external modes only 

o9 co Eigenvector co Eigenvector 2 a co Eigenvector 2 , 

LO TO LO TO LO 

93 

MgI MgII SiO4 SiO4 TO MgI MgII SiO 4 SiO4 
T T T R T T T R 

Fv(Blu) 994 885 913 890 v3 
585 502 540 492 v~ 
489 483 491 480 v2 
459 423 420 417 R(SiO4, y) 618 0.32 0.34 0.34 0 414 0.34 0.09 0.02 0.55 
371 365 362 345 R(SiO4, z) 413 0.28 0.13 0 0.59 389 0.47 0.13 0.22 0.18 
318 296 343 309 T(MgI, y) 339 0.36 0.18 0 0.46 323 0.15 0.34 0.06 0.45 
278 274 274 266 T(MgI, y; 300 0.62 0.01 0.01 0.36 293 0.75 0.04 0.02 0.19 

MgII, z) 
224 231 230 T(MgI, x) 279 0.77 0.02 0 0.21 276 0.56 0.13 0.01 0.30 
201 209 208 T(MgI, y, z) 204 0.44 0.16 0.02 0.38 202 0.50 0.112 0.02 0.36 

F8 (B2u) 993 987 958 957 v 3 
979 882 917 897 v3 
843 838 833 833 vl 
597 537 584 581 Y 4 
516 510 560 543 v 4 
493 465 513 467 v2 
426 421 423 417 R(SiO4, z) 624 0.38 0.27 0.35 0 562 0.73 0.13 0.13 0.01 
412 400 359 357 T(MgI, z) 561 0.70 0.15 0 0.15 485 0.80 0 0.19 0.01 
376 352 344 321 T(MgII, x, y) 480 0.80 0.01 0.16 0.03 408 0.24 0.3,4 0.06 0.36 
313 294 312 314 T(MgI, x, z; 403 0.05 0.42 0.01 0.52 381 0.60 0.0!9 0.20 0.11 

MgII, z) 
283 280 297 278 T(MgI, y) 332 0.46 0.53 0 0.01 312 0.10 0.81 0.09 0 

224 238 235 T(MgII, x) 267 0.08 0.46 0.02 0.44 267 0.08 0.46 0.02 0.44 
201 140 139 T(MgI, x, 194 0.34 0 0.64 0.02 193 0.34 0.01 0.64 0.01 

SiO4, x) 

F6 (B3u) 1086 980 976 956 v~ 
963 957 916 915 v3 
845 838 827 826 v~ 
645 601 601 565 v4 
566 562 527 527 v4 
544 498 494 493 v2 
469 403 413 403 R(SiO4, x) 601 0.18 0.48 0.34 0 531 0.85 0.08 0 0.07 
386 378 392 363 T(MgI, z) 531 0.85 0.08 0 0.07 457 0.39 0.50 0.10 0.01 
323 320 347 312 T(MgI, y, z) 441 0.72 0.20 0.02 0.06 416 0.59 0.28 0.13 0 
298 293 309 303 T(MgI, x, z) 414 0.63 0.26 0.10 0.01 364 0.27 0.03 0.03 0.67 
276 274 265 264 T(MgI, x; 356 0.09 0.07 0 0.84 321 0.08 0.50 0.17 0.25 

MgII, y) 
224 242 238 T(MgI, x, y) 315 0.04 0.78 0.18 0 300 0.31 0.312 0.23 0.08 
201 190 188 T(MgI, SiO4, y) 135 0.27 0.04 0.67 0.02 132 0.27 0.04 0.67 0.02 

a T and R represent translational and rotational components respectively 

Table 8. Comparison of zone centre phonons (in cm-  1) measured 
by Inelastic Neutron Scattering (INS), Raman and Infrared (IR) 
techniques 

INS Raman a IRa 

104 - - 
144 142 144 
184 183 - 
192 192 - 
200 - 201 
258 260 - 
315 318 313 
325 324 323 

" Raman and IR data from Iishi (1978) 

F igure  9 a shows a c o m p a r i s o n  of  the measured  specific 
hea t  da ta  up to 380 K (Robie  et al. 1982) and the c o m p u t e d  
specific heat  as a funct ion  of  t empera tu re  using the densi ty  
of  states co r respond ing  to the rigid molecu la r - ion  model .  
in  the low t empera tu re  region (between 0-100  K), the com-  
pu ted  and exper imenta l  da ta  agree to wi th in  1 percent.  
However ,  the d iscrepancy be tween  the two increases wi th  
increasing tempera ture .  This  is because  in this m o d e l  the 
in ternal  modes  represent ing  S i - O  and 0 - 0  v ibra t ions  
are no t  taken  into  accoun t ;  these high f requency modes  
give significant con t r ibu t ions  only  at h igh  tempera tures .  
Therefore,  this mode l  is able  to predic t  the specific hea t  
in ag reement  wi th  exper iment  only at low tempera tures .  
Since all the degrees of  f r eedom are no t  accoun ted  for, the 
Du long-Pe t i t  va lue  of  specific hea t  at h igh t empera tu res  
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Fig. 9a, b. Comparison of experimental specific heat data with theoretical results. (a) low temperature region showing comparison of 
theoretical results given by the rigid molecular-ion model (continuous line) with the experimental data shown by the filled circles. 
No fitting is attempted. (b) Comparison of experimental data (continuous line) with results of various theoretical models as indicated 
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of only external modes in this model. The difference between the results of the rigid ion model and those from experiment at high 
temperatures can be accounted for by anharmonic contributions (Narayani Choudhury et al. 1988) 

is different for the calculated and experimental results. In 
the rigid ion model, where all degrees of freedom are taken 
into account, the agreement between computed and experi- 
mental specific heat (Robie et al. 1982, Stull and Prophet 
1971) is satisfactory at all temperatures as shown in Figure 
9b. The specific heat of olivine reaches its Dulong-Petit 
value (0.125 J/gm K) only at temperatures above 1800 K 
(Encyclopaedia Britannica (1980)). 

In theories of specific heat, it is customary to test the 
applicability of the Debye model. Usually one fits a Debye 
curve to the experimental specific heat and calculates the 
Debye temperature as a function of temperature. If the De- 
bye model were strictly valid, the Debye temperature would 
be independent of temperature. Considerable variations of 
the Debye temperature with temperature (Kieffer 1985) and 
also from the values of the Debye temperature obtained 
from elastic constants data (Kieffer 1985) indicate that the 
Debye model is inadequate to give the details of specific 
heat. In Figure 9b we show the specific heat as given by 
the Debye model corresponding to the Debye temperature 
as obtained from the observed elastic constants. Kieffer 
(1985) has proposed an alternative empirical model for the 
frequency distribution based on spectroscopic considera- 
tions, accounting for the dispersion of only the low-fre- 
quency modes. In this model, the acoustic modes are as- 
sumed to have a sinusoidal dispersion and all the optic 
modes, except the lowest frequency optic mode, are replaced 
by dispersionless Einstein frequencies. It is assumed that 
the lowest frequency optic mode decreases monotonically 
in frequency across the zone. Such a model for forsterite 
is found to predict the thermodynamic properties quite well 
and the computed specific heat is found to be very close 
to that obtained from our rigid ion calculations. Robie et al. 
(1982) have combined their heat capacity data between 
300 K and 380 K with the heat content data of Orr (1953) 
between 398.1 K and 1807.6 K to generate values for the 
molar heat capacity function in the temperature range 
298 K to 1800 K. This specific heat function compares well 
with our computed values. 

7. Summary 

In this paper we have reported results of a theoretical and 
experimental study of the dynamics of crystalline 

~-Mg2SiO4. Detailed lattice dynamical studies based on 
the rigid molecular-ion model and the rigid ion model have 
been carried out using interatomic pair potentials involving 
Coulombic, short-range and covalent contributions. The 
parameters of the potential have been obtained on the basis 
of x-ray diffraction results. Elastic constants and specific 
heat have been computed and compared with the corre- 
sponding experimental data. Phonon dispersion relation de- 
rived along the three high-symmetry directions in the Bril- 
louin zone have been used to obtain one-phonon coherent 
neutron inelastic scattering cross-sections from a single crys- 
tal for planning neutron inelastic scattering experiments. 
Partial and total phonon densities of states have been de- 
rived and used to evaluate the inelastic neutron scattering 
from a powder after taking into account multiphonon con- 
tributions. Coherent neutron inelastic scattering techniques 
have been employed to measure the neutron intensity distri- 
bution from a powder as well as the phonon dispersion 
relation from a single crystal. These are the first inelastic 
neutron scattering results on Mg2SiO4. The experimental 
results are in excellent agreement with the results of the 
model calculations within the experimental error limits and 
theoretical approximations. We believe that the potential 
formulation used in these studies can be used for deriving 
physical properties of forsterite at high temperatures and 
pressures as well as other phases of MgzSiO 4. 
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Appendix 

Group Theoretical Symmetry Vectors ~(n) of External 
Modes of Mg2SiO 4, n = 1 through 48. x(K), y(K), z(K) and 
Ox(K), Oy(K) and O=(K) are the unit vectors along the transla- 
tional and rotational coordinates. K = 1, 2 ... 12 correspond 
to the atomic/molecular labelling given in Table 1. The co- 
ordinate axes are along the cell axes a, b and c. 



(a) Symmetry vectors along X, direction 
S = 13S1 + 11 X2 + 132;3 + 11 2;,, 

(i) 2;1 representation 
s x(2)+ x(3)+ x(4); 
S(2)= y(1)- y(Z)- y(3) + y(4); 
2; (3)= z(1)- z(2) + z(3)- z(4) ; 
2 ; ( 4 ) = x ( 5 ) + x ( 6 ) ;  
2~(5) = z ( 5 ) - z ( 6 ) ;  
S(6)=x(7)+x(8); 
2;(7)=z(7)-z(8); 
Z(8)=x(9)+x(lO); 
S ( 9 ) = z ( 9 ) - z ( 1 0 ) ;  
S(10) = x(11) + x(12); 
N(11) = z ( 1 1 ) -  z(12); 
N(12) = 0 , ( 9 ) -  0,(10); 
N(13) = 8 , ( 1 1 ) -  0,(12). 

(ii) ~2 representation 
s x(1)+ x(Z)--x(3)-x(4); 
2;(15) = y ( 1 ) -  y(2) + y(3) - -  y(4); 
s 
s 
S(18)=y(Y)-y(8); 
N(19)=y(9)-y(lO); 
E(20) = y ( l l ) - y ( 1 2 ) ;  
2;(21) = 0:,(9) + 0:`(10); 
X(22) = 0z (9)-- 0~ (10); 
N(23) = 0:,(11) + 0:` (12); 
S(24)  = 0~(11) - -  0~(12). 

(iii) 2; 3 representation 
Z(25) = x ( 1 ) -  x(2) + x ( 3 ) - x ( 4 ) ;  
X(Z6)= y(1)+ y(Z)-- y(3)-- y(4); 
N(27)=z(1)+z(2)+z(3)+z(4); 
S ( 2 8 ) = x ( 5 ) - x ( 6 ) ;  
2 (29) = z (5) + z (6); 
S(30)=x(V)-x(8); 
Z(31)=z(7)+z(8); 

: S(32)=x(9)-x(lO); 
S(33)=z(9)+ z(lO); 
S(34) = x(11) - x(12); 
S(35) =z (11)  +z (12) ;  
S(36) = 0,(9) + 0,(10); 
S(37) = 0,(11) + 0,(12). 

(iv) 2;4 representation 
S(38) = x ( 1 ) -  x(2) - x(3) + x(4); 
S (39)= y(1) + y(2) + y(3) + y(4); 
S(40) = z(1) + z(2)- z(3)- z(4); 
S(41)=y(5)+y(6); 
S(42) = y ( 7 )  + y(8); 
S(43) = y ( 9 )  + y(lO); 
S (44) = y ( l l )  + y (12); 
S (45) = 0:,(9)-- 0~(10); 
2;(46) = 0~(9)+ Oz(lO); 
S(47) = 0~(11 ) -  0:`(12); 
S(48) = Oz(11) + 0~ (12). 

(b) Symmetry Vectors for A direction 
A = 1 2 A l + 1 2 A 2 + 1 2 A 3 + 1 2 A 4 .  

(i) A1 representation 
A(1)= x(1)-- x(2)-- x(3)+ x(4); 
A(2)=y(1)+ y(2)+ y(3)+ y(4); 
A(3)=z(1)+z(2)+z(3)+z(4); 
A (4) = x (5) + x (6) -- x (7) -- x (8); 
A(5)=y(5)+ y(6)+ y(7)+ y(8); 
A (6) = z(5)- -  z(6)--  z(7) + z (8); 
A (7) = x ( 9 )  + x (10) - -x (11) - -  x (12); 
A(8)=y(9)+ y(lO)+ y(ll)+ y(12); 

A (9) = z ( 9 ) -  z ( 1 0 ) -  z(11) + z(12); 
A (10) = 0 x ( 9 ) -  0 x ( l O ) -  0;,(11) + 0~,(12); 
A (11) = 0, ( 9 ) -  0y (10) + 0 , ( 1 1 ) -  0,(12); 
A (12) = 0~ (9) + 0z(10) + 0z(11) + 0~ (12); 

(ii) A2 representation 
A(13)=x(1)+ x(2)- x(3)- x(4); 
A (14)= y(1) - -y(2)  + y(3) - -  y(4); 
A(15)=z(1)-z(2)-z(3)+z(4); 
A(16)= x(5)-- x(6)- x(7)+ x(8); 
A (17)= y( 5)-- y( 6) + y(7)-- y(8) ; 
A (18) = z (5) + z (6) -- z (7) -- z (8); 
A(19)= x(9)- x(10)-- x(11)+ x(12); 
A(ZO)= y(9)-- y(lO)+ y(11)-- y(12); 
A (21) = z (9) + z(10) - z(11) - z(12); 
A (22) = 8:,(9) + Ox( lO)-  0~ ( 11 ) -  Ox (12); 
A (23) = 0r (9) + 0r (10) + 0r(11) + 0,(12); 
A (24) = 0~(9) -  0z ( 1 0 ) -  0~(11) + 0z (12). 

(iii) A3 representation 
A (25)= x(1)-- x(2) + x(3)- x(4); 
A (26) = y (1) - y (2) - y (3)-- y (4); 
A (27) = z(1) + z (2) + z (3) + z (4); 
A (28) = x ( 5 ) -  x(6) + x ( 7 ) -  x(8); 
A (29) = y ( 5 ) - - y ( 6 ) - - y ( 7 )  +y ( 8 ) ;  
A (30) = z (5) + z (6) + z (7) + z (8); 
A ( 3 1 ) = x ( 9 ) - x ( 1 0 ) + x ( 1 1 ) - - x ( 1 2 ) ;  
A ( 3 2 ) = y ( 9 ) - y ( l O ) - - y ( l l ) + y ( 1 2 ) ;  
A (33) = z(9) + z (10) + z (11) + z(12); 
A (34) = 0~(9) + 0x(10) + 0~ (11) + 0:,(12); 
A (35) = 0,(9) + 8 , ( 1 0 ) -  0,(11) - 0,(12); 
A (36) = 0~(9)-- 0~ (10) + 0~(11)-- 0z (12). 

(iv) A4 representation 
A(37)=x(1)+ x(Z)+ x(3)+ x(4); 
A(38)=y(1)-- y(2)- y(3)+ y(4); 
A (39) = z ( 1 ) - z ( 2 )  + z(3)- -z(4) ;  
A(40)=x(5)+ x(6)+ x(7)+ x(8); 
A (41) = y(5) + y ( 6 ) -  y(7) - -  y(8); 
A (42) = z (5) - z (6) + z (7) -- z (8); 
A(43)= x(9)+ x(lO)+ x(11)+ x(12); 
A (44) = y(9) + y(10) -- y(11) - y (12); 
A (45) = z(9) -- z(10) + z(11) -- z (12); 
A (46) = 0 : ` (9)-  0x(10) + 0~(11)-- 0:`(12); 
A (47) = 0 y ( 9 ) -  0y ( 1 0 ) -  0,(11) + 0, (12); 
A (48) = 0~(9) + 02(10) + 0z(11) + 0z (12). 

(c) Symmetry Vectors along A direction 
A=13Al +11Az+11A3+13A4. 

(i) A 1 representation 
A(1)= x(1)-- x(2)+ x(3)--x(4); 
A(2)=y(1) + y(2)-- y(3)-- y(4); 
A(3)=z(1)+z(2)+z(3)+z(4); 
A(4)=x(5)-x(8); 
A (5) = z(5) + z(8); 
A(6)=x(6)-x(7); 
A(7)=z(6)+z(7); 
A(8)=x(9)--x(12); 
A(9)=z(9)+z(12); 
A (10) = x ( 1 0 ) -  x(11); 
A(ll)=z(lO)+ z(ll); 
A (12)= 0,(9)--  0,(12); 
A(13)=0,(10)-0,(11). 

(ii) A z representation 
A (14) = x(1) + x(2) - -  x (3) - -  x (4); 
A(15)= y(1)--y(2)+ y(3)-- y(4); 
A (16) = z ( 1 ) -  z(2)--  z(3) + z(4); 
A(17)=y(5)-y(8); 
A(18)=y(6)--y(7); 
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A(19)=y(9)-y(12); 
A (20) = 0x (9) - 0x (12); 
A(21)=Oz(9)+Oz(12); 
A(ZZ)= y(lO)- y(11); 
A (23) = O~ (10) -  0~(11); 
A(24) = 0z(10 ) + 0z(ll). 

(iii) A3 representation 
A(25)=x(1)-x(2)-x(3)+x(4); 
A (26)= y(1) + y(2) + y(3) + y(4); 
A(27)= z(1) + z(2)- z(3)- z(4); 
A(Z8)=y(5)+y(8); 
A(Z9)= y(6) + y(7); 
A (30) = y(9) + y(12); 
A(31) = 0x(9) + 0x(12); 
A (32) = Oz (9) - Oz (12); 
A(33)= y(lO)+ y(11); 
A (34) = 0~(10) + 0~(11); 
A(35) = 0z (10) -  0z(11). 

(iv) A 4 representation 
A (36)= x(1) + x(2) + x(3) + x(4); 
A (37) = y(1) - y (2) - y (3) + y (4); 
A (38) = z (1) - z (2) -t- z (3) - z (4); 
A(39)=x(5)+x(8); 
A(40)=z(5)-z(8); 
A(41)=x(6)+x(7); 
A(42)=z(6)-z(7); 
A (43) = x(9) +x(12);  
A(44)=z(9)-z(12); 
A (45) = 0y (9) + 0y (12); 
A(46)= x(lO)+ x(11); 
A(47) =z (10) -z (11) ;  
A (48) = 0, (10) + O r (11). 
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