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Abstract. A neural network that uses the basic Hebbian 
learning rule and the Bayesian combination function is 
defined. Analogously to Hopfield's neural network, the 
convergence for the Bayesian neural network that 
asynchronously updates its neurons' states is proved. 
The performance of the Bayesian neural network in 
four medical domains is compared with various classi- 
fication methods. The Bayesian neural network uses 
more sophisticated combination function than 
Hopfield's neural network and uses more economically 
the available information. The "naive" Bayesian clas- 
sifter typically outperforms the basic Bayesian neural 
network since iterations in network make too many 
mistakes. By restricting the number of iterations and 
increasing the number of fixed points the network 
performs better than the naive Bayesian classifier. The 
Bayesian neural network is designed to learn very 
quickly and incrementally. 

1 Introduction 

There is a variety of designs of neural networks. Neural 
networks can be classified according to various crite- 
ria, e.g. network topology, the aim of its usage, the 
learning rule and the combination function that com- 
bines the inputs of a single neuron into its output. 

Topologically a network can be without layers (e. g. 
Hop field and Tank 1985), with two layers (e. g. Minsky 
and Papert 1969; Kosko 1988), multilayered (e.g. 
Rumelhart et al. 1986a) and of some special topology 
(e.g. Kohonen 1984; Rumelhart and Zipser 1986). A 
network can be used as an auto-associative memory 
(e.g. Kohonen 1984; McEliece et al. 1987), as a hetero- 
associative memory (e.g. Kosko 1988), temporal as- 
sociative memory (e.g. Kosko 1988), as a classifier (e.g. 
Rumelhart et al. 1986a), for clustering (e.g. Rumelhart 
and Zipser 1986) or for some special purpose (e.g. 

Hopfield and Tank 1985; Kohonen 1984). Most com- 
mon learning rules are Hebbian and generalized 
Hebbian learning rule (Rumelhart et al. 1986), delta 
rule (Minsky and Papert 1969), generalized delta rule 
(Rumelhart et al. 1986a) and competitive learning 
(Rumelhart and Zipser 1986). A combination function 
for calculating neuron's output from its input can be 
deterministic or stochastic (e.g. Rumelhart et al. 1986). 
Most common combination functions include variants 
of weighted sum and sigma-pi functions (Rumelhart et 
al. 1986b). 

This paper is primarily concerned with the combina- 
tion function, while using specific topology and learn- 
ing rule. The same techniques described in this paper 
can be used also for other topologies. The application 
of these techniques is not fixed, however, for de- 
monstration purposes a neural network was designed 
for classification. It is shown that a neural network can 
naturally implement "naive" Bayesian classifier. In 
next section the Bayesian neural network is defined 
and the convergence for a network that asynchron- 
ously updates its states is proven. In Sect. 3 experi- 
mental results in four medical domains are described. 
The performance of the Bayesiarl network is improved 
by increasing the number of fixed points. The results 
are compared with some other classification methods 
and with the performance of human experts. Finally, in 
Sect. 4 the results are commented and some conclu- 
sions are given. 

2 Definition of Bayesian Neural Network 

2.1 Topology and Learning Rule 

The most general topology (without layers) is chosen 
where every neuron in a network is connected with 
every other neuron via bidirectional connections, 
called synapses. In addition to the memory cell that 
stores the weight for each synapse two additional 
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memory cells (counters) for each neuron are intro- 
duced whose function will be explained later. A state of 
a neuron corresponds to its output. The neuron states 
are restricted to two possible values: 1 (active) and 0 
(inactive). Two different topologies will be used: one in 
which each neuron is connected to itself via a feedback 
connection and one in which those connections are 
omitted. 

A network works in two distinct phases: learning 
and classification. During the learning phase the input 
patterns (learning instances) are presented to the 
network and weights and counters of the network are 
modified. During the classification the memory of the 
network is fixed. Every neuron receives an input and 
produces an output in the following way. Every neuron 
receives an initial state from an input pattern by 
adopting the corresponding component value of the 
vector. The neurons then asynchronously and itera- 
tively change their states according to the combination 
function. The network terminates with the computa- 
tion when no more neurons can change their states, 
i.e. when the fixed point is reached. When the neural 
network finishes with computation the component 
values of the output pattern are extracted from the 
corresponding neurons' states. 

At the beginning of learning all weights are set to 0. 
The learning rule used is the basic Hebbian rule 
(Rumelhart et al. 1986b) which states that the weight of 
a connection between two neurons is increased (in our 
case by 1) if both neurons are active. Therefore the 
weight of a given synapse is proportional to the 
frequency with which the two components of the 
learning patterns (that correspond to two neurons 
connected via the given synapse) are both 1. 

At the same time, learning takes place also in two 
additional memory cells of each neuron. One of the 
cells is increased each time an input pattern (a learning 
instance) is presented to the network. Therefore, this 
cell in fact represents a counter of learning instances. 
The second memory cell in each neuron is increased 
whenever a neuron is active. Therefore, its value is 
proportional to the frequency with which the corre- 
sponding component in learning instances equals 1. 

Before proceeding with the definition of a design of 
the Bayesian neural network a "naive" Bayesian 
classifier is developed, as used also by Bratko and 
Kononenko (1987). 

2.2 "Naive" Bayesian Classifier 

Let the objects from a given domain be described with 
a fixed number of attributes (features, descriptors). 
Each attribute has a fixed number of possible values. 
Each object from a given domain is defined with a set of 
attributes' values, one value for each attribute. Let V~ 

be a Boolean variable which is true (has value 1) if a 
given object has j-th value of i-th attribute and false 
(has value 0) otherwise. If the value of i-th attribute is 
unknown then for given i all V u are 0. Note that for 
each attribute i at most one V~j has value 1. 

Let S be a conjunction of conditions V u = 1 for all 
V u that have value 1 for a given pattern to be classified. 
Furthermore, for brevity, P(V~j) will be used instead of 
P(V u = 1) for prior probability that V u has value 1. If the 
value for m-th attribute is not given we can compute for 
each value n of that attribute its probability by 
computing the probability that V~ = 1 with the follow- 
ing Bayesian formula: 

P(Vm.IS) = P(Vm.)P(SI Vm.)/P(S), 

where P(X) is prior probability of X being true and 
P(XI Y) is the probability that X is true given Y If we 
assume that attributes are independent (because of this 
assumption a classifier is called "naive") we get 

P(S)= 1-] P(VO), 
Vii = 1 

P(SIV,,)-- H PtVulV,,,). 
V i j  = 1 

Since 

P(Vi/Wm.)= P(V u & V,..)/P(Vr..) 

we get 

P(V~ls) 

--- P(V,n.) l-[ [P(Vu & V.,.)/(P(Vo)P(Vm.))]" (1) 
V U = 1 
a n  �9 i j  

The independence assumption is needed to obtain (1) 
which can be effectively computed by approximating 
the probabilities on the right hand side with relative 
frequencies obtained from the set of learning patterns. 

2.3 Combination Function 

We now continue with the definition of a design of a 
Bayesian neural network from Sect. 2.1. We assume 
that each learning instance (input vector) represents an 
object in a given domain. An object is described with 
values of a fixed set of attributes. One attribute with n 
possible values is represented with n neurons (n vector 
components). Therefore, for each value Vu, as defined 
in Sect. 2.2, we have one neuron. If an object has j-th 
value for i-th attribute then the neuron is set to 1, 
otherwise it is set to 0. If the value for i-th attribute is 
not known then for given i all V u are set to 0. 

If we assume that prior probabilities can be 
approximated with relative frequencies from a set of 
learning instances then the weight of a synapse con- 
necting two neurons which represent values Vm, and Vij 
corresponds to P(V~,& Vu) times the number of 
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learning examples. The two counters in a neuron 
representing value Vm, correspond to the number of 
learning instances and P(Vm,) times the number of 
learning instances, respectively. 

It remains to define a combination function with 
which a single neuron combines its input into output 
(which also represents its state). The activation level of a 
neuron representing Vm, given a state of a network S is 

A(V,.,,IS)= P(V,,,.IS), 

where P(V,,,.IS) is calculated from (1). Note that if (1) is 
used on real data (where attributes need not be 
independent) then the value greater than 1 can be 
obtained. Activation level is not a probability but is 
proportional to the probability. The combination 
function for a neuron representing value Vm, is 

1 if A(V,..IS)>P(V,..) 

V~,.= Vm. if A(V,..IS)=P(V.,.) (2) 

0 if A(Vm.IS)< e(v..), 

where V,~, represents the new neuron's state. According 
to this combination function, the new state is equal 1 if 
the activation level is greater than prior probability 
and 0 if it is less than prior probability. If both values 
are the same then the neuron's state remains 
unchanged. 

The above discussion is valid for the topology with 
no feedback connections. For  the topology where each 
neuron is connected to itself we generalize (1) by 
omitting the condition mn 4: ij: 

A(V.,.IS) 

=P(Vm.) 1-] [P(V~j&Vm.)/(P(V~i)P(Vm.))]. (3) 
V i i  = 1 

We used the notation A instead of P because (3) 
mathematically does not represent the probability. If 
V,.. is given to be 1 then P(V,,,.IS) = 1. Anyway, (3) is the 
natural generalization of (1) if a neuron makes no 
distinction among the connections to other neurons 
and the connection to itself. If Vmk is given to be 1 then 
for n = k  we get from (3): 

A(V,..[S)= 1-I [P(Vq&V,..)/(P(V~j)P(V,..))J 
V i i  = 1 
m .  4: i j  

and for all n # k  we get: 

A(V,..IS)--O 

since P(V,.. & V,.k) equals 0 for n # k  and equals P(V,..) 
if n = k. Furthermore,  if the value of m-th attribute is 
unknown then (1) and (3) are identical. 

Note  that all information necessary to compute V~,. 
is locally available to each neuron. Each neuron stores 
also the number of all learning instances which is 

needed for approximation of probabilities with relative 
frequencies. 

When a network finishes with learning the weights 
are fixed and the network can be used to process new, 
unseen objects, for which some values of attributes are 
missing or are wrong. All neurons will work in parallel 
by iteratively changing their states according to states 
of other neurons. Missing values will be approximated 
and the wrong values will be possibly corrected. The 
network finishes its work when there are no more 
changes of neuron states. In the next section we prove 
that networks with both kinds of topology, defined in 
Sect. 2.1, will terminate their work in a finite time 
regardless of input vector and current state of weights 
in a network if neurons work asynchronously. 

Note that in the beginning only one Vii for given 
attribute i may be active (equal 1) at the same time and 
all the others must be 0. The other possibility is that all 
V~j for given i are 0 (the value of i-th attribute is 
unknown). When the neurons operate asynchronously 
the only possible change is that a single V o changes 
from 1 to 0 or, in the latter case, that a single V~ changes 
from 0 to 1. If, on the other hand, the neurons operate 
synchronously more than one V~i for given i may 
change from 0 to 1. But in the next iteration all V o will 
be set to 0 since they will inhibit each other. 

2.4 Convergence Proof 

The proof  of the convergence is analogous to those of 
Hopfield (McEliece et al. 1987) and Kosko (1988) for 
networks which use the symmetric matrix obtained as 
the sum of outer products of learning vectors as their 
memory. Hopfield and Kosko define a function which 
Hopfield calls the energy function. They show that the 
energy monotonously decreases if the network asyn- 
chronousty updates its neurons'  states. Since the func- 
tion has a lower bound the process must terminate in 
a finite time. Hopfield's energy function (Kosko 1988) 
is given by inner product  

E = - 1 / 2 X M X  r , 

where X is a vector describing a current state of a 
network and M is a symmetric matrix obtained as the 
sum of outer products of learning vectors and repre- 
sents the network's memory. Note  that here the states of 
neurons can be I or - 1. The product  M X  r is a vector 
which in fact represents activation levels of neurons 
given a current state of a network. The function 
therefore measures the dissimilarity between the 
neurons state and activation levels. The higher is the 
activation level for a neuron with state equal 1 (the 
lower is the activation level for a neuron with state 
equal 0) the greater is similarity and, analogously, the 
higher is the activation level for a neuron with state 
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equal 0 (the lower for a neuron with state equal 1) the 
greater is dissimilarity. 

Kosko (1988) defines a similar function for bidirec- 
tional associative memories: 

E= - - B M r A T =  - A M B  T, 

where M is the memory matrix obtained as the sum of 
outer products among pairs of learning vectors and 
(A, B) is a pair of vectors describing the current state of 
a network. The vector M r A  r represents in fact the 
activation levels of neurons in layer "B" given a current 
state of layer "A". Similarly holds for vector MB T for 
neurons in layer "A". Therefore if we omit the minus 
sign we again obtain the measure of similarity. 

We now define a measure of similarity between a 
current state of a Bayesian neural network and activa- 
tion levels of neurons given a current state: 

Sim(S)= 1-I [A(VoIS)/P(Vo)], 
Vij = 1 

where S again represents a current state of a network. 
Obviously, this function has an upper bound since it 
has a finite number of possible values if the prior 
probabilities are fixed. 

Note that if A(VijIS)>P(Vij ) and V/j=l then the 
similarity is in fact greater. The new value of V~j in that 
case will tend to stay 1, and vice versa. Values V~ that 
have current value 0 are ignored by the similarity 
function. If the value of attribute i is known, e.g. V~ k = 1, 
then all V~j are 0 forj  # k and new values Vi~ will tend to 
stay 0. If, on the other hand, the value of attribute i is 
unknown (all V~j are 0) then attribute i is currently 
ignored by the similarity measure. 

Now we prove that if only one neuron changes its 
state at a time (network works asynchronously) then 
the similarity will increase. In the previous section it 
was already stated that because of asynchronicity at 
most one V o for given i is equal 1 at the same time. First 
we prove this for the topology where the connection of 
a neuron to itself is forbidden. Therefore, A(VijIS) is 
defined with (1). 

As only one neuron is allowed to change at a time it 
suffices to consider one change alone. The change can 
be of two types: 

a) Old Vm, = I and A(V,,,[S) < P(V,,,) and new V,~, is 
V'.=0: 

Let S' describe a new state after the change. Then we 
have 

Sim(S')/Sim(S) 

=P(V,..)/A(Vm.[S) 

= P ( V m . ) / A ( V m . I S )  

lq 
V~j = 1 

H 

[A(V~jIS')/A(V~j[S)] 

[P(VOP(Vm,)/P(V~ j & Vm.)] 

= [P(Vm.)/A(Vm.[S)] 2 > 1. 

b) Old Vm,=O and for all j :  Vmj=O and A(Vm.IS ) 
>P(Vm,) and new Vm, is V~,,= 1: 

Sim(S')/Sim(S) 

=A(Vm,,IS')/P(Vm,,) ]-I [A(V~jIS')/A(V~j[S)] 
V ~ = I  
i j Smn  

=A(V,..IS')/P(Vm.) I-I [P(Vo&Vmn)/(P(Vij)P(Vmn))] 

and since A(Vm, IS')=A(Vm,IS) we get 

= [A(Vmn]S)/P(Vmn)] z > 1. 

The proof for the topology where each neuron is 
connected to itself is analogous to the above proof and 
only results are given. In this case A(Vi~[S) is defined 
with (3). We have the same two types of changes. For 
type a) we obtain: 

Sim(S')/Sim(S) = P(Vm.)/A(Vm.[S) 2 > 1, 

and for type b) we have: 

Sim(S')/Sim(S) = A(V~.IS)2/p(Vm,) 3 > 1. 

The results also indicate the faster convergence for (3). 

3 Experiments in Four Medical Domains 

To test the performance of the Bayesian neural net- 
work we used it as a classifier in four medical domains. 
In all domains the problem is similar: given the 
description of a patient in terms of attributes' values 
the system must return one of possible diagnoses. For 
each domain we have a fixed set of attributes and a 
fixed number of possible diagnoses. A diagnosis is in 
our case treated as an additional attribute with values 
corresponding to separate diagnoses. 

Table 1 shows the characteristics of four medical 
domains. The number of neurons is the sum of values 
of all attributes plus the number of diagnoses. The 
percentage of cases belonging to majority class in the 
domain is also added in the table. We obtained the data 
from The University Clinical Center in Ljubljana. 
Data include descriptions of a certain number of 
patients with known diagnoses. 

3.1 Experiments with Basic Bayesian Neural Network 

One run was performed by randomly selecting 70% of 
instances for learning and 30% for testing. Learning 
instances were used to train the network by appropri- 
ately computing synapses' weights and neurons' coun- 
ters. When learning was completed the network's 
memory was fixed. The network was then tested by 
running it asynchronously (in every iteration only one 
neuron was allowed to change its state) on every testing 
instance with corresponding diagnosis deleted (all the 



Table 1. Characteristics of four medical domains 

Domain name # attrib. # class. ~e cases # neur. maj. class 

Primary tumor 17 22 339 59 25% 
Breast cancer 10 2 288 29 80~ 
Thyroid diseases 15 4 884 141 56% 
Rheumatism 32 6 355 298 66% 
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neurons representing the diagnosis were set to 0). 
When the network converged to a fixed point the 
answer was obtained by seeking for an active neuron 
among neurons standing for diagnoses. If none of them 
was active we took as an answer diagnosis j that 
maximized A(V~ilS), where S is a final state of the 
network and i is the attribute representing the 
diagnosis. 

In each experiment a run was repeated 10 times and 
an average was taken. The following parameters were 
measured: 
- c la s s i f i ca t ion  accuracy: percentage of correctly 
classified testing instances 
- information content per answer: the average amount  
of information contained in one system's answer 
(Kononenko and Bratko 1989). This measure avoids 
the problems with classification accuracy when one 
class is much more probable then the others. In Table 1 
one can see that in all four medical domains this is 
indeed the case. The definition of the information 
content of an answer is provided in the Appendix. 
- average number o f  iterations: average number of 
changes of neurons' states necessary to reach a fixed 
point. 

We measured also the average number of changes 
of states from 0 to 1. In all experiments this number was 
approximately 1/3 to 1/2 of the average number of 
iterations. 

Two groups of experiments were performed in each 
medical domain. First, for the neural network to- 
pology where connections of each neuron to itself are 
omitted (1), and the other, for the topology with 
feedback connections (3). In each group we performed 
three different experiments with respect to the criterion 
for selecting the neuron that can change its state. Recall 
that only one neuron is allowed to change its state at a 
time although there may be more neurons that satisfy 
the criterion for changing the state (i.e. V', ~ Vm, where 
V~ is obtained from (2)). 

In the first experiment a neuron was selected 
randomly. In the second experiment a neuron was also 
selected randomly but with the probability propor-  
tional to its calculated A(F~IS), for those who should 
change from 0 to 1, and proport ional  to 1 - A(VolS ) for 
those who were to change their states from 1 to 0. In the 
third and last experiment, the neuron which maximized 

Table 2. Results of experiments in the "primary tumor" domain 

Equation Criter. Accuracy Inf. cont. ~ iterat. 

(1) Rand. 28.7% 0.74 bits 16.2 
(1) Prob. 36.2% 1.10 bits 13.9 
(1) Max.  37.2% 1.15 bits 11.9 
(3) Rand. 31.5% 0.90 bits 9.8 
(3) Prob. 39.5% 1.19 bits 9.4 
(3) Max.  41.0% 1.27 bits 8.7 

A(VijlS) was selected if the change was from 0 to 1, and 
1 -A(VolS) if the change was from i to 0. Note  that the 
first two criteria need only locally available informa- 
tion and that the last criterion needs global informa- 
tion and therefore cannot be naturally implemented 
in a neural network. 

Overall there were six experiments (with ten runs) 
each for every medical domain. Results for the primary 
tumor domain are presented in Table 2. For  other 
domains the percentages are absolutely different but  
relatively have same trends for different experiments as 
in the primary tumor  domain. In all medical domains 
the topology where each neuron is connected to itself 
performed better and required a smaller number of 
iterations. The topology with feedback connections 
tries to preserve the current state of the network while 
the topology without feedback connections tries to 
change it. We will explain why the former strategy is 
better in the next section. 

As expected, the random selection of a neuron that 
was allowed to change its state was the worst with 
respect to classification accuracy and the number of 
necessary iterations. The selection of the neuron with 
the maximal difference between the calculated and the 
prior probability outperformed the other two criteria, 
both with respect to classification accuracy, and the 
number of iterations. 

In Table 3 the performance of the Bayesian neural 
network with feedback connections and the selection 
criterion that maximizes the difference between the 
calculated and the prior probability is compared to the 
performance of the naive Bayesian classifier. Note  that 
the naive Bayesian classifier is equivalent to the 
Bayesian neural network with zero iterations. 
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Table 3. Comparison of performances of the Bayesian neural network and the naive Bayesian classifier in four medical domains 

Domain Bayesian neural network "Naive" Bayes 

Accuracy Inf. cont. #iterat. Accuracy Inf. cont. 

Primary tumor 41.0% 1.27 bits 8.7 47.1% 1.42 bits 
Breast cancer 72.5% 0.04 bits 3.1 77.6% 0.15 bits 
Thyroid 61.9% 0.63 bits 7.2 67.8% 0.73 bits 
Rheumatism 47.3% 0.18 bits 21.7 50.5% 0.21 bits 

3.2 Increasing the Memory Capacity 
of the Neural Network 

The Bayesian neural network performed worse than 
the "naive" Bayesian classifier. The independence 
assumption affected more the performance of the 
network since the network works multidirectionally 
and the "naive" Bayesian classifier works only in one 
direction (from attributes to classes). The assumption 
that attributes are independent is a smaller mistake 
than the same assumption in parallel with the assump- 
tion for each attribute that other attributes (including 
an attribute representing classes) are independent. 

It seems that iterations in the neural network, while 
trying to replace missing data and correct wrong data, 
are making too many mistakes. When the equilibrium 
is reached the original pattern is too corrupted so that 
the calculated probabilities of diagnoses are also 
affected. 

The problem can be stated also in terms of the 
memory capacity of the Bayesian neural network, i.e. 
the number of different patterns that can be stored by 
the network. For classification purposes, the ideal 
network would have the capacity equal to the number 
of different patterns from a given domain. For example 
in the primary tumor diagnostic problem described 
with 17 attributes (each with 2-4 possible different 
values) there are approximately 4.4 millions of different 
descriptions of patients assuming that each description 
corresponds to exactly one diagnosis (which is not 
always the case). 

In this paper the momory capacity of the Bayesian 
neural network is not studied in detail. Obviously the 
capacity is finite and far below the desired. There have 
been various studies of the capacity of various types of 
neural networks (Guez et al. 1988; McEliece et al. 1987; 
Wong 1988). The usual way to increase the memory 
capacity of the neural network is the development of 
special learning rules. However, the memory capacity 
is strongly related to the number of fixed points 
obtained by learning. By increasing the number of 
fixed points we can expect that also the memory 
capacity will increase. 

An obvious way to  increase the number of fixed 
points is to strengthen the condition for changing the 

neuron's state. In one extreme the condition is never 
satisfied and all the input patterns become fixed points. 
It was already stated that such Bayesian neural 
network without any iterations, used as a classifier, is 
equivalent to the naive Bayesian classifier. However, 
iterations in the neural network can be useful to 
approximate missing data and correct wrong data. 

The other extreme is the combination function 
defined with (2) which suffices that the network will 
converge into a fixed point in a finite time. This 
function was used in our experiments so far. In the next 
experiment the following combination function was 
used instead of (2): 

l 
1 if A(V,,.IS)>I 

Vm.= V,. if I>A(Vm.IS)>O (4) 

0 if A(Vm.IS)=O. 

Note again that A(Vm, IS ) can also be greater than 1 
because of the independence assumption used to 
calculate it. This combination function strengthens the 
conditions from (2), therefore the convergence is 
guaranteed. However, the conditions are very strong 
and it can be expected that the number of iterations 
necessary to reach a fixed point will significantly 
decrease (the convergence will be faster). The neurons 
will change their states only if there will be a lot of 
evidence for the change. The results given in Table 4 
confirm the above discussion and show that the 
Bayesian neural network using the combination func- 
tion defined with (4) performs better than the naive 
Bayesian classifier. 

It is interesting that with the introduction of the 
combination function (4) all types of Bayesian neural 
networks perform almost identically. There is no dif- 
ference between the performance of both topologies 
and, as well, the performance is independent to the 
criterion for selecting the neuron to change its state (as 
almost in all iterations only one neuron satisfied the 
condition to change its state). 

The introduction of combination function (4) sig- 
nificantly increased the number of fixed points. Some 
of them correspond to training instances and the 
others cover the problem space not covered by the 
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Table 4. Performance of the Bayesian neural network using combination function (4) compared to the performance of the naive Bayesian 
classifier 

Domain Bayesian neural network "Naive" Bayes 

Accuracy Inf. cont. :~ iterat. Accuracy Inf. cont. 

Primary tumor 47.9% 1.46 bits 0.6 47.1% 1.42 bits 
Breast cancer 78.1% 0.15 bits 0.4 77.6% 0.15 bits 
Thyroid 68.2% 0.74 bits 1.7 67.8% 0.73 bits 
Rheumatism 59.7% 0.42 bits 10.3 50.5% 0.21 bits 

Table 5. Performance of the Bayesian neural network using combination functions (2) and (4) on training instances 

Domain Combination function (2) Combination function (4) 

Acc. Inf. cont. #r iterat. Acc. Inf. cont. # iterat. 

Primary tumor 55.5% 1.91 bits 8.3 60.5% 2.06 bits 0.6 
Breast cancer 72.7% 0.11 bits 2.8 79.7% 0.19 bits 0.4 
Thyroid 71.9% 0.89 bits 5.8 75.2% 0.95 bits 0.6 
Rheumatism 82.0% 1.32 bits 8.6 84.8% 1.38 bits 3.9 

Table 6. The comparison of performance for different classifiers in the"primary tumor" domain. (A) indicates the implernentation of the 
naive Bayesian classifier in the Assistant learning system 

Classifier Primary tumor Breast cancer Thyroid Rheumatism 

Acc. Inf. cont. Acc. Inf. cont. Acc. Inf. cont. Acc. Inf. cont. 

Bayesian n.n. 48% 
Naive Bayes 47% 
Naive Bayes (A) 49% 
Assistant 44% 
Specialists 42% 
Nonspecial. 32% 

1.46 bits 78% 0.15 bits 68% 0.74 bits 60% 0.42 bits 
1.42 bits 78% 0.15 bits 68% 0.73 bits 50% 0.21 bits 
1.59 bits 79% 0.06 bits 68% 0.70 bits 57% 0.28 bits 
1.38 bits 77% 0.07 bits 73% 0.87 bits 61% 0.46 bits 
1.22 bits 64% 0.05 bits 64% 0.59 bits 56% 0.26 bits 
0.95 bits 64% 0.03 bits . . . .  

t raining instances. N o t  all the training instances are 
s tored as can be seen f rom Table  5. In  fact, domains  
used in our  experiments are incomplete in the sense that  
with a given set of  at tr ibutes the classification can not  
be exact as attr ibutes carry too  few information.  
Therefore the sensible general izat ion will no t  exactly 
classify all the t raining instances. 

3.3 Comparison with Other Classification Methods 

The above  results are compared  in Table  6 with: 

(a) Naive Bayesian classifier as described in 
Sect. 2.2. I t  was already stated that  the naive Bayesian 
classifier is equivalent  to  the Bayesian neural  ne twork  
with zero i terations (probabilities of  classes are cal- 
culated wi thout  any change in neurons '  states). No te  
also that  (3) in that  case is equivalent  to (1) because the 
class is not  given in advance.  In  Table  6 the results of  

the naive Bayesian classifier implemented in the Assist- 
ant  learning p rog ram (Bratko and K o n o n e n k o  1987) 
are added  [marked  with (A)]. This implementa t ion  
includes some modificat ions with respect to  the relia- 
bility of  the approx ima t ion  o f  probabili t ies with rela- 
tive frequencies. 

(b) Hopfield's neural network tha t  uses gen- 
eralized Hebb ian  learning rule which states tha t  the 
connect ion  between two neurons  is increased if their 
states are identical. The  m e m o r y  is therefore the sum 
of outer  p roduc t s  of  t raining vectors. States of  
neurons  can be - 1 (inactive) and  1 (active). U n k n o w n  
value for an at t r ibute in tha t  case cor responds  to 0 
states of  all cor responding  neurons.  The  combina t ion  
funct ion is the usual weighted sum:  
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where 

1 if X > 0  

f ( X )  = previous neuron's state if X = 0 

- 1  if X < 0 .  

We tested the same two topologies as for the Bayesian 
neural network. The topology where connections of a 
neuron to itself are omitted uses the memory matrix 
with 0 diagonal and the other topology uses matrix 
with all diagonal elements equal to the number of 
learning vectors. We used only the third criterion for 
the selection of a neuron which is allowed to change it~ 
state, the one with maximal absolute weighted sum. 

In all our experiments in first three medical 
domains the Hopfield's neural network converged to a 
fixed point with the majority class as an answer. In the 
"rheumatism" domain approximately one half of test- 
ing instances were classified into the majority class and 
one half in the class with relative frequency 0.08. 

We tested also Hopfield's neural network without 
any iterations (as an analogue to "naive" Bayesian 
classifier). In that case the weighted sum is calculated 
for each class from the initial state of a network and the 
returned class is the one with the maximal sum. Except 
for 3% of testing instances in the primary tumor 
domain which were classified into different classes this 
method performed in all experiments in all domains 
identically as Hopfield's neural network with 
iterations. 

Thus in all domains Hopfield's neural network 
achieved much worse results than the Bayesian neural 
network. This could be expected since the coding of 
one pattern was designed for the Bayesian neural 
network. The performance of Hopfield's neural net- 
work can be improved by using a different encoding. 
Although such comparison is not appropriate, we 
encoded attributes' values using binary numbers (one 
neuron corresponding to one digit of the binary 
number). This encoding decreased the number of 
neurons in the network. Results were better but still 
much worse than that of the Bayesian neural network. 
Results of Hopfield's neural network (with and without 
iterations) are omitted from tables as the comparison is 
not appropriate. 

(c )  Inductive learning system Assistant (Bratko 
and Kononenko 1987; Cestnik et al. 1987) for con- 
structing binary decision trees. In a decision tree nodes 
correspond to attributes, branches to values of at- 
tributes and leaves to classes. The following is the 
learning algorithm: 

1. Select the most informative attribute and cluster 
its values into two subsets. 

2. Split the training instances according to values 
of that attribute into two subsets. 

3. For each subset of training instances do if 
stopping condition is satisfied then generate a leaf else 
recursively generate a subtree. 

Assistant copes also with incomplete and noisy data. 
Decision trees are comprehensible to human experts 
while the decisions of Bayesian classifier cannot be 
directly interpreted. The attempts to interpret 
Bayesian classifier's decisions are described in (Kono- 
nenko 1989; Michie 1989). On the other hand learning 
of decision trees is much slower than learning the 
relative frequencies for Bayesian classifier. 

(d )  Human experts: physician specialists (in the 
case of primary tumor and breast cancer also nonspe- 
cialists) were tested on a set of randomly selected 
patients. The results presented in Table 6 are the 
averages of 4 physicians in each domain. 

The experiments with classifiers (a), (b), and (c) were 
done in the same manner as with the Bayesian neural 
network. Ten runs were performed for each experiment 
and averages were calculated. For each experiment a 
subset of 70% of instances was randomly selected for 
training while the rest of the instances was used for 
testing. 

4 Conclusions 

The Bayesian neural network uses the available in- 
formation more economically than Hopfield's neural 
network. Hopfield's neural network uses memory 
elements which are proportional to probabilities of 
two neurons being in the same state: 

P(X i = X j). 

Bayesian neural network uses probabilities that both 
neurons are active and probabilities that one is active: 

P(X i & X j), P(Xi) , P(X j) 

which are more informative. Namely, the former 
probability can be derived from the latter ones, while 
the opposite is not the case: 

P(Xi = X j) = P(Xi & X j)-~ P(Xi t% X j) 

= P(X, & X j) + r l  - P(X,)- P(Xj) 
+ P(X i & X j)]. 

The combination function used by Hopfield's neural 
network could also be modified in order to increase the 
number of fixed points as was done for the Bayesian 
neural network in the previous section. However, there 
are no obvious lower and upper bounds as for the 
Bayesian neural network (namely 0 and 1). Anyway, 
Hopfield's neural network without iterations as an 
analogue to the naive Bayesian classifier performed 



too badly that any significant improvement could be 
expected. 

Assistant and the naive Bayesian classifier have 
similar performance although they use different in- 
formation. Bayesian classifier takes into account all 
attributes but assumes their independence. Assistant 
uses only attributes that appear in a decision tree 
(discards useful information) but takes into account 
the dependencies between attributes that appear in a 
decision tree. Future work should concentrate on the 
learning algorithms for overcoming the independence 
assumption which usually limits the neural networks 
computation to linearly separable functions (Williams 
1986). 

The generalization effect in the Assistant learning 
scheme is the generation of general rules that cover a 
great part of the problem space. The same effect was in 
the Bayesian neural network with combination func- 
tion (2). There were few fixed points covering great 
parts of the problem space. Because of the great 
number of iterations necessary to reach a fixed point 
the network can easily make a mistake and terminate 
in wrong fixed point. With the introduction of combina- 
tion function (4) the generalization effect is the 
generation of many fixed points specialized for one or 
few instances from the problem space. Neighbor fixed 
points are similar and the transition from one fixed 
point to another is less dangerous with respect to the 
final decision. 

The performances of Assistant, "naive" Bayesian 
classifier and Bayesian neural network with strength- 
ened changing condition are comparable to the perfor- 
mance of human experts. This does not mean that 
physicians can be replaced by computers. When diag- 
nosing a patient a physician takes into account also 
other sources of information which cannot be used by a 
computer. However, the comparison with human 
experts shows that learning systems almost optimally 
use the available information. Thus the systems can be 
used as efficient tools for improving and verifying the 
diagnostic process. In (Kononenko 1989) it is shown 
how a naive Bayesian classifier and the Bayesian 
neural network can "explain" their decisions. 

It is interesting to see how noise in an input pattern 
affects the performance of the network. Figure 1 
compares the performance of Bayesian neural network 
and the naive Bayesian classifier on noisy input 
patterns. Experiments in the "primary tumor" domain 
were repeated by corrupting the testing instances. To a 
certain percent of randomly selected attributes ran- 
dom values were assigned. The results are again 
averages of ten runs. Here the combination function 
defined with (4) was used. Only results for typology 
with connections of neurons to themselves and with 
the selection of the best neuron for changing its state 
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Fig, 1. Comparison of classification accuracy among the "naive" 
Bayesian classifier and the Bayesian neural network when testing 
instances are noisy in the "primary tumor" domain 

are given. The results for the other topology and other 
selection criteria are almost identical. 

The accuracy and the information content of 
answers for both systems decreased with the increased 
amount  of noise in testing instances. All the time the 
accuracy of the network was slightly better than that of 
the naive Bayesian classifier. The similar result was 
obtained for information content. As expected, the 
number of necessary iterations increases with noise 
(from 0.6 with zero noise to 1.0 iterations with 30% of 
noise). 

The Bayesian neural network is designed to work 
multidirectionally, i.e. it makes no distinction between 
input and output. Therefore it can be used also as a 
multidirectional classifier and as an associative mem- 
ory as well. It learns very quickly (in our  simulations 
typically a few seconds and not more than 30 s on an 
IBM PC-AT) and incrementally. 
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Appendix: 
Definition of the Information Content of an Answer 

A fair evaluation criterion has to exclude the influence of the prior 
probabilities of classes which may enable a completely unin- 
formed classifer to trivially achieve high classification accuracy. 
The measure of information content of the classifier's answer 
defined below excludes the influence of prior probabilities, deals 
with various types of imperfect or probabilistic answers and can 
be used also for comparing the performance in different domains. 
Its interpretation is natural. 

Definition. Let the correct class of an instance be C, P(C) be prior 
probability of class C and P'(C) probability of class C returned by 
a classifier. The information content I of classifier's answer is 
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defined as follows (note that in our experiments only exact 
classification is considered, i.e. P'(C) is always either i or 0): 

a) If P'(C) > P(C) then 

I = - log 2 P(C) + log 2 P'(C) I-bits] 

i.e., the amount of obtained information is the entire amount of 
information necessary to correctly classify an instance into class 
C minus the remainder of information necessary to correctly 
classify that instance. 

b) If P'(C)= P(C) then I---0 [bits] 

i.e., the system didn't change the prior probability of the correct 
class therefore we didn't obtain any information. 

c) If P'(C) < P(C) then 

I = - ( -  logz(1 - P(C)) + log2 (1 - P'(C))) [bits] 

i.e., the amount of information returned by the system is the 
entire amount of information necessary to decide that an instance 
doesn't belong to class C minus the remainder of information 
necessary to make that decision. As this information is in fact 
wrong the information content of the system's answer in this case 
is negative. 
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