
Biol. Cybern. 61, 361-370 (1989) Biological
Cybernetics
�9 Springer-Verlag 1989

Bayesian Neural Networks

I. Kononenko
Faculty of Electrical and Computer Engineering, Trzaska 25, YU-61000 Ljubljana, Yugoslavia

Abstract. A neural network that uses the basic Hebbian
learning rule and the Bayesian combination function is
defined. Analogously to Hopfield's neural network, the
convergence for the Bayesian neural network that
asynchronously updates its neurons' states is proved.
The performance of the Bayesian neural network in
four medical domains is compared with various classi-
fication methods. The Bayesian neural network uses
more sophisticated combination function than
Hopfield's neural network and uses more economically
the available information. The "naive" Bayesian clas-
sifter typically outperforms the basic Bayesian neural
network since iterations in network make too many
mistakes. By restricting the number of iterations and
increasing the number of fixed points the network
performs better than the naive Bayesian classifier. The
Bayesian neural network is designed to learn very
quickly and incrementally.

1 Introduction

There is a variety of designs of neural networks. Neural
networks can be classified according to various crite-
ria, e.g. network topology, the aim of its usage, the
learning rule and the combination function that com-
bines the inputs of a single neuron into its output.

Topologically a network can be without layers (e. g.
Hop field and Tank 1985), with two layers (e. g. Minsky
and Papert 1969; Kosko 1988), multilayered (e.g.
Rumelhart et al. 1986a) and of some special topology
(e.g. Kohonen 1984; Rumelhart and Zipser 1986). A
network can be used as an auto-associative memory
(e.g. Kohonen 1984; McEliece et al. 1987), as a hetero-
associative memory (e.g. Kosko 1988), temporal as-
sociative memory (e.g. Kosko 1988), as a classifier (e.g.
Rumelhart et al. 1986a), for clustering (e.g. Rumelhart
and Zipser 1986) or for some special purpose (e.g.

Hopfield and Tank 1985; Kohonen 1984). Most com-
mon learning rules are Hebbian and generalized
Hebbian learning rule (Rumelhart et al. 1986), delta
rule (Minsky and Papert 1969), generalized delta rule
(Rumelhart et al. 1986a) and competitive learning
(Rumelhart and Zipser 1986). A combination function
for calculating neuron's output from its input can be
deterministic or stochastic (e.g. Rumelhart et al. 1986).
Most common combination functions include variants
of weighted sum and sigma-pi functions (Rumelhart et
al. 1986b).

This paper is primarily concerned with the combina-
tion function, while using specific topology and learn-
ing rule. The same techniques described in this paper
can be used also for other topologies. The application
of these techniques is not fixed, however, for de-
monstration purposes a neural network was designed
for classification. It is shown that a neural network can
naturally implement "naive" Bayesian classifier. In
next section the Bayesian neural network is defined
and the convergence for a network that asynchron-
ously updates its states is proven. In Sect. 3 experi-
mental results in four medical domains are described.
The performance of the Bayesiarl network is improved
by increasing the number of fixed points. The results
are compared with some other classification methods
and with the performance of human experts. Finally, in
Sect. 4 the results are commented and some conclu-
sions are given.

2 Definition of Bayesian Neural Network

2.1 Topology and Learning Rule

The most general topology (without layers) is chosen
where every neuron in a network is connected with
every other neuron via bidirectional connections,
called synapses. In addition to the memory cell that
stores the weight for each synapse two additional

362

memory cells (counters) for each neuron are intro-
duced whose function will be explained later. A state of
a neuron corresponds to its output. The neuron states
are restricted to two possible values: 1 (active) and 0
(inactive). Two different topologies will be used: one in
which each neuron is connected to itself via a feedback
connection and one in which those connections are
omitted.

A network works in two distinct phases: learning
and classification. During the learning phase the input
patterns (learning instances) are presented to the
network and weights and counters of the network are
modified. During the classification the memory of the
network is fixed. Every neuron receives an input and
produces an output in the following way. Every neuron
receives an initial state from an input pattern by
adopting the corresponding component value of the
vector. The neurons then asynchronously and itera-
tively change their states according to the combination
function. The network terminates with the computa-
tion when no more neurons can change their states,
i.e. when the fixed point is reached. When the neural
network finishes with computation the component
values of the output pattern are extracted from the
corresponding neurons' states.

At the beginning of learning all weights are set to 0.
The learning rule used is the basic Hebbian rule
(Rumelhart et al. 1986b) which states that the weight of
a connection between two neurons is increased (in our
case by 1) if both neurons are active. Therefore the
weight of a given synapse is proportional to the
frequency with which the two components of the
learning patterns (that correspond to two neurons
connected via the given synapse) are both 1.

At the same time, learning takes place also in two
additional memory cells of each neuron. One of the
cells is increased each time an input pattern (a learning
instance) is presented to the network. Therefore, this
cell in fact represents a counter of learning instances.
The second memory cell in each neuron is increased
whenever a neuron is active. Therefore, its value is
proportional to the frequency with which the corre-
sponding component in learning instances equals 1.

Before proceeding with the definition of a design of
the Bayesian neural network a "naive" Bayesian
classifier is developed, as used also by Bratko and
Kononenko (1987).

2.2 "Naive" Bayesian Classifier

Let the objects from a given domain be described with
a fixed number of attributes (features, descriptors).
Each attribute has a fixed number of possible values.
Each object from a given domain is defined with a set of
attributes' values, one value for each attribute. Let V~

be a Boolean variable which is true (has value 1) if a
given object has j-th value of i-th attribute and false
(has value 0) otherwise. If the value of i-th attribute is
unknown then for given i all V u are 0. Note that for
each attribute i at most one V~j has value 1.

Let S be a conjunction of conditions V u = 1 for all
V u that have value 1 for a given pattern to be classified.
Furthermore, for brevity, P(V~j) will be used instead of
P(V u = 1) for prior probability that V u has value 1. If the
value for m-th attribute is not given we can compute for
each value n of that attribute its probability by
computing the probability that V~ = 1 with the follow-
ing Bayesian formula:

P(Vm.IS) = P(Vm.)P(SI Vm.)/P(S),

where P(X) is prior probability of X being true and
P(XI Y) is the probability that X is true given Y If we
assume that attributes are independent (because of this
assumption a classifier is called "naive") we get

P(S)= 1-] P(VO),
Vii = 1

P(SIV,,)-- H PtVulV,,,).
V i j = 1

Since

P(Vi/Wm.)= P(V u & V,..)/P(Vr..)

we get

P(V~ls)

--- P(V,n.) l-[[P(Vu & V.,.)/(P(Vo)P(Vm.))]" (1)
V U = 1
a n �9 i j

The independence assumption is needed to obtain (1)
which can be effectively computed by approximating
the probabilities on the right hand side with relative
frequencies obtained from the set of learning patterns.

2.3 Combination Function

We now continue with the definition of a design of a
Bayesian neural network from Sect. 2.1. We assume
that each learning instance (input vector) represents an
object in a given domain. An object is described with
values of a fixed set of attributes. One attribute with n
possible values is represented with n neurons (n vector
components). Therefore, for each value Vu, as defined
in Sect. 2.2, we have one neuron. If an object has j-th
value for i-th attribute then the neuron is set to 1,
otherwise it is set to 0. If the value for i-th attribute is
not known then for given i all V u are set to 0.

If we assume that prior probabilities can be
approximated with relative frequencies from a set of
learning instances then the weight of a synapse con-
necting two neurons which represent values Vm, and Vij
corresponds to P(V~,& Vu) times the number of

363

learning examples. The two counters in a neuron
representing value Vm, correspond to the number of
learning instances and P(Vm,) times the number of
learning instances, respectively.

It remains to define a combination function with
which a single neuron combines its input into output
(which also represents its state). The activation level of a
neuron representing Vm, given a state of a network S is

A(V,.,,IS)= P(V,,,.IS),

where P(V,,,.IS) is calculated from (1). Note that if (1) is
used on real data (where attributes need not be
independent) then the value greater than 1 can be
obtained. Activation level is not a probability but is
proportional to the probability. The combination
function for a neuron representing value Vm, is

1 if A(V,..IS)>P(V,..)

V~,.= Vm. if A(V,..IS)=P(V.,.) (2)

0 if A(Vm.IS)< e(v..),

where V,~, represents the new neuron's state. According
to this combination function, the new state is equal 1 if
the activation level is greater than prior probability
and 0 if it is less than prior probability. If both values
are the same then the neuron's state remains
unchanged.

The above discussion is valid for the topology with
no feedback connections. For the topology where each
neuron is connected to itself we generalize (1) by
omitting the condition mn 4: ij:

A(V.,.IS)

=P(Vm.) 1-] [P(V~j&Vm.)/(P(V~i)P(Vm.))]. (3)
V i i = 1

We used the notation A instead of P because (3)
mathematically does not represent the probability. If
V,.. is given to be 1 then P(V,,,.IS) = 1. Anyway, (3) is the
natural generalization of (1) if a neuron makes no
distinction among the connections to other neurons
and the connection to itself. If Vmk is given to be 1 then
for n = k we get from (3):

A(V,..[S)= 1-I [P(Vq&V,..)/(P(V~j)P(V,..))J
V i i = 1
m . 4: i j

and for all n # k we get:

A(V,..IS)--O

since P(V,.. & V,.k) equals 0 for n # k and equals P(V,..)
if n = k. Furthermore, if the value of m-th attribute is
unknown then (1) and (3) are identical.

Note that all information necessary to compute V~,.
is locally available to each neuron. Each neuron stores
also the number of all learning instances which is

needed for approximation of probabilities with relative
frequencies.

When a network finishes with learning the weights
are fixed and the network can be used to process new,
unseen objects, for which some values of attributes are
missing or are wrong. All neurons will work in parallel
by iteratively changing their states according to states
of other neurons. Missing values will be approximated
and the wrong values will be possibly corrected. The
network finishes its work when there are no more
changes of neuron states. In the next section we prove
that networks with both kinds of topology, defined in
Sect. 2.1, will terminate their work in a finite time
regardless of input vector and current state of weights
in a network if neurons work asynchronously.

Note that in the beginning only one Vii for given
attribute i may be active (equal 1) at the same time and
all the others must be 0. The other possibility is that all
V~j for given i are 0 (the value of i-th attribute is
unknown). When the neurons operate asynchronously
the only possible change is that a single V o changes
from 1 to 0 or, in the latter case, that a single V~ changes
from 0 to 1. If, on the other hand, the neurons operate
synchronously more than one V~i for given i may
change from 0 to 1. But in the next iteration all V o will
be set to 0 since they will inhibit each other.

2.4 Convergence Proof

The proof of the convergence is analogous to those of
Hopfield (McEliece et al. 1987) and Kosko (1988) for
networks which use the symmetric matrix obtained as
the sum of outer products of learning vectors as their
memory. Hopfield and Kosko define a function which
Hopfield calls the energy function. They show that the
energy monotonously decreases if the network asyn-
chronousty updates its neurons' states. Since the func-
tion has a lower bound the process must terminate in
a finite time. Hopfield's energy function (Kosko 1988)
is given by inner product

E = - 1 / 2 X M X r ,

where X is a vector describing a current state of a
network and M is a symmetric matrix obtained as the
sum of outer products of learning vectors and repre-
sents the network's memory. Note that here the states of
neurons can be I or - 1. The product M X r is a vector
which in fact represents activation levels of neurons
given a current state of a network. The function
therefore measures the dissimilarity between the
neurons state and activation levels. The higher is the
activation level for a neuron with state equal 1 (the
lower is the activation level for a neuron with state
equal 0) the greater is similarity and, analogously, the
higher is the activation level for a neuron with state

364

equal 0 (the lower for a neuron with state equal 1) the
greater is dissimilarity.

Kosko (1988) defines a similar function for bidirec-
tional associative memories:

E= - - B M r A T = - A M B T,

where M is the memory matrix obtained as the sum of
outer products among pairs of learning vectors and
(A, B) is a pair of vectors describing the current state of
a network. The vector M r A r represents in fact the
activation levels of neurons in layer "B" given a current
state of layer "A". Similarly holds for vector MB T for
neurons in layer "A". Therefore if we omit the minus
sign we again obtain the measure of similarity.

We now define a measure of similarity between a
current state of a Bayesian neural network and activa-
tion levels of neurons given a current state:

Sim(S)= 1-I [A(VoIS)/P(Vo)],
Vij = 1

where S again represents a current state of a network.
Obviously, this function has an upper bound since it
has a finite number of possible values if the prior
probabilities are fixed.

Note that if A(VijIS)>P(Vij) and V/j=l then the
similarity is in fact greater. The new value of V~j in that
case will tend to stay 1, and vice versa. Values V~ that
have current value 0 are ignored by the similarity
function. If the value of attribute i is known, e.g. V~ k = 1,
then all V~j are 0 forj # k and new values Vi~ will tend to
stay 0. If, on the other hand, the value of attribute i is
unknown (all V~j are 0) then attribute i is currently
ignored by the similarity measure.

Now we prove that if only one neuron changes its
state at a time (network works asynchronously) then
the similarity will increase. In the previous section it
was already stated that because of asynchronicity at
most one V o for given i is equal 1 at the same time. First
we prove this for the topology where the connection of
a neuron to itself is forbidden. Therefore, A(VijIS) is
defined with (1).

As only one neuron is allowed to change at a time it
suffices to consider one change alone. The change can
be of two types:

a) Old Vm, = I and A(V,,,[S) < P(V,,,) and new V,~, is
V'.=0:

Let S' describe a new state after the change. Then we
have

Sim(S')/Sim(S)

=P(V,..)/A(Vm.[S)

= P (V m .) / A (V m . I S)

lq
V~j = 1

H

[A(V~jIS')/A(V~j[S)]

[P(VOP(Vm,)/P(V~ j & Vm.)]

= [P(Vm.)/A(Vm.[S)] 2 > 1.

b) Old Vm,=O and for all j : Vmj=O and A(Vm.IS)
>P(Vm,) and new Vm, is V~,,= 1:

Sim(S')/Sim(S)

=A(Vm,,IS')/P(Vm,,)]-I [A(V~jIS')/A(V~j[S)]
V ~ = I
i j Smn

=A(V,..IS')/P(Vm.) I-I [P(Vo&Vmn)/(P(Vij)P(Vmn))]

and since A(Vm, IS')=A(Vm,IS) we get

= [A(Vmn]S)/P(Vmn)] z > 1.

The proof for the topology where each neuron is
connected to itself is analogous to the above proof and
only results are given. In this case A(Vi~[S) is defined
with (3). We have the same two types of changes. For
type a) we obtain:

Sim(S')/Sim(S) = P(Vm.)/A(Vm.[S) 2 > 1,

and for type b) we have:

Sim(S')/Sim(S) = A(V~.IS)2/p(Vm,) 3 > 1.

The results also indicate the faster convergence for (3).

3 Experiments in Four Medical Domains

To test the performance of the Bayesian neural net-
work we used it as a classifier in four medical domains.
In all domains the problem is similar: given the
description of a patient in terms of attributes' values
the system must return one of possible diagnoses. For
each domain we have a fixed set of attributes and a
fixed number of possible diagnoses. A diagnosis is in
our case treated as an additional attribute with values
corresponding to separate diagnoses.

Table 1 shows the characteristics of four medical
domains. The number of neurons is the sum of values
of all attributes plus the number of diagnoses. The
percentage of cases belonging to majority class in the
domain is also added in the table. We obtained the data
from The University Clinical Center in Ljubljana.
Data include descriptions of a certain number of
patients with known diagnoses.

3.1 Experiments with Basic Bayesian Neural Network

One run was performed by randomly selecting 70% of
instances for learning and 30% for testing. Learning
instances were used to train the network by appropri-
ately computing synapses' weights and neurons' coun-
ters. When learning was completed the network's
memory was fixed. The network was then tested by
running it asynchronously (in every iteration only one
neuron was allowed to change its state) on every testing
instance with corresponding diagnosis deleted (all the

Table 1. Characteristics of four medical domains

Domain name # attrib. # class. ~e cases # neur. maj. class

Primary tumor 17 22 339 59 25%
Breast cancer 10 2 288 29 80~
Thyroid diseases 15 4 884 141 56%
Rheumatism 32 6 355 298 66%

365

neurons representing the diagnosis were set to 0).
When the network converged to a fixed point the
answer was obtained by seeking for an active neuron
among neurons standing for diagnoses. If none of them
was active we took as an answer diagnosis j that
maximized A(V~ilS), where S is a final state of the
network and i is the attribute representing the
diagnosis.

In each experiment a run was repeated 10 times and
an average was taken. The following parameters were
measured:
- c la s s i f i ca t ion accuracy: percentage of correctly
classified testing instances
- information content per answer: the average amount
of information contained in one system's answer
(Kononenko and Bratko 1989). This measure avoids
the problems with classification accuracy when one
class is much more probable then the others. In Table 1
one can see that in all four medical domains this is
indeed the case. The definition of the information
content of an answer is provided in the Appendix.
- average number o f iterations: average number of
changes of neurons' states necessary to reach a fixed
point.

We measured also the average number of changes
of states from 0 to 1. In all experiments this number was
approximately 1/3 to 1/2 of the average number of
iterations.

Two groups of experiments were performed in each
medical domain. First, for the neural network to-
pology where connections of each neuron to itself are
omitted (1), and the other, for the topology with
feedback connections (3). In each group we performed
three different experiments with respect to the criterion
for selecting the neuron that can change its state. Recall
that only one neuron is allowed to change its state at a
time although there may be more neurons that satisfy
the criterion for changing the state (i.e. V', ~ Vm, where
V~ is obtained from (2)).

In the first experiment a neuron was selected
randomly. In the second experiment a neuron was also
selected randomly but with the probability propor-
tional to its calculated A(F~IS), for those who should
change from 0 to 1, and proport ional to 1 - A(VolS) for
those who were to change their states from 1 to 0. In the
third and last experiment, the neuron which maximized

Table 2. Results of experiments in the "primary tumor" domain

Equation Criter. Accuracy Inf. cont. ~ iterat.

(1) Rand. 28.7% 0.74 bits 16.2
(1) Prob. 36.2% 1.10 bits 13.9
(1) Max. 37.2% 1.15 bits 11.9
(3) Rand. 31.5% 0.90 bits 9.8
(3) Prob. 39.5% 1.19 bits 9.4
(3) Max. 41.0% 1.27 bits 8.7

A(VijlS) was selected if the change was from 0 to 1, and
1 -A(VolS) if the change was from i to 0. Note that the
first two criteria need only locally available informa-
tion and that the last criterion needs global informa-
tion and therefore cannot be naturally implemented
in a neural network.

Overall there were six experiments (with ten runs)
each for every medical domain. Results for the primary
tumor domain are presented in Table 2. For other
domains the percentages are absolutely different but
relatively have same trends for different experiments as
in the primary tumor domain. In all medical domains
the topology where each neuron is connected to itself
performed better and required a smaller number of
iterations. The topology with feedback connections
tries to preserve the current state of the network while
the topology without feedback connections tries to
change it. We will explain why the former strategy is
better in the next section.

As expected, the random selection of a neuron that
was allowed to change its state was the worst with
respect to classification accuracy and the number of
necessary iterations. The selection of the neuron with
the maximal difference between the calculated and the
prior probability outperformed the other two criteria,
both with respect to classification accuracy, and the
number of iterations.

In Table 3 the performance of the Bayesian neural
network with feedback connections and the selection
criterion that maximizes the difference between the
calculated and the prior probability is compared to the
performance of the naive Bayesian classifier. Note that
the naive Bayesian classifier is equivalent to the
Bayesian neural network with zero iterations.

366

Table 3. Comparison of performances of the Bayesian neural network and the naive Bayesian classifier in four medical domains

Domain Bayesian neural network "Naive" Bayes

Accuracy Inf. cont. #iterat. Accuracy Inf. cont.

Primary tumor 41.0% 1.27 bits 8.7 47.1% 1.42 bits
Breast cancer 72.5% 0.04 bits 3.1 77.6% 0.15 bits
Thyroid 61.9% 0.63 bits 7.2 67.8% 0.73 bits
Rheumatism 47.3% 0.18 bits 21.7 50.5% 0.21 bits

3.2 Increasing the Memory Capacity
of the Neural Network

The Bayesian neural network performed worse than
the "naive" Bayesian classifier. The independence
assumption affected more the performance of the
network since the network works multidirectionally
and the "naive" Bayesian classifier works only in one
direction (from attributes to classes). The assumption
that attributes are independent is a smaller mistake
than the same assumption in parallel with the assump-
tion for each attribute that other attributes (including
an attribute representing classes) are independent.

It seems that iterations in the neural network, while
trying to replace missing data and correct wrong data,
are making too many mistakes. When the equilibrium
is reached the original pattern is too corrupted so that
the calculated probabilities of diagnoses are also
affected.

The problem can be stated also in terms of the
memory capacity of the Bayesian neural network, i.e.
the number of different patterns that can be stored by
the network. For classification purposes, the ideal
network would have the capacity equal to the number
of different patterns from a given domain. For example
in the primary tumor diagnostic problem described
with 17 attributes (each with 2-4 possible different
values) there are approximately 4.4 millions of different
descriptions of patients assuming that each description
corresponds to exactly one diagnosis (which is not
always the case).

In this paper the momory capacity of the Bayesian
neural network is not studied in detail. Obviously the
capacity is finite and far below the desired. There have
been various studies of the capacity of various types of
neural networks (Guez et al. 1988; McEliece et al. 1987;
Wong 1988). The usual way to increase the memory
capacity of the neural network is the development of
special learning rules. However, the memory capacity
is strongly related to the number of fixed points
obtained by learning. By increasing the number of
fixed points we can expect that also the memory
capacity will increase.

An obvious way to increase the number of fixed
points is to strengthen the condition for changing the

neuron's state. In one extreme the condition is never
satisfied and all the input patterns become fixed points.
It was already stated that such Bayesian neural
network without any iterations, used as a classifier, is
equivalent to the naive Bayesian classifier. However,
iterations in the neural network can be useful to
approximate missing data and correct wrong data.

The other extreme is the combination function
defined with (2) which suffices that the network will
converge into a fixed point in a finite time. This
function was used in our experiments so far. In the next
experiment the following combination function was
used instead of (2):

l
1 if A(V,,.IS)>I

Vm.= V,. if I>A(Vm.IS)>O (4)

0 if A(Vm.IS)=O.

Note again that A(Vm, IS) can also be greater than 1
because of the independence assumption used to
calculate it. This combination function strengthens the
conditions from (2), therefore the convergence is
guaranteed. However, the conditions are very strong
and it can be expected that the number of iterations
necessary to reach a fixed point will significantly
decrease (the convergence will be faster). The neurons
will change their states only if there will be a lot of
evidence for the change. The results given in Table 4
confirm the above discussion and show that the
Bayesian neural network using the combination func-
tion defined with (4) performs better than the naive
Bayesian classifier.

It is interesting that with the introduction of the
combination function (4) all types of Bayesian neural
networks perform almost identically. There is no dif-
ference between the performance of both topologies
and, as well, the performance is independent to the
criterion for selecting the neuron to change its state (as
almost in all iterations only one neuron satisfied the
condition to change its state).

The introduction of combination function (4) sig-
nificantly increased the number of fixed points. Some
of them correspond to training instances and the
others cover the problem space not covered by the

367

Table 4. Performance of the Bayesian neural network using combination function (4) compared to the performance of the naive Bayesian
classifier

Domain Bayesian neural network "Naive" Bayes

Accuracy Inf. cont. :~ iterat. Accuracy Inf. cont.

Primary tumor 47.9% 1.46 bits 0.6 47.1% 1.42 bits
Breast cancer 78.1% 0.15 bits 0.4 77.6% 0.15 bits
Thyroid 68.2% 0.74 bits 1.7 67.8% 0.73 bits
Rheumatism 59.7% 0.42 bits 10.3 50.5% 0.21 bits

Table 5. Performance of the Bayesian neural network using combination functions (2) and (4) on training instances

Domain Combination function (2) Combination function (4)

Acc. Inf. cont. #r iterat. Acc. Inf. cont. # iterat.

Primary tumor 55.5% 1.91 bits 8.3 60.5% 2.06 bits 0.6
Breast cancer 72.7% 0.11 bits 2.8 79.7% 0.19 bits 0.4
Thyroid 71.9% 0.89 bits 5.8 75.2% 0.95 bits 0.6
Rheumatism 82.0% 1.32 bits 8.6 84.8% 1.38 bits 3.9

Table 6. The comparison of performance for different classifiers in the"primary tumor" domain. (A) indicates the implernentation of the
naive Bayesian classifier in the Assistant learning system

Classifier Primary tumor Breast cancer Thyroid Rheumatism

Acc. Inf. cont. Acc. Inf. cont. Acc. Inf. cont. Acc. Inf. cont.

Bayesian n.n. 48%
Naive Bayes 47%
Naive Bayes (A) 49%
Assistant 44%
Specialists 42%
Nonspecial. 32%

1.46 bits 78% 0.15 bits 68% 0.74 bits 60% 0.42 bits
1.42 bits 78% 0.15 bits 68% 0.73 bits 50% 0.21 bits
1.59 bits 79% 0.06 bits 68% 0.70 bits 57% 0.28 bits
1.38 bits 77% 0.07 bits 73% 0.87 bits 61% 0.46 bits
1.22 bits 64% 0.05 bits 64% 0.59 bits 56% 0.26 bits
0.95 bits 64% 0.03 bits

t raining instances. N o t all the training instances are
s tored as can be seen f rom Table 5. In fact, domains
used in our experiments are incomplete in the sense that
with a given set of at tr ibutes the classification can not
be exact as attr ibutes carry too few information.
Therefore the sensible general izat ion will no t exactly
classify all the t raining instances.

3.3 Comparison with Other Classification Methods

The above results are compared in Table 6 with:

(a) Naive Bayesian classifier as described in
Sect. 2.2. I t was already stated that the naive Bayesian
classifier is equivalent to the Bayesian neural ne twork
with zero i terations (probabilities of classes are cal-
culated wi thout any change in neurons ' states). No te
also that (3) in that case is equivalent to (1) because the
class is not given in advance. In Table 6 the results of

the naive Bayesian classifier implemented in the Assist-
ant learning p rog ram (Bratko and K o n o n e n k o 1987)
are added [marked with (A)]. This implementa t ion
includes some modificat ions with respect to the relia-
bility of the approx ima t ion o f probabili t ies with rela-
tive frequencies.

(b) Hopfield's neural network tha t uses gen-
eralized Hebb ian learning rule which states tha t the
connect ion between two neurons is increased if their
states are identical. The m e m o r y is therefore the sum
of outer p roduc t s of t raining vectors. States of
neurons can be - 1 (inactive) and 1 (active). U n k n o w n
value for an at t r ibute in tha t case cor responds to 0
states of all cor responding neurons. The combina t ion
funct ion is the usual weighted sum:

368

where

1 if X > 0

f (X) = previous neuron's state if X = 0

- 1 if X < 0 .

We tested the same two topologies as for the Bayesian
neural network. The topology where connections of a
neuron to itself are omitted uses the memory matrix
with 0 diagonal and the other topology uses matrix
with all diagonal elements equal to the number of
learning vectors. We used only the third criterion for
the selection of a neuron which is allowed to change it~
state, the one with maximal absolute weighted sum.

In all our experiments in first three medical
domains the Hopfield's neural network converged to a
fixed point with the majority class as an answer. In the
"rheumatism" domain approximately one half of test-
ing instances were classified into the majority class and
one half in the class with relative frequency 0.08.

We tested also Hopfield's neural network without
any iterations (as an analogue to "naive" Bayesian
classifier). In that case the weighted sum is calculated
for each class from the initial state of a network and the
returned class is the one with the maximal sum. Except
for 3% of testing instances in the primary tumor
domain which were classified into different classes this
method performed in all experiments in all domains
identically as Hopfield's neural network with
iterations.

Thus in all domains Hopfield's neural network
achieved much worse results than the Bayesian neural
network. This could be expected since the coding of
one pattern was designed for the Bayesian neural
network. The performance of Hopfield's neural net-
work can be improved by using a different encoding.
Although such comparison is not appropriate, we
encoded attributes' values using binary numbers (one
neuron corresponding to one digit of the binary
number). This encoding decreased the number of
neurons in the network. Results were better but still
much worse than that of the Bayesian neural network.
Results of Hopfield's neural network (with and without
iterations) are omitted from tables as the comparison is
not appropriate.

(c) Inductive learning system Assistant (Bratko
and Kononenko 1987; Cestnik et al. 1987) for con-
structing binary decision trees. In a decision tree nodes
correspond to attributes, branches to values of at-
tributes and leaves to classes. The following is the
learning algorithm:

1. Select the most informative attribute and cluster
its values into two subsets.

2. Split the training instances according to values
of that attribute into two subsets.

3. For each subset of training instances do if
stopping condition is satisfied then generate a leaf else
recursively generate a subtree.

Assistant copes also with incomplete and noisy data.
Decision trees are comprehensible to human experts
while the decisions of Bayesian classifier cannot be
directly interpreted. The attempts to interpret
Bayesian classifier's decisions are described in (Kono-
nenko 1989; Michie 1989). On the other hand learning
of decision trees is much slower than learning the
relative frequencies for Bayesian classifier.

(d) Human experts: physician specialists (in the
case of primary tumor and breast cancer also nonspe-
cialists) were tested on a set of randomly selected
patients. The results presented in Table 6 are the
averages of 4 physicians in each domain.

The experiments with classifiers (a), (b), and (c) were
done in the same manner as with the Bayesian neural
network. Ten runs were performed for each experiment
and averages were calculated. For each experiment a
subset of 70% of instances was randomly selected for
training while the rest of the instances was used for
testing.

4 Conclusions

The Bayesian neural network uses the available in-
formation more economically than Hopfield's neural
network. Hopfield's neural network uses memory
elements which are proportional to probabilities of
two neurons being in the same state:

P(X i = X j).

Bayesian neural network uses probabilities that both
neurons are active and probabilities that one is active:

P(X i & X j), P(Xi) , P(X j)

which are more informative. Namely, the former
probability can be derived from the latter ones, while
the opposite is not the case:

P(Xi = X j) = P(Xi & X j)-~ P(Xi t% X j)

= P(X, & X j) + r l - P(X,)- P(Xj)
+ P(X i & X j)].

The combination function used by Hopfield's neural
network could also be modified in order to increase the
number of fixed points as was done for the Bayesian
neural network in the previous section. However, there
are no obvious lower and upper bounds as for the
Bayesian neural network (namely 0 and 1). Anyway,
Hopfield's neural network without iterations as an
analogue to the naive Bayesian classifier performed

too badly that any significant improvement could be
expected.

Assistant and the naive Bayesian classifier have
similar performance although they use different in-
formation. Bayesian classifier takes into account all
attributes but assumes their independence. Assistant
uses only attributes that appear in a decision tree
(discards useful information) but takes into account
the dependencies between attributes that appear in a
decision tree. Future work should concentrate on the
learning algorithms for overcoming the independence
assumption which usually limits the neural networks
computation to linearly separable functions (Williams
1986).

The generalization effect in the Assistant learning
scheme is the generation of general rules that cover a
great part of the problem space. The same effect was in
the Bayesian neural network with combination func-
tion (2). There were few fixed points covering great
parts of the problem space. Because of the great
number of iterations necessary to reach a fixed point
the network can easily make a mistake and terminate
in wrong fixed point. With the introduction of combina-
tion function (4) the generalization effect is the
generation of many fixed points specialized for one or
few instances from the problem space. Neighbor fixed
points are similar and the transition from one fixed
point to another is less dangerous with respect to the
final decision.

The performances of Assistant, "naive" Bayesian
classifier and Bayesian neural network with strength-
ened changing condition are comparable to the perfor-
mance of human experts. This does not mean that
physicians can be replaced by computers. When diag-
nosing a patient a physician takes into account also
other sources of information which cannot be used by a
computer. However, the comparison with human
experts shows that learning systems almost optimally
use the available information. Thus the systems can be
used as efficient tools for improving and verifying the
diagnostic process. In (Kononenko 1989) it is shown
how a naive Bayesian classifier and the Bayesian
neural network can "explain" their decisions.

It is interesting to see how noise in an input pattern
affects the performance of the network. Figure 1
compares the performance of Bayesian neural network
and the naive Bayesian classifier on noisy input
patterns. Experiments in the "primary tumor" domain
were repeated by corrupting the testing instances. To a
certain percent of randomly selected attributes ran-
dom values were assigned. The results are again
averages of ten runs. Here the combination function
defined with (4) was used. Only results for typology
with connections of neurons to themselves and with
the selection of the best neuron for changing its state

369

a c c u r a c y [%]

45 ~ - - - 'naive' Bayesian classifier

~ - -- -- Bayesian neural network

40 -

;2
25

20

15

10

5

9 I p 11 noise [Z]

0 10 20 30

Fig, 1. Comparison of classification accuracy among the "naive"
Bayesian classifier and the Bayesian neural network when testing
instances are noisy in the "primary tumor" domain

are given. The results for the other topology and other
selection criteria are almost identical.

The accuracy and the information content of
answers for both systems decreased with the increased
amount of noise in testing instances. All the time the
accuracy of the network was slightly better than that of
the naive Bayesian classifier. The similar result was
obtained for information content. As expected, the
number of necessary iterations increases with noise
(from 0.6 with zero noise to 1.0 iterations with 30% of
noise).

The Bayesian neural network is designed to work
multidirectionally, i.e. it makes no distinction between
input and output. Therefore it can be used also as a
multidirectional classifier and as an associative mem-
ory as well. It learns very quickly (in our simulations
typically a few seconds and not more than 30 s on an
IBM PC-AT) and incrementally.

Acknowledgements. Dr. Sergej Hojker, dr. Vlado Pirnat and dr.
Matjaz Zwitter from University Clinical Center in Ljubljana
provided the medical data and tested the physicians' perfor-
mance. I would like to thank Andrej Dobnikar, Sasa Dzuroski,
and Franci Solina for their comments on the manuscript. I thank
also the anonymous reviewer for constructive comments and
suggestions.

Appendix:
Definition of the Information Content of an Answer

A fair evaluation criterion has to exclude the influence of the prior
probabilities of classes which may enable a completely unin-
formed classifer to trivially achieve high classification accuracy.
The measure of information content of the classifier's answer
defined below excludes the influence of prior probabilities, deals
with various types of imperfect or probabilistic answers and can
be used also for comparing the performance in different domains.
Its interpretation is natural.

Definition. Let the correct class of an instance be C, P(C) be prior
probability of class C and P'(C) probability of class C returned by
a classifier. The information content I of classifier's answer is

370

defined as follows (note that in our experiments only exact
classification is considered, i.e. P'(C) is always either i or 0):

a) If P'(C) > P(C) then

I = - log 2 P(C) + log 2 P'(C) I-bits]

i.e., the amount of obtained information is the entire amount of
information necessary to correctly classify an instance into class
C minus the remainder of information necessary to correctly
classify that instance.

b) If P'(C)= P(C) then I---0 [bits]

i.e., the system didn't change the prior probability of the correct
class therefore we didn't obtain any information.

c) If P'(C) < P(C) then

I = - (- logz(1 - P(C)) + log2 (1 - P'(C))) [bits]

i.e., the amount of information returned by the system is the
entire amount of information necessary to decide that an instance
doesn't belong to class C minus the remainder of information
necessary to make that decision. As this information is in fact
wrong the information content of the system's answer in this case
is negative.

References

Bratko I, Kononenko I (1987) Learning diagnostic rules from
incomplete and noisy data. In: Phelps B (ed) Interactions in
artificial intelligence and statistical methods. Technical
Press, Hampshire

Cestnik B, Kononenko I, Bratko I (1987) Assistant 86: a
knowledge elicitation tool for sophisticated users. In: Bratko
I, Lavrac N (eds) Progress in machine learning. Sigma Press,
Wilmslow

Guez A, Protopopsecu V, Barhen J (1988) On the stability,
storage capacity and design of nonlinear continuous neural
networks. IEEE Trans SMC-18:80-87

Hopfield J J, Tank DW (1985) "Neural" computation of decisions
in optimization problems. Biol Cybern 52:141-152

Kohonen T (1984) Self-organization and associative memory.
Springer, Berlin Heidelberg New York

Kononenko I (1989) Interpretation of neural networks decisions.
Proceedings oflASTED International Conference on Expert
Systems, Zurich, Switzerland, June 26-28

Kononcnko I, Bratko I (1989) Informativity based evaluation
criterion for classifier's performance. Mach Learn J (to
appear)

Kosko B (1988) Bidirectional associative memories. IEEE Trans
SMC- 18:49-50

McEliece RJ, Posner EC, Rodemich ER, Venkatesh SS (1987)
The capacity of the Hopfield associative memory. IEEE
Trans IT-33:461-482

Michie D (1989) Personal models of rationality. J Statist
Planning and Inference (in press)

Minsky M, Papert S (1969) Perceptrons. MIT Press, Cambridge
Rumelhart DE, Zipser D (1986) Feature discovery by competi-

tive learning. In: Rumelhart DE, McClelland JL (eds)
Parallel distributed processing, vol 1: Foundations. MIT
Press, Cambridge

Rumelhart DE, Hinton GE, Williams RJ (1986a) Learning
internal representations by error propagation. In: Rumel-
hart DE, McClelland JL (eds) Parallel distributed process-
ing, vol 1: Foundations. MIT Press, Cambridge

Rumelhart DE, Hinton GE, McClelland JL (1986b) A general
framework for parallel distributed processing. In: Rumelhart
DE, McClelland JL (eds) Parallel distributed processing,
vol 1: Foundations. MIT Press, Cambridge

Williams RJ (1986) The logic of activation functions. In: Rumel-
hart DE, McClelland JL (eds) Parallel distributed process-
ing, vol 1: Foundations. MIT Press, Cambridge

Wong AJW (1988) Recognition of general patterns using neural
networks. Biol Cybern 58:361-372

Received: November 21, 1988

Accepted in revised form: May 4, 1989

Igor Kononenko, M.Sc.
Faculty of Electrical and Computer Engineering
Trzaska 25
YU-61000 Ljubljana
Yugoslavia

