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Abstract. According to a recent mathematical theory 
a shape can be represented by size functions, which 
convey information on both the topological and metric 
properties of the viewed shape. In this paper the rel- 
evance of the theory of size functions to visual perception 
is investigated. An algorithm for the computation of the 
size functions is presented, and many theoretical proper- 
ties of the theory are demonstrated on real images. It is 
shown that the representation of shape in terms of size 
functions (1) can be tailored to suit the invariance of the 
problem at hand and (2) is stable against small qualita- 
tive and quantitative changes of the viewed shape. A dis- 
tance between size functions is used as a measure of 
similarity between the representations of two different 
shapes. The results obtained indicate that size functions 
are likely to be very useful for object recognition. In 
particular, they seem to be well suited for the recognition 
of natural and articulated objects. 

1 Introduction 

An intriguing property of the human visual system is the 
capability of recognizing objects independent of their 
apparent shape in images. The changes in the visual 
shape can be due to different factors. In the case of rigid 
and manufactured objects, for example, these changes are 
due to the object orientation and distance from the 
viewer. In the case of natural objects, these changes may 
also be due to the qualitative and quantitative differences 
between objects which belong to the same "category". 
Most of the techniques which have been proposed for 
shape analysis and object recognition appear to be ap- 
propriate for some particular and interesting cases, such 
as polyhedral rigid objects, planar curves, or character 
recognition, but do not seem to be sufficiently flexible to 
deal with the general problem. 

In a recent series of mathematical papers, studying 
shape through integer-valued functions, called size 
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functions (Frosini 1990, 1991, 1993), has been proposed. 
The new mathematical idea underlying the concept of 
a size function is that of setting metric bounds to the 
classical notion of homotopy, i.e., of continuous deforma- 
tion. Thus, size functions convey information about both 
the qualitative and quantitative structure of the viewed 
shape. The aim of this paper is to assess the potential of 
the theory of size functions in visual perception. An 
algorithm for the computation of size functions is pres- 
ented, and the many theoretical properties of the size 
functions are checked and illustrated on real images. It is 
shown that the representation of shape through size 
functions can be tailored to suit the quantitative and 
qualitative invariant properties of the shape to be 
studied. Therefore, size functions seem to be suitable for 
the description and recognition of objects which have 
similar but not necessarily identical shapes (e.g., natural, 
articulated, and nonrigid objects). 

In Sect. 2, of this paper the approach to shape de- 
scription through the theory of size functions is intro- 
duced through a simple example. An algorithm for the 
computation of a size function is described in Sect. 3. A 
distance between the size function of two shapes is defined 
in Sect. 4. Section 5 deals with the invariant properties 
which may be incorporated in the theory and illustrates 
the tolerance of the scheme against changes of a different 
sort on real images. Section 6 discusses related work. 
Finally, Sect. 7 summarizes the main open problems, the 
directions of future research, and the results obtained. The 
key mathematical concepts and results which are relevant 
to this work are summarized in the Appendix. 

2 Overview of the approach 

In this section the concepts of the theory of size functions 
are illustrated for a simple example. Then, the shape 
representation which can be obtained from a size func- 
tion is discussed. Finally, the main theoretical properties 
of the theory are listed. 

2.1 Topological and metric obstructions 

Figure la shows an example of shape, the letter "w" in 
sign language performed by one of the authors. By using 
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Fig. la-f. Topological and metric obstructions, a An image of the sign 
"w" performed by one of the authors, b The outline ~ of the sign of 
a obtained by means of a standard edge detection and contour-follow- 
ing techniques, e Computation of the measuring function L at the 
points p, q, and r. d The thick edges mark the points with L ~< 4R. e The 
thin edges mark the points with 4R ~< L ~< 6R. f Plot of the measuring 
function L over the curve ct 

standard edge detection and contour-following tech- 
niqes, the contour  ~ of Fig. lb, which corresponds to the 
outline of the hand of Fig. la, can be easily obtained. Let 
us introduce the key concepts of measuring function and 
size function on the curve ct. 

As a preliminary step, let us define a transformation 
H which brings a point of ~ onto some other point of ~t 
without leaving the curve. The transformation H induces 
an equivalence relation on the points of ~, where two 
points v and w are said to be H-equivalent if there exists 
a continuous trajectory on ct which brings v onto w, or if 
v and w belong to the same arcwise-connected compo- 
nent of ~. For  example, the points p, q, r, s, t, and u of 
Fig. lb  are all pairwise H-equivalent. Since, independent 
of the shape of ct, all the points of ~ fall into one and the 
same equivalence class, the purely topological concept of 
H-equivalence is clearly not sufficient to characterize the 
shape of ~. Intuitively, this reflects the absence of 
"topological obstructions" between the points of ct. 

In the theory of size functions, this problem is over- 
come by the notion of measuring function (Frosini 1990). 
The purpose of a measuring function is to generate "met- 
ric obstructions" for the transformation H. Let us illus- 
trate the notion of measuring function through a particu- 
lar example. For  each point v of ~, let L = L(v) be the 

length of the portion of ~ which lies within the circle c(v) 
of radius R and center v. Figure lc shows how to com- 
pute L at the points p, q, and r. Let R = D/5, where D is 
the diameter of ~. It is clear that L(p), L(q), and L(r) can 
be computed as the sum of the length of the (possibly 
many) arcs of �9 which lie within the circles c(p), c(q) and 
c(r) of Fig. lc, respectively. The function L, which is 
defined on the contour ~, is an example of measuring 
function. 

Let us now modify the definition of H by means of L. 
Two points v and w of ct are said to be H(L <<. y)- 
equivalent if v = w or a trajectory exists on ~ from v 
to w along which L never exceeds y. Let us call a 
trajectory along which L never exceeds y and (L ~< y)- 
trajectory. Intuitively, the points of ct with L > y can 
be thought of as metric obstructions for the (L ~< y)- 
trajectories from v to w. This fact is illustrated in 
Fig. ld where the points with L > 4 R  (the metric 
obstructions) have not been drawn. From the gaps in Fig. 
ld, it is easy to conclude that, between p, q, r, s, and u, the 
points q and r are the only pair of H(L <<, 4R)-equivalent 
points. 

The notion of H(L <~ y)-equivalence is essential for 
the definition of size function (Frosini 1990). The size 
function IL(~; x, y), for x < y, and x and y ~ 9t 2, is defined 
as the number of equivalence classes in which the set of 
points with L ~< x is divided by the H(L <~ y)-equivalence 
relation. Let us compute the size function lL at the point 
(x,y) with x = 4R and y = 6R. The set of points of 
with L ~< 4R are the thick edges of Fig. le. Thus, the 
size function lL(~t; 4R, 6R) is the number  of equivalence 
classes in which the thick edges of Fig. le are divided 
by the H(L <~ 6R)-equivalence relation. This amounts to 
(L ~< 6R)-trajectories between all the possible pairs of 
thick edges. The thin edges of Fig. le, which are the 
points with 4R < L ~< 6R, represent the "extra" space 
which has been made available to the (L ~< 6R)-trajecto- 
ries. 

It is easy to see that the size function IL(ct;4R, 6R) 
equals the number of connected components of the curve 
of Fig. le (ignoring the difference between thick and thin 
edges) which contains at least one point with L ~< 4R, i.e., 
a thick edge. Since of the three connected components 
of the set of points with L ~< 6R, the one which contains 
the point t consists only of thin edges, it follows that 
IL = 2. Note that the points p, q, r, and u which 
were not H(L <~ 4)-equivalent, now belong to the same 
equivalence class. 

An equivalent representation of the connected com- 
ponents of the set of points with L ~< 4R under the 
(L ~< 6R)-equivalence relation is shown in Fig. 1 f, in 
which L is plotted against the curve ~ = ~(a) with 
a ~ [0, 1] and ct(0)= ~t(1). The thick horizontal line of 
Fig. If, makes it clear that the set of points with L ~< 4R 
consists of four connected components [the leftmost and 
rightmost components belong to the same component  
because ~(0) = ~(1)]. The thin horizontal line shows that 
these components reduce to two when L ~< 6R. 

Before discussing the main properties of the notion of 
size function, let us show how shape information is rep- 
resented by means of a size function. 



2.2 Shape representation 

The size function lz = IL(ct; x, y) is an integer-valued func- 
tion of the two real variables x and y. Let us first show 
that all the relevant information is contained in a region 
of finite area of the plane (x, y). Let us divide the plane 
(x, y) in four regions (see Fig. 2a). Region A consists of all 
the points at the left of the vertical line x = L', B of all the 
points with L' < x ~< y and y > L", C of all the points 
with x > L' and y < x, and T of all the points of the 
triangle with L' <~ y <~ L" and L' ~< x ~< y, where L' and 
L" are the minimum and maximum of L over ~t, respec- 
tively. Let us now show that in A, B, and C the size 
function is independent of the shape of the curve ~. First, 
since the set of points with L < L' is the empty set, we 
have that, for all the points in A, lz = 0. Then, since for 
L > L" there are no metric obstructions, we have that, for 
all the points in B, Iz = 1. Finally, since for y < x each 
point of ~ identifies a different equivalence class, for all 
the points in C, IL = + ~ .  

Thus, all the relevant information is contained in the 
triangular region T enclosed by the regions A, B, and C. 
The color-coded representation of the diagram of the size 
function of Fig. 2a within the triangle T makes it clear 
that the size function is piecewise constant, nondecreas- 
ing along the x-axis, and nonincreasing along the y-axis. 
These properties follow easily from the definition of size 
function. 

The diagram of Fig. 2a was obtained by computing 
the size function at a finite number of locations of the 
triangular region T and sampling the curve ~ at a finite 
number of points. The relationship between the size func- 
tion computed in the discrete and in the ideal continuous 
case is shown in Fig. 2b. A basic mathematical result 
(Frosini 1993) ensures that it is possible to divide the 
discrete estimates of Fig. 2a into two groups. The esti- 
mates which belong to the first group are exactly equal to 
the exact values of the continuous case. These estimates 
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are reproduced unchanged in Fig. 2b. Since the size 
function is piecewise constant, a striking property of the 
graph of Fig. 2b is that it reproduces exactly the graph of 
the size function in the continuous case even at locations 
in which the discrete estimates were not computed. 

The white stripes within the triangular region T of 
Fig. 2b identify the locations of the estimates of the 
second group, in which the values of the size function 
computed in the discrete and continuous case do not 
necessarily coincide. The white stripes can be obtained by 
thickening the lines of discontinuity in the diagram of 
Fig. 2a of an amount which depends on the coarseness of 
the sampling and on the modulus of continuity of the 
measuring function. In the example of Fig. 2b it has been 
assumed that the maximum distance between the hypo- 
thetical continuous curve and the pixels of the contour is 
smaller than 2x/~ pixels. 

Intuitively, the white stripes account for the possible 
differences between the size functions of two curves which 
happen to be sampled by the same set of points. Interest- 
ingly, these differences are localized in the neighborhood 
of the lines of discontinuity of the size function computed 
from the sampling points only. The value of the size 
function in the continuous case within a white stripe is 
bounded by the monotonicity constraints along the di- 
rections of the coordinate axes, but otherwise arbitrary. 

Finally, let us briefly discuss how shape information 
is represented in a size function across scale. Shape in- 
formation is not distributed evenly within the triangular 
region T. It can be seen that the details of the shape are 
represented in the region near the hypotenuse of the 
triangle T (where y - x), The further from the hypote- 
nuse, the coarser is the information on the viewed shape. 
This fact is better illustrated in Fig. 3. Figure 3a and 
b shows a pittosporum and an oak leaf, respectively. The 
corresponding outlines are shown in Fig. 3c and d. It is 
evident that at the coarse scales the two contours have 
a similar shape, whereas at the finer scales, the contour of 
the oak leaf becomes more "alive". Correspondingly, the 
size functions of Fig. 3e and f are similar away from the 
hypotenuse of the triangular region T, whereas the size 
function of the oak leaf increases near the hypotenuse (see 
Fig. 3f). The size functions in Fig. 3e and f are induced by 
the measuring function De, which measures the distance 
of a point of the contour from the center of mass of the 
contour. 

Fig. 2a, b. Color-coded representation of the size function IL of Fig. lb. 
a All the relevant information of the size function is contained in the 
triangular region enclosed by the regions A, B, and C. The color coding 
is light #ray for 1, gray for 2, darker gray for 3, and black for 4. b The 
white stripes, which have been obtained by thickening the lines of 
discontinuity of the size function of a, represent the only locations in 
which the estimates of the size function in the discrete approximation 
do not necessarily coincide with the ideal continuous case 

2.3 Basic properties 

The notions of measuring function and size function have 
a number of interesting properties. Let us briefly sum- 
marize these properties, some of which will be illustrated 
in greater detail in Sect. 5. In what follows, ~ denotes 
a generic curve of the image plane. First, there is a wide 
range of possible choices for a measuring function. 

2.3.1 Admissible measuring functions. In principle, any 
continuous real function defined on a curve ct can serve 
as a measuring function (see the Appendix). For  
example, along with the function L discussed in the 
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projective, and perspective transformation. Clearly, the 
functions L and Dc of Sect. 2 are invariant for translation 
and rotation. The scaling invariance can always be ob- 
tained by scaling the maximum of the measuring function 
to a fixed value (which is the reason why the diagrams of 
Fig. 3e and f have similar support even if the oak leaf of 
Fig. 3b appears to be larger than the pittosporum leaf of 
Fig. 3a). In general, the invariance properties of the 
problem at hand may be used to constraint the search for 
the appropriate measuring function. 

2.3.3 Tolerance to qualitative and quantitative changes. 
A further property of the representation of shape through 
size functions is robustness against quantitative and 
qualitative changes. This property derives from the facts 
that the proposed representation combines topological 
(i.e., qualitative) aspects of shape with metric (i.e., quantit- 
ative) aspects of shape in a redundant fashion, since a size 
function is piecewise constant. Intuitively, small qualitat- 
ive and quantitative changes give rise to differences in the 
size functions over correspondingly small areas of the 
triangular region of interest. Consequently, the repres- 
entation of shape in terms of size functions is likely to be 
suitable for the recognition of objects which are qualitat- 
ively and quantitatively similar but not identical. 

Fig. 3a-f. Shape information across scale, a Illustration of an image of 
a pittosporum leaf. b An image of an oak leaf. e and d Outlines of the 
leaves of a and b obtained through standard edge detection and con- 
tour-following techniques, e and f Color-coded representation of the 
size functions of the contours of e and d induced by the measuring 
function Dc, distance of a point of the outline from the center of mass. 
The diagrams are scaled between 0 and the maximum of Dc over each 
outline. The color coding is the same as that of Fig. 2 

previous section, the curvature, the distance of a point of 
from a certain point, such as the center of mass, or the 

y-coordinate of a point of ~ with respect to some system 
of reference are equally good choices of measuring func- 
tions. In addition, a measuring function need not be 
defined on single points of ~. For  example, a measuring 
function can be defined on the pairs of points of ~. The 
only differences are the fact that the measuring function 
cannot be visualized any longer through a one-dimen- 
sional plot and that the notion of H(L <<. y)-equivalence 
must be redefined on ~ x ~, the cartesian product of the 
curve with itself (see the Appendix). Examples of measur- 
ing functions defined on ~ x ~ are the euclidean distance 
between a pair of points of ~, and the ratio between this 
distance and the length of the shortest arc of ~ which 
joins the pair of points. 

2.3.2 Inheritance of invariance properties. A funda- 
mental property of the proposed scheme is that the rep- 
resentation of shape through a size function inherits the 
invariance properties (if any) of the underlying measuring 
function. These properties may include euclidean invari- 
ance (such as invariance for scaling, and translation and 
rotation over the image plane), or invariance for affine, 

2.3.4 Dynamics of size functions. A question which 
arises quite naturally in the attempt to assess the rel- 
evance of size functions to shape description and recogni- 
tion is whether size functions have enough discriminating 
power to distinguish between similar (and simple) shapes. 
Let us discuss an example which indicates that size func- 
tions can actually be used for the description of simple 
shapes. Figure 4a, b, c, and d shows the color-coded size 
functions associated with two "a"s and "e"s, respectively 
of the sign language performed by two of the authors. 
The outline of the signs is shown on the lower right of 
each diagram. It is evident that the outlines of these four 
signs are much simpler than the outline of the "w" sign of 
Fig. lb. Nevertheless, the dynamics of the computed size 
functions appears to be sufficient to distinguish between 
an "a" and an "e" sign. The size functions depicted in 
Fig. 4 are induced by the measuring function Le, which is 
defined on the pairs of points of the contour. The func- 
tion Le associates to a pair of points the length of the 
portion of the curve which lies within the ellipse of fixed 
area and whose foci coincide with the pair of points. 

2.3.5 Connection with the theory of critical points. From 
the diagrams of Figs 2 and 3 it can be seen that the 
discontinuities of a size function are localized at the 
critical values of the measuring function. This observa- 
tion, which can be formally proved and has led to a con- 
nection between the theory of the size functions and the 
theory of critical points (Frosini 1990), provides a differ- 
ent interpretation for the presence of thick white stripes 
in Fig. 2b. The thickness of a stripe reflects the uncer- 
tainty in the localization of the critical points of the mea- 
suring function from a discrete sampling of the original 
curve. Furthermore, and most importantly, the critical 
values of the measuring function completely determine 
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Fig. 4a--d. Color-coded representations of the size functions of the 
signs whose outlines are displayed in the lower right corner of each 
diagram. The size functions are induced by the measuring function Le 
(see text). The diagrams are scaled between 0 and the maximum of Le 
over each outline. The color coding is the same of Fig. 2 

the structure of  the induced size function. This fact has 
two impor tan t  consequences. First, if the sequence of  
critical values of  a measur ing function over two different 
shapes is the same, the "size function of  the two shapes is 
the same. Second, if the critical values of  a measuring 
function over ' two  shapes are different, then the induced 
size functions are different. The implications of  these facts 
for object recognit ion are evident. Two objects m a y  look 
similar with respect to a certain size function, i.e., to  some 
aspect of  their shape, but  then prove to be different with 
respect to another  size function, i.e., to  some other  aspect 
of  their shape. 

2.3.6 Hioher-dimensional shapes. Let us conclude this 
section with a theoretical remark.  The theory of size 
functions is not  restricted to the case of  curves. In  prin- 
ciple (see the Appendix) the shape of  a surface of  arbi t rary  
dimension can be represented th rough  a size function. 
Fo r  the sake of  simplicity, this paper  and the present 
research have been restricted to the analysis o f  curves on 
the image plane. Extensions to the two-dimensional  case 
are currently under  investigation. The surface to be 
studied could be the region of  the image plane enclosed 
by a con tour  (in bo th  binary and gray-valued images) or 
a "thick" con tour  (as in character  recognition). 

3 An algorithm for the computation of size functions 

This section describes the implementat ion of  an algo- 
r i thm for the discrete computa t ion  of  a size function of 
a curve of  the image plane. 

Fig. 5a-d. The algorithm for the discrete computation of a size func- 
tion. a Curve sampling and covering, b The graph associated with the 
sampled curve. The numbers, which correspond to hypothetical values 
of the measuring function ~0 at each sampled point, are associated with 
the corresponding vertex, c Subgraph of the graph of b induced by the 
set of vertices with tp ~< 4.0. d The vertices of the subgraph of c with 
tp ~< 3.6 are shown as open circles. Therefore, the value of the size 
function of the sampled curve of a at the point (3.6, 4) equals 2 

Fo r  the sake of  simplicity, let us illustrate the imple- 
menta t ion  in the part icular  case in which the measur ing 
function ~o is defined on single points  of  a curve ~ (that is, 
k = 1) with ~0/> 0. In  addition, let B(_p)~ be the open circle 
of  center p and radius 6, and l~ and l~ the size function in 
the cont inuous  and discrete cases, respectively. The algo- 
r i thm consists of  four steps: 

1. Sample (or approximate)  the curve ~ at a finite num-  
ber N of  points pi, i = 1 . . . . .  N so that  ~ c U~= t B(Pi)~, 
and the set B(p~)~ n ~ is nonempty  and connected for 
i = 1 . . . . .  N (see Fig. 5a). 
2. Define the graph  G whose vertices are the points p~ 
and whose edges link vertices which correspond to adja- 
cent points on ~. Compute  q~(pi) at each point  p~, 
i = 1 . . . . .  N (see Fig. 5b). 
3. Compute  the max imum q~max of  tp(pi), i = 1 . . . .  N and 
fix a A >t e~(6), where e~,(3) is the modulus  of  continui ty 
of  ~0 at 6. 
4. F o r y = 0 t o y ~ < t p  max 

a. Define the subgraph G~_< r of G induced by the set 
of  vertices of  G for which tp ~< y (Fig. 5c). 

b. For x = O t o  x<<. y 

i. Let ~(ct; x, y) be the number  of  connected com-  
ponents  of  G~ _< y which contain  at least a vertex pi 
such that  q~(p~) ~< x (Fig. 5d). 
ii. x ~ x + A .  

c. y ~ y + A .  
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The two conditions of the first step ensure that the 
curve ~ is covered in such a way that each open circle 
contains exactly one connected arc of ~. It is evident that 
the size function which can be computed in the discrete 
will be the same for all the continuous curves for which 
the open circles of the first step satisfy the two conditions 
of the first step. The graph G, in the second step, is 
a discrete representation of cr such that a path on G be- 
tween the vertices p~ and pJ is the discrete counterpart of 
a trajectory between points of the two arcs B(f f )~ n ~ and 
B(pJ)~ c~ ~t. The third step determines the minimal resolu- 
tion at which ~ is worth computing and the thickness of 
the "white" stripes, or the regions of uncertainty in the 
value of the size function in the continuous case. In the 
final step ~ is computed over a grid of equally spaced 
points within the triangular region T ~ ( ~ ) = { ( x , y ) :  
0~< y~< ~p~X, 0 ~< x ~< y}. 

The colour coded diagrams of Figs. 2a and 3e and f 
have been obtained by means of this algorithm. The 
computational load of the algorithm depends on the 
choice of the measuring function. If the measuring func- 
tion is defined on single points of the contour, the com- 
putation takes less than a second on an SPARC work- 
station. The computational time may go up to several 
seconds for a measuring function which is defined on 
pairs of points of the contour. 

4 A distance between size functions 

In order to determine quantitatively whether similar 
shapes are given a similar representation and different 
shapes are actually distinguishable, a distance between 
size functions needs to be defined. There are many ways 
in which a distance between size functions can be defined. 
Probably the only common requirement to the possible 
definitions is that the scale-invariant property must be 
preserved (i.e., the distance between the size functions of 
the same shape at different scales must always vanish). 
Let us introduce the simple distance function which will 
be used throughout  the rest of the paper. 

Let tp be a measuring function, ~ and ~2 two curves, 
and tpm"x(~i) the maximum of tp on cq, for i = 1, 2. With- 
out loss of generality it can be assumed that q~ ~> 0. Let us 
scale tp by defining ~ = ~p/~pmaX(Cti) on ~i, for i =  1,2. 
Then, a scale-invariant distance d between the size func- 
tions ~(cq) and I~(~t2) can be defined as (Uras and Verri 
1992) 

1 y 

dEl~(~l), 16(~2)2 = 2 j" dy S d x l l ~ ( c q ; x , y ) -  l~(cr x ,y ) l  
0 0 

(1) 

The distance d is simply the L 1 norm of the difference 
over the triangular region with 0 ~< x ~< y and 0 ~< y ~< 1. 
Similarly, in the discrete case, if ~(~tl) and ~(~2) are 
computed at the same fixed resolution R and regarded as 
triangular matrices ~(~l)i,g and ~(~2)i,i with 
i = 1 , . . . ,  R - 1 and j  = 1 . . . . .  R - i, then the distance 

d can be redefined as 

d[-~(cq), ~(o~2)] = 
2 R - 1  R - i  

Y, IT~(O~l),,j- T~(o~-,),.jl (2) R(R 1) i =  = 1  j = l  

where the normalization factor is chosen so that 
d [ ~ ( ~ O ,  ~(~2)] = 1 if, on average, the triangular ma- 
trices 1~(~1) and ~(cr differ by 1 at each entry. The 
entries on the diagonal of the triangular matrices do not 
appear in the sum in the right-hand side of (2) because 
they may be severely affected by noise. 

Let us look at the distances between the size functions 
of Fig. 4 computed through (2). The distance between the 
two "a"s is 0.15, whereas the distance between the two 
"e"s is 0.18. These figures must be compared with the 
distances between two different signs, that is, an "a" and 
an "e" sign. Of the four possible pairs of different signs of 
Fig. 1 the minimum distance is 0.34, which is clearly 
much larger than either of the distances between two 
equal signs. 

5 Invariant properties 

In this section the invariance properties of the size func- 
tions mentioned in Sect. 2 are demonstrated on real 
images. 

5.1 Euclidean invariance 

Let us now make some quantitative estimates of the 
invariance of the representation of shape which can be 
obtained through a size function. Figure 6a shows the 
image of an ivy leaf. The size function induced by the 
measuring function De, that is, the distance of a point of 
the outline from the center of mass of the outline, is 
shown in Fig. 6b. In principle, the function Dc is clearly 
invariant for translation and rotation of the shape over 
the image plane. Figure 6c shows an image of the same 
leaf translated and rotated while the camera was kept in 
a fixed position. The size function associated with the 
outline of the image of Fig. 6c is shown in Fig. 6d. By 
visual inspection of Fig. 6b and d it can easily be seen that 
the size functions of the leaves of Fig. 6a and c are very 
similar. Correspondingly, the distance d between the size 
functions of Fig. 6b and d, computed by means of (2) is 
equal to 0.06. 

The property of scale invariance is illustrated in 
Fig. 6e and f. In the image of Fig. 6e, the camera was 
viewing the same ivy leaf from a further viewpoint. It is 
evident that the size function of Fig. 6f, which was ob- 
tained from the outline of the image of Fig. 6e, is very 
similar to the size function of Fig. 6b. In this case, the 
distance between the size functions of Fig. 6b and f, 
computed by means of (2) is 0.04. 

Table 1 summarizes the results obtained in a series of 
similar experiments. Several images of three leaves of 
different species (ivy, oak and oleander) were taken by 
translating and rotating the leaves on the supporting 
plane and by varying the distance between the viewing 
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Table 1. Euclidean invariance 

Leaf 

T f2 s 1 2 3 

10 0 1.0 0.02 0.03 0.01 
15 0 1.0 0.03 0.06 0.00 
20 0 1.0 0.05 0.01 0.04 
0 30 1.0 0.07 0.04 0.03 
0 45 1.0 0.03 0.04 0.06 
0 70 1.0 0.03 0.02 0.02 
0 0 0.5 0.02 0.05 0.01 
0 0 1.5 0.06 0.03 0.00 
0 0 2.0 0.06 0.07 0.02 

10 30 2.0 0.04 0.01 0.05 
15 45 1.5 0.03 0.05 0.02 
20 70 0.5 0.05 0.04 0.03 

In order to test the invariance of the size function induced by the 
measuring function "distance from the center of mass" with respect to 
euclidean transformations, images of an ivy leaf (leaf 1), oak leaf (leaf 2), 
and oleander leaf (leaf 3) were taken by translating and rotating the leaves 
on the supporting plane of T centimeters and f2 degrees respectively. 
Different scaling factors s were obtained by changing the distance between 
the viewing camera and the supporting plane. The columns leaf 1, leaf 2, 
and leaf 3 report the distance d between the size function of the ivy, oak, 
and oleander leaves in the original position and after the translational, 
rotational, and scaling transformations were performed, respectively 

Fig. 6a-f. lnvariance for euclidean transformations, a An image of an 
ivy leaf. b The size function of the outline of the leaf of a induced by the 
measuring function De. c An image of the same ivy leaf of a translated 
and rotated over the supporting plane while the camera was kept in 
a fixed position, d The size function of the outline of the leaf of c. e An 
image of the same ivy leaf of a from a further viewpoint, f The size 
function of the outline of the leaf of e. The color coding is as in Fig. 2, 
and the diagrams are scaled between 0 and the maximum of Dc over 
each outline 

c a m e r a  a n d  the  s u p p o r t i n g  p lane .  T h e  e u c l i d e a n  inva r i -  
ance  o f  the  c o m p u t e d  size f u n c t i o n s  was  c h e c k e d  by  
c o m p u t i n g  the  d i s t ance  b e t w e e n  the  size f u n c t i o n  o f  the  
leaves  in t he  o r ig ina l  p o s i t i o n  a n d  af ter  the  t r ans l a t i ona l ,  
r o t a t i o n a l ,  a n d  sca l ing  t r a n s f o r m a t i o n s  were  p e r f o r m e d .  
As it c an  be  eas i ly  in fer red  f r o m  T a b l e  1, the  e u c l i d e a n  
i n v a r i a n c e  is a lways  well  sat isf ied a n d  i n d e p e n d e n t  o f  the  
t r ans l a t i ona l ,  r o t a t i o n a l ,  a n d  sca l ing  p a r a m e t e r s .  

5.2 "Ad hoc" invariance 

A r t i c u l a t e d  ob jec t s  m o d i f y  the i r  shape  a c c o r d i n g  to  the  
ch anges  o f  s o m e  in t e rna l  p a r a m e t e r .  F i g u r e  7a  a n d  
b s h o w s  the  s a m e  pa i r  o f  scissors  w i th  d i f ferent  open ings .  
F o r  r e c o g n i t i o n  pu rposes ,  it w o u l d  be  des i rab le  to  be  
able  to  r e p r e s e n t  the  shapes  of  a r t i c u l a t e d  ob jec t s  inde-  
p e n d e n t  o f  the i r  i n t e rna l  p a r a m e t e r s .  I n  the  p re sen t  
f r a m e w o r k ,  th is  p r o b l e m  can  be  s o l v e d  by  l o o k i n g  for an  
a p p r o p r i a t e  m e a s u r i n g  func t ion .  F o r  e x a m p l e ,  t he  
m e a s u r i n g  f u n c t i o n  Dp, t h a t  is, the  d i s t ance  f r o m  the  
p ivo t ,  is i n v a r i a n t  for  d i f ferent  o p e n i n g s  (actual ly ,  d u e  to  
se l f -occlus ions ,  Dp c a n  o n l y  be  a p p r o x i m a t e l y  invar ian t ) .  
T h e  size func t ions  i n d u c e d  by  Dp a n d  a s s o c i a t e d  wi th  the  
c o n t o u r s  o f  Fig .  7c a n d  d a re  s h o w n  in Fig.  7e a n d  f, 

Fig. 7a-f. Invariance ad hoc. a, b Two images of the same pair of 
scissors with different openings, e, d Outlines of the shapes of a and 
b obtained by means of the same procedures of Fig. 1. e, f Color-coded 
representations of the size functions of e and d induced by the measur- 
ing function Dp, distance of a point of the outline from the pivot. In 
both e and d, the pivot was located as the midpoint of the segment 
whose endpoints are the intersections of the principal inertial axis with 
the outline. The color coding is as in Fig. 2, and the diagrams are scaled 
between 0 and the maximum of D e over each outline 
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respectively. By using (2) the distance between the size 
functions of Fig. 7e and f is found to be equal to 0.15. This 
distance should be compared with the much larger 
distance (d = 0.7) between the size functions of Fig. 7a 
and b obtained by means of the measuring function 
distance from the center of mass (which is not invariant 
for different openings). 

naturally defined in three-dimensional space, whereas the 
relevance of size functions to dimension higher than one 
is still theoretical. However, with respect to the aspect 
graph representation, which is inherently continuous and 
hard to compute, size functions are better suited for 
digital images, because they can be defined formally in 
the discrete case. 

6 Related work 

In this section similarities and differences between the 
theory of the size functions and a few classical techniques 
of shape analysis are briefly discussed. 

Invariant pattern recognition studies the representa- 
tion and recognition of shapes independent of a number 
of transformations of the viewed shape, translation, rota- 
tion, and scale. Methods invariant for rotation (Hsh et al. 
1982), rotation and scale (Massone et al. 1985; Caelli and 
Nagendran 1987), and translation, rotation, and scale 
(Casasent and Psaltis 1976; Caelli and Liu 1988; Pintsov 
1989), for example, can be based on integral transforms 
[such as Fourier (Hsh et al. 1982), Radon (Pintsov 1989), 
and Fourier-Mellin transform (Casasent and Psaltis 
1976)], log-polar transform (Massone et al. 1985; Caelli 
and Nagendran 1987), or combination of templates as 
filters (Caelli and Liu 1988). Clearly, the emphasis on 
invariant representations is common to both these 
methods and the presented approach. The major differ- 
ences can probably be identified in three aspects. First, 
the invariance of the representation and the representa- 
tion itself through a size function are weaker. In general, 
for example, it is not possible to recover the original 
orientation of a shape in an image, nor the shape, from 
a size function. Second, a measuring function can be 
invariant to a desirable class of transformations (which 
does not necessarily coincide with or include translation, 
rotation, and scaling). Third, the nature of most of the 
invariant pattern recognition appears to be integral, 
while the extent to which a measuring function captures 
a local or global property of a shape can be varied to suit 
the problem at hand. 

The concept of measuring function or, more properly, 
some particular choices of measuring functions seem to 
establish a connection between the theory of size func- 
tions and methods based on Fourier descriptors (Zahn 
and Roskies 1972) and moment-invariant-based tech- 
niques (Dudani et al. 1977). In both cases the differences 
are greater than the similarities. In the former case, the 
representation of shape in terms of size functions is not to 
and does not aim at reconstructing the viewed shape (as 
in the case of Fourier descriptors). In the latter case, an 
appropriate choice of the measuring function can induce 
a representation of shape which is based on local proper- 
ties (and not globally, as in the case of moment-based 
techniques). 

The theory of aspect graphs (Koenderink and Van 
Doorn 1976) is probably the closer scheme to the theory 
of the size functions, in the sense that both the schemes 
describe quantitatively qualitative aspects of shape. An 
advantage of the concept of aspect graph is that it is 

7 Discussion 

Before summarizing the main results which have been 
obtained in the analysis of shape by means of size func- 
tions, let us briefly discuss a few open problems concern- 
ing the use of size functions for recognition. 

7.1 Object recognition 

The theory of size functions provides a framework for the 
study and representation of shape. However, within this 
framework many of the problems of object recognition 
have still to be solved. First and foremost, the theory 
does not provide any cut-and-dried method for the 
choice of the appropriate measuring functions. It is very 
likely that the recognition of objects which belong to very 
different classes requires a completely different set of 
measuring functions. At the moment the choice of the 
appropriate measuring functions is largely guided by 
empirical principles. 

Second, a single measuring function is not sufficient 
to characterize an object completely. Therefore, since 
more than one measuring function may be needed, the 
relationship between two different measuring functions 
of the same shape and ways to combine the information 
contained in the induced size functions has to be studied. 
A possible scheme for object recognition based on size 
functions, which uses leaves and signs of the sign lan- 
guage as study cases, has been described elsewhere (Verri 
et aI. 1993). 

Finally, probably the most important constraint on 
the choice of the measuring functions comes from the fact 
that in many images the shape to be analyzed is partially 
occluded. It is evident that even if size functions do not 
need to be computed on a closed and connected contour, 
size functions of a partially occluded contour and of the 
entire contour will, in general, be different. Intuitively, the 
measuring functions which are defined locally appear to 
be more suitable to deal with occlusions. Some prelimi- 
nary theoretical results indicate a few ways in which the 
problem of occlusions can be handled within the frame- 
work presented, but more theoretical and experimental 
work needs to be done in this direction. 

7.2 Conclusions 

In this paper the potential of the theory of size functions 
to visual perception has been assessed. An algorithm for 
the computation of size functions from real images has 
been implemented and used to illustrate a number of 
theoretical properties of the theory which are likely to be 
useful for object recognition. Based on the experimental 
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results presented it can be concluded that  the representa- 
t ion of  shape in terms of  size functions (1) can be tailored 
to suit the invariance of  the problem at hand  and (2) is 
stable against small qualitative and quanti tat ive changes 
of  the viewed shape. In addit ion a size function can be 
designed to highlight a part icular  aspect of  the shape of  
an object, an aspect which can be useful to build similar 
representations of  shape which are similar but  quanti ta-  
tively or  qualitatively different. A distance between size 
functions has been int roduced to measure the similarity 
between the representation of  two different shapes. The 
results obtained indicate that  size functions are likely to 
be very useful for the recognit ion of  objects which have 
similar but  not  identical shapes. 
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The size function I~(../r N w {-k cx3} can be 
defined as 

~ # (,glk(cp <<, X)/ "~ r if finite 

(x, y) ~ [ + ~ otherwise 

Let ~0 max and ~0 min be the max imum and min imum 
of the measur ing function qo over ,/ok and 
T~o(,.~ ) = {(x,y):~o mln ~ y ~< ~0 max, ~ ~0 min ~ X ~ y}. 
A basic theorem of the theory  of  size functions ensures 
that  the value of  the size function I~(~//) within the tri- 
angular  region T, (Jr  and for m a n y  well-behaved ~os is 
always finite and strictly positive. 

Let us now consider the point  (2,y) within the tri- 
angular  region T~,(J/). Let b, c />  0 and ff + ~ (6 )  
~< y - e,(6), where e~,(6) is the modulus  of  cont inui ty  of  

q~ at 6. A second theorem ensures that  if the size function 
computed  in the discrete at the points  [2  + e,(6), 
37 -- ~(6) , ]  and [(x - b - ~(6), 37 + c + e~(3)] takes 
on the same value n, then the size function of  the 
underlying cont inuous  curve equals n in the rectangle 
{(x,y): 2 -  b ~< x ~< 2,37~< y ~< 35 + c}. 

Appendix 

In this Appendix the main  concepts of  the theory  of  size 
functions are formally defined, and two basic theorems 
are stated without  proof. The proof  of  the theorems can 
be found in Frosini  (1990, 1993). 

Let us first establish some basic notat ion.  In what  
follows, a shape is an n-dimensional,  compact ,  boundary-  
less, piecewise C ~~ submanifold J r '  of  the euclidean space 
Em(n < m). The set of  ordered k-tuples p of  points p~ o f . / / ,  
i = 1 . . . .  k, is denoted by ~/t 'k (in the example of  Fig. 1, it 
was simply k = 1, and thus j / l  = ~1 = a). If  p and q are 
in j / k ,  let dk(p, q) = maxa ~ ~ <~ k {d(pl, ql)} be the distance 
between p and q, where d(p~,q~) is the usual euclidean 
distance between p~ and q~. The impor tan t  concept  of 
measuring function can now be defined. 

A measuring function is any cont inuous  function 

The not ion of  measuring functions leads to the key 
concept  of  metric homotopy .  

A metric H(q~ <<, y)-homotopy between p and q in ,//k 
is a cont inuous  function H:  F0, 1] ~ ,//k such that  

�9 H(0) = p, n ( 1 )  = q 

�9 mEn( t ) ]  ~< y v t  ~ E0,1] 

We write p -~ ~,_< r q, if such a metric h o m o t o p y  exists, or  if 
p = q. N o w  let ~r ~< X) be the set of  points p in ,//k with 
q~(p) ~< x (e.g., the set of points on the continuous lines of  
Fig. ld). We have the following definition of  size function. 
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