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Abstract. A general theory previously proposed by the 
author which describes synaptic stabilization on the 
basis of three basic assumptions is employed for the 
understanding of ocular dominance column formation. 
A reduced mathematical model is constructed based on 
the thermodynamics in the Ising spin variables repre- 
senting the afferent synaptic connection distribution. 
The results of Monte Carlo simulations on the segrega- 
tion of ipsilateral and contralateral synaptic terminals 
in the input layer of the primary visual cortex suggest 
the existence of phase transition phenomena. Three 
types of ocular dominance column pat terns-  stripe, 
blob, and uni form-  are visualized according to the 
values of the correlation strength and the degree of 
imbalance in activity between the left and right retinas. 
The theory presented here successfully explains how 
ocular dominance columns are developed. 

1 Introduction 

The cerebral cortex has characteristic map structures 
such as ocular dominance columns (ODC) (Hubel and 
Wiesel 1977), orientation columns (Hubel et al. 1978), 
color-specific blobs (Livingstone and Hubel 1984), fre- 
quency columns (Knudsen et al. 1987), and somato- 
sensory patches (Kaas et al. 1983). These structures, 
often called functional architecture (Hubel and Wiesel 
1977), are important examples of the functional- 
structural relationship of the brain. Recent experiments 
have shown that these specific structures are con- 
structed in an activity-dependent manner (Frank 1987). 
For example, abnormal ODCs were formed in cats and 
monkeys reared under unusual visual conditions (e.g., 
Hubel et al. 1977). Apparently, neuronal activity elic- 
ited by external stimuli plays a role in the morphogene- 
sis of the nervous system. 

Mechanisms of self-organization of the ODC have 
been a subject of theoretical investigations. Swindale 
(1980) has pointed out that competition between short- 

range intracortical excitation and long-range intracorti- 
cal inhibition leads to a stripe pattern similar to the 
monkey ODC pattern (Hubel and Wiesel 1977). Von 
der Malsburg (1979) and Miller et al. (1989) showed 
that a coincidence of pre- and postsynaptic activities - 
the Hebbian mechanism of synaptic plasticity- suc- 
cessfully describes activity-dependent self-organization 
of the ODC stripe pattern. These models, however, 
include an additional arbitrary constraint to avoid di- 
vergence in synaptic strength or synaptic efficacy 
(Miller et al. 1989; Linsker 1986). Therefore, we may 
say that these models are practical and empirical. If we 
want to build a model which systematically explains the 
accumulated experimental data concerning visual depri- 
vation, pharmacological effects, and the results of com- 
parative studies, we must adopt mathematical 
parameters which have biological counterparts. For this 
sake, the mathematical description should be derived 
from a small number of basic assumptions which have 
clear biological meanings. 

Recently, the author proposed a general theory of 
activity-dependent self-organization of cortical maps 
using the thermodynamics in the spin system described 
by the Hamiltonian (Tanaka 1988, 1989, 1990a). 
Parameters involved in this theory can be related to 
biological factors since the theory is built on the basis 
of hypothetical mechanisms of synaptic stabilization 
due to (I) a postsynaptic factor released from dendrites 
of a target cell. (2) a presynaptic factor transported 
from the presynaptic cell body, and (3) a Hebb-like 
coincidence of pre- and postsynaptic activities. The 
thermodynamic formulation of this general theory en- 
ables us to perform both mathematical calculations and 
computer simulations according to the conventional 
methods of thermodynamics without the introduction 
of any additional constraint. Also, the obtained theoret- 
ical results can be easily compared with experimental 
data since the parameters used in this theory can be 
interpreted biologically. 

This report is the first of a series of papers which 
will describe ODC formation on the basis of the general 
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theory. A reduced mathematical model specific to ODC 
formation will be derived, and computer simulations 
based on this model will reproduce physiological fea- 
tures of ODC segregation in the old-world monkey. 
Three basic parameters will be introduced. One is the 
correlation strength in activity between the left and 
right retinal ganglion cells (RGC), another is the degree 
of imbalance in activity between them, and the other is 
the effective temperature. It will be shown that weak 
activity correlation between the left and right retinas is 
essential to ODC segregation, and that the effective 
temperature regulates the segregation process. It will 
also be shown that imbalanced activities between the 
left and right retinas yield asymmetric stripe patterns or 
blob patterns. Moreover, the occurrence of hysteresis 
between these two types of patterns will be predicted. 

2 Basic mechanisms 

We follow Changeux and Danchin's (1976) hypothesis 
which proposes that at least three states for the synapse 
exist: labile, stable, and regressed. The labile and stable 
states are capable of transmitting electrical activity, but 
the regressed state is not. The synaptic modification 
corresponds to mutual transition among these three 
states. Hereafter, we shall refer to the transition from 
the labile state to the stable state as stabilization, and 
the opposite transition as destabilization. The hypo- 
thesis further claims that it is possible for the labile 
state either to reach the stable state or to degrade into 
the regressed state. However, our theory will not give 
an explicit mathematical description of the latter possi- 
bility, as we assume that only the stable synapses will 
remain after the so-called critical period. 

The author postulates three mechanisms (Tanaka 
1989, 1990a) underlying the activity-dependent self-or- 
ganization of neural connections as follows: (1) modifi- 
able synapses are stabilized due to a limited amount of 
a postsynaptic factor released from dendrites of a target 
cell per unit time; (2) the stability of the synapses is also 
regulated by a presynaptic factor which is synthesized 
in a presynaptic cell body and transported through the 
axon to presynaptic terminals; (3) furthermore, the 
synaptic stabilization obeys a local rule of Hebbian 
type; if the presynaptic spike activity coincides with 
postsynaptic local membrane depolarization (hyperpo- 
larization), the synapses are stabilized (destabilized). 
The following physiological meanings may be attached 
to the postulated three mechanisms. 

Mechanism (1) leads to the competition among 
synapses for the limited amount of the postsynaptic 
factor which is secreted from the target neurons. If 
there is a small number of synapses within a region 
whose size is determined by the diffusion length of the 
factor, each synapse takes a sufficient amount of the 
factor to stabilize. On the other hand, if there is a large 
number of synapses within the region, the amount of 
the factor which one neuron can take decreases. There- 
fore, the density of stable synaptic connections is likely 
to be constant. Furthermore, this mechanism together 

with mechanism (3) gives rise to a winner-take-aU pro- 
CeSS. 

Mechanism (2) describes stabilization by the presy- 
naptic factor which is synthesized in cell bodies in the 
presynaptic layer and sent through their axons to termi- 
nals in the target layer. Owing to this mechanism, the 
synapses which have once been destabilized to the labile 
state can come to be stabilized again. This type of 
stabilization is independent of any postsynaptic event. 
It is thought that the synaptic stabilization attributed to 
the presynaptic factor occurs only within a limited 
region in which terminals of the axon from the presy- 
naptic cell body arborize because the factor cannot be 
transported to the outside of this region. The time 
course for the stabilization process is determined by the 
amount of the presynaptic factor secretion; the stabi- 
lization process takes longer if a small amount of this 
factor is available, while it is shorter in the opposite 
case. The detailed mathematical analysis (Tanaka 
1990a) shows that this time course determines the effec- 
tive temperature as described in (A1.3). Thus, finite 
temperature effects, if any, can be attributed to the 
presynaptic factor secretion. 

Mechanism (3)implies that if the neurotransmitter 
is released from the presynaptic side simultaneously 
with the occurrence of the postsynaptic membrane de- 
polarization, then the synapse receives a reward which 
promotes its stabilization. On the other hand, if the 
release of the neurotransmitter and the postsynaptic 
membrane hyperpolarization takes place simulta- 
neously, a penalty is imposed on the synapse, causing it 
to destabilize. This hypothetical mechanism is the likeli- 
est model for explaining experimentally observed 
synaptic plasticity (Collingridge and Bliss 1987). 

3 Model Hamiltonian 

In the first place, we will discuss approximations em- 
ployed in reducing the general Hamiltonian to the one 
specific to ODC formation. 

It is natural to think that retinotopic order is also 
developed in an activity-dependent manner during 
ODC formation. Therefore, we should consider both 
types of development at the same time. In the present 
paper, however, we assume that retinotopic order is 
already completed and well defined before ODC forma- 
tion begins. Although this assumption appears unrealis- 
tic, we can simplify the problem significantly and 
thereby obtain essential features of ODC formation. 
From another preliminary result of computer simula- 
tions in which the development of retinotopic order is 
taken into account at the same time, the author has 
confirmed that the degree of freedom of retinotopy does 
not have much qualitative effect on ODC segregation 
(Tanaka 1990b). Submodalities other than ocular dom- 
inance, such as on-centre or off-centre, color-specific or 
color-nonspecific, and magnocellular or parvocellular 
pathways will not be considered, either. 

The detailed derivation of an appropriate Hamilto- 
nian H which describes ODC formation will be dis- 
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cussed in Appendix 2. This Hamiltonian is given by the 
following form: 

H = - h  j~sJ - 2j~,j, ~j, Uj, j, sjsj,. (3.1) 

The parameters J and h are written in terms of the 
correlation strength between the left and right RGC 
firings and the degree of imbalance in firing activity 
between the left and right RGCs (Let r and ~t denote 
the correlation strength and the degree of imbalance, 
respectively). The relations among these parameters are 
given by the following (Appendix 2): 

J = q(1 - r), (3.2) 

h = ~t. (3.3) 

The parameter q denotes the ratio of the average mem- 
brane potentials induced by the excitatory connections 
to the average total membrane potentials: 

q = + r  . 
At this stage, the interaction function Uj, j, is mod- 

eled by the use of the Gaussian functions as follows: 

2 d2. qr _{ d),j,~ qinh exp{--"J'J'~" , ~ 2 "  Uj, j, = ~ exp|  -- gq'T'| (3.4) 
- " ~ e x  \ "~'%x] 2nAi2nh ~ 2'~'inh,] 

where dy.j, is the distance between j and j ' .  2,x and 2i'~h 
are determined by the extent of excitatory and in- 
hibitory lateral connections, respectively, qr and q ~  
are proportional to the membrane potentials induced 
by excitatory and inhibitory neurons. 

The spatial dependence of this interaction function 
is depicted in Fig. 1. General tendencies in ODC forma- 
tion are not strongly dependent upon the detailed form 
of the interaction function. The important feature of 
the function is its short-range excitatory and long-range 
inhibitory behavior. 

In addition to the parameters r and ~ introduced 
above, we here define another parameter r by 

qinh 
x = , (3.5) 

qex 

U ( d )  

0 

~ = 0 . 9  

~,i~u = 5 . 0  

d 

Fig. 1. Interaction functions. Two interaction functions used in com- 
puter simulations are shown for x = 5.0 and 0.9 when 2ex=0.15, 
'~inh = 1.0, and qcx = 1.0. Here qinh "~ rq�9 

which stands for the ratio of membrane potentials 
induced by the inhibitory and excitatory neurons. This 
x will be useful in analyzing segregated patterns. 

4 Computer  simulations 

Since our mathematical theory is built on the statistical 
thermodynamics in the spin system, we can use the 
Monte Carlo computer simulation technique (Metropo- 
lis et al. 1953). This method describes the stochastic 
evolution of the spin configuration. In general, the spin 
configuration is updated if a random value between 0 
and 1 generated by the computer is smaller than the 
transition probability. Otherwise, the configuration re- 
mains unchanged. In this simulation, we confine 
ourselves to the scheme of the single spin update per 
Monte Carlo step. The transition probability is given by 

1 
wfs: -+ -s:)  = [AEj~ ' (4.1) 

1 + exp~--~-) 

where T is the effective temperature defined by (A1.3). 
AEj is the energy difference between two spin configura- 
tions; one is the present configuration specified by sj 
and the other is the configuration specified by - s j  
which would be taken at the next step. This energy 
difference is obtained from (3.1), that is, 

AEj= - 2 ( h  + J ~ Uj, j, (4.2) 

Hereafter, we use the parameter fl defined by fl = q/2T. 
With the use of t ,  AEflT which determines the spin 
configuration through the transition probability given 
by (4.1) can be written as 

AEflT = -2 f l [  q + ( 1 -  r) ~, Uj, j, (4.3) 

If there is no imbalanced activity (ot/q = 0) in (4.3), it is 
found that ODC pattern formation is regulated by 
f l ( l  --  r). 

In the simulation, we use square panels which con- 
sist of 80 x 80 pixels. Each pixel corresponds to a small 
cortical area to which the value of the Ising spin 
variable is assigned according to the ocular dominance. 
Moreover, we impose a free boundary condition in the 
vertical direction and a periodic boundary condition in 
the horizontal direction. 

5 Results 

5. I Effect of temperature and correlation strength 

In the subsequent analysis by Monte Carlo simulations, 
we fix the parameter values as follows: qcx= 
1 . 0 , ~ , e x = 0 . 1 5 , ~ i n h  = 1.0. The value of a (the edge 
length of one pixel) is selected such that the number of 
ocular dominance bands is 10 in the square panel. 
From the fact that the ODC period is about 0.8 mm for 
the macaque monkey (Hubel and Wiesel 1977), a corre- 
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Fig. 2a-s Computer- 
simulated ocular dominance 
patterns and corresponding 
ocular dominance histograms. 
These were obtained with 
large lateral inhibition 
(x = 5.0) and balanced 
activities (a = 0). The value of 
a is chosen as 0.118. 
Therefore, 2inh and ~-�9 
amount to about 850 lam and 
130 pro, respectively. While fl 
is gradually increased from 
1.0 in a to 1.6 in b, to 1.8 in 
e, to 2.2 in d, to 2.5 in e, and 
to 10.0 in f, the correlation 
strength r is fixed at 0. These 
patterns are also obtained 
when r is varied to 0.90, 0.84, 
0.82, 0.78, 0.75, and 0.00, 
respectively, while fl is fixed at 
10.0 (see (3.10)). Ocular 
dominance is divided into 7 
groups. If a neuron responds 
specifically to stimulus to the 
contralateral retina, it falls 
into group 1. If it responds 
only to stimulus to the 
ipsilateral retina, it falls into 
group 7. The neuron in group 
4 responds to stimuli to both 
retinas with equal strength 

sponds to 100 pm. Therefore,  the actual values o f  2 i n  h 

and 2ex are given by 100 pm/a and 15 pm/a, respec- 
tively. 

The compute r  simulations show that  the stripe pat-  
terns become more  segregated as fl gradually increases 
(Figs. 2 and 3). The obta ined stripe pat tern is likely to 
be straight even though  the existence o f  the anisotropic 
interaction funct ion has not  been assumed. It  is ob- 
served that  the ocular  dominance  his togram changes 
f rom a single-peak shape to a U-shape as the pat tern 
segregates. Even though  the value o f  fl is fixed, we can 
also see stripe pat terns segregate as the value o f  r 
decreases, since ~ ( 1 -  r) regulates pat tern segregation, 
as noted before. When  r decreases f rom 1 to zero, a 
stripe pat tern starts segregating at a certain value o f  r. 
At  this stage, the bandwid th  is not  constant  and the 
border  between ipsi lateral-dominant and contralateral-  
dominan t  bands  fluctuates. The pat tern becomes 
sharper as r is further  decreased. Finally we obtain the 
O D C  stripe pat tern  with very sharp delimitations. 

It is known  that  O D C  segregation starts before 
birth (Rakic  1977). This means that  form vision is not 
always necessary for  O D C  format ion  and that only 
spontaneous  firing in R G C s  is sufficient. We can 

explain this physiological observat ion by setting r = 0, 
which corresponds to no correlat ion between firings 
f rom the left and right retinas. 

5.2 Straightness of stripe patterns 

We can always see the stripes running in the vertical 
direction whenever we impose the free boundary  condi- 
tion on the horizontal  boundaries and the periodic 
boundary  condit ion on the vertical boundaries.  This 
phenomenon  observed in this simulation reflects the 
fact that  the free boundary  condit ion introduces an- 
isotropy to the interaction function near the horizontal  
edges o f  the panel, while the periodic boundary  condi- 
tion does not  distort the interaction function. 

When  x is large, that  is, inhibitory connect ions are 
more  effective than excitatory ones, the pat tern is likely 
to be straight. In contrast ,  i fx  is small, the pat tern is likely 
to be twisted or  bent and to include branches and  ends 
(compare  Fig. 2f  with Fig. 3f). When  the pat tern in Fig. 
2f  (x = 5.0) is compared  with the well-known experimen- 
tal evidence (Hubel  and Wiesel 1977), the similarity is 
striking. As a result, we can expect the lateral inhibition 
to be very effective in a biological system. 
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Fig. 3a-L Computer- 
simulated ocular dominance 
patterns and corresponding 
ocular dominance histograms. 
These were obtained with 
small lateral inhibition 
(ic = 0.9) and balanced 
activities (~ = 0). a is chosen 
as 0.143. Therefore Ain h and 
2ex amount to about 700 l~m 
and 100 i.tm, respectively. 
While ff is gradually increased 
from 1.0 in a, to 1.6 in b, to 
1.8 in e, to 2.2 in d, to 2.5 in 
e, and to 6.0 in f, the 
correlation strength is fixed at 
0. These patterns are also 
obtained by r = 0.90, 0.84, 
0.82, 0.78, 0.75, and 0.40, 
respectively, for p = 10.0 

The degree o f  the straightness also strongly depends 
on the rate o f  temperature decrease. Even if the value o f  
x is the same for  the two given patterns, the gradually 
segregated O D C  pattern is straighter (Fig. 20  than the 
rapidly segregated one (Fig. 4). Moreover ,  we can see 
that  the his togram given by the annealing technique 
shows a larger popula t ion o f  monocu la r  neurons  than 
that  for rapid segregation. F r o m  the above discussions, 
we find that  the straightness o f  the stripe pat tern is 
controlled by the relative strength o f  lateral inhibition x 
and the rate o f  temperature decrease. 

1 2 3 1. 5 6 7 

Fig. 4. A computer-simulated ocular dominance pattern and corre- 
sponding ocular dominance histogram. These were obtained with 
large lateral inhibition (x = 5.0), balanced activities (~ = 0), and fixed 
correlation strength (r = 0). Note that p is suddenly changed from 
/~ = 1.0 to /~ = 10.0 so that the resulting pattern is not a straight 
parallel stripe as in Fig. 2f obtained with gradual increase of 

The ocular  dominance  his togram o f  the normal  
monkey  has a dip at the 4th bin in the center o f  ocular  
dominance.  We cannot  see such a trend in the his- 
togram under  any condit ions in the compute r  simula- 
tions. It can be inferred that  this discrepancy is 
at tr ibuted to the approximat ion  that  the ret inotopic 
order  is achieved before O D C  segregation starts. In  
fact, the results o f  compute r  simulations in which 
ret inotopic map  format ion  is taken into account  in 
addit ion to O D C  format ion  reproduce ocular  domi-  
nance histograms similar to the experimentally obtained 
his togram (Tanaka  1990b). 

5.3 Effect of the imbalance activity 

It  was reported that  bandwidths  are asymmetr ic  
between ipsilateral and  contralateral  bands  in m o n o -  
cularly deprived animals. The wider bands  observed 
in the experiment correspond to the regions where 
open-eye terminals project (Hubel  et al. 1977). In  our  
simulations, the situation for ac # 0  represents the 
presence o f  the bias in ocular  dominance.  We can 
again observe a good  agreement  between this experi- 
mental  observat ion and our  simulated results o f  asym- 
metric stripe patterns (the left co lumn o f  patterns in 
Fig. 5). 
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Fig. 5. Computer-s imulated ocular dominance patterns for various 
imbalanced activities. Parameter  values are as follows: 
r = 0.0, ~ = 10.0, K = 5.0. The vertical axis gives the value o f  =/q. 
Arrows show the directions in which ot/q is changed in the simula- 
tions. Note  a kind o f  hysteresis; the emerging patterns depend upon 
the preeeeding sequence o f  patterns. Therefore, two different patterns, 
the blob and  stripe, are obtained even at the same ot/q = 1.0 since 
their initial patterns are different. An  asymmetric stripe pattern 
remains during the increase from 0 to a large ot/q value. But on the 
way back, a blob-lattice pat tern is maintained up to a small ot/q value 

It was also reported that blob patterns have been 
observed in the region of the monkey primary visual 
cortex corresponding to the periphery in the visual field 
(LeVay et al. 1985). The blob pattern appears between 
the binocular region around a fovea and the monocular 
region far from the fovea. Our simulations show that 
the blob lattice patterns can emerge for a # 0, in addi- 
tion to the asymmetric stripe patterns. Here again, the 
experimental observation supports our theory. Further- 
more, if the parameter value of q can be appropriately 
manipulated under monocular deprivation, it may be 
possible to observe the blob ODC pattern. 

In natural phenomena, we often observe hysteresis 
which means the dependence of the state of a system on 
the previous history. Interestingly, a similar phenomena 

can be seen where the appearance of patterns depends 
upon the path along which the control parameter at/q 
moves. In practice, there can be two types of patterns at 
the same value of at/q: the stripe pattern and the blob 
pattern (compare the left and middle columns of pat- 
terns for ~t/q = 1.0 and 2.0 in Fig. 5). For ~t/q > 5.0, we 
obtain a uniform pattern with no deprived-eye-domi- 
nant synaptic terminals. The transition between this 
uniform pattern and the blob pattern seems to have no 
hysteresis (compare the left and right columns of pat- 
terns in Fig. 5). 

6 Discussion and conclusion 

In this report, a theory of ODC formation was built on 
the basis of our general theory of activity-dependent 
self-organization of cortical maps. From qualitative 
comparisons of computer simulation results with exper- 
imental observations, it was found that excellent agree- 
ment was achieved in various aspects of ODC 
formation. It was shown that three types of ODC 
patterns could be reproduced: stripe, blob, and uniform 
patterns. Their appearances are determined by the cor- 
relation strength and the degree of imbalance in activity 
between the left and right retinas. 

We found that the spatially modulated patterns 
were more clearly segregated in the case of weaker 
correlation in activity between the left and right retinas. 
This can be understood in the following way. It is 
natural to think that the segregation of ODC patterns 
requires discrimination between two kinds of nerve 
terminals from the left and right retinas. The similarity 
between two firing patterns can be expressed by the 
correlation strength between the two. When electrical 
activities from the left and right retinas passing through 
the dorsal lateral geniculate nucleus (dLGN) transmit 
to the target dendrites, the target neurons cannot distin- 
guish between the nerve terminals from the left and 
right retinas if the correlation between activities from 
both retinas is strong. Therefore, there is little or no 
segregation. On the other hand, the target neurons can 
clearly distinguish the terminals if the correlation is 
weak. In this case, there is clear segregation. As a 
result, we can say that the local Hebbian mechanism 
provides the correlation function which reflects the 
similarity between firing patterns at different synaptic 
terminals. 

The strong lateral inhibition (x > 1) was assumed 
in the simulations in which the straight parallel stripes 
were observed. This assumption implies the possibility 
of hyperpolarized membrane potentials in cortical neu- 
rons. For the neurons to elicit spike activities, either or 
both of the following two requirements should be sa- 
tisfied: additional input activities originating in the re- 
gion other than the dLGN elevate the membrane 
potentials and thereby facilitate firings of the neurons 
or most of cortical inhibitions are shunting inhibitions 
and therefore hyperpolarization is not so strong. 

In our simulations, the annealing procedure in addi- 
tion to the strong lateral inhibition was necessary to 
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obtain the straight parallel stripes. This may be partly 
attributed to the property of the interaction function 
used here. If we choose an adequate interaction func- 
tion, the annealing procedure may not be necessary for 
the straight parallel stripe pattern segregation. In fact, 
the author confirmed that such stripe patterns were 
more easily segregated by carrying out the same simula- 
tions with the stepwise interaction function (Tanaka, in 
preparation). However, another interpretation is that 
annealing is actually performed in developing animals. 
This may be called developmental annealing in contrast 
to simulated annealing which is used as a general tech- 
nique for obtaining the global minimum (Kirkpatric et 
al. 1983). As noted in Sect. 2, there is a close relation- 
ship between the presynaptic factor and the effective 
temperature. As the amount of the presynaptic factor 
decreases, the temperature drops. Therefore, develop- 
mental annealing actually occurs if the amount of the 
factor gradually decreases during the critical period. 

In the theoretical formulation of our theory, the 
synaptic connection density was expressed by the spin 
variable which takes discrete values. This expression is 
justified by a winner-take-all process due to the compe- 
tition among synapses for the limited amount of the 
postsynaptic factor. Because of this spin expression, we 
can successfully escape from introducing the additional 
constraints in other models of activity-dependent self- 
organization of neural networks (Von der Malsburg 
1979; Miller et al. 1989; Linsker 1986). The exclusion of 
the additional constraints will make further develop- 
ment of our theory easier. 

In addition, our theory has another unique feature 
in that it is built on the thermodynamics in the spin 
system, not on the deterministic time-evolutional equa- 
tion for synaptic strength as in the model of Miller et 
al. (1989). The thermodynamic formulation makes a 
systematic analysis of cortical map self-organization 
possible, since the established mathematical procedures 
are available. Our general theory takes into consider- 
ation the fluctuation in the synaptic stabilization during 
development, which can be introduced as a finite tem- 
perature effect. 

A detailed thermodynamic analysis will be given in 
a forthcoming paper (Tanaka, in preparation) in which 
the phase transition phenomenon in ODC formation 
will be discussed. 
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Tetsuya Takahashi of the Laboratory for Neural Networks, RIKEN 
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manuscript. 

Appendix 1: mathematical background 

Based on the mechanisms postulated in Sect. 2, the 
author proposed a basic dynamic equation which de- 
scribes synaptic stabilization in the afferent nerve termi- 
nals depending on neuronal activity (Tanaka 1990a). 

The following approximations were applied to this 
basic equation in order to derive a general framework 

within which cortical map self-organization is mathe- 
matically easier to deal with. First, firing of neurons in 
the presynaptic layer was assumed to be a stochastic 
process which is specified by the spatial correlation 
function Fk, ~; k', ~'. The subscripts k and k'  represent 
the positions of two neurons in the presynaptic layer, 
while # and p' stand for types of pathways, such as 
ipsilateral or contralateral, on-center-off-surround or 
off-center-on-surround, and color specific or color non- 
specific, for the visual pathway. Second, the adiabatic 
approximation was employed since the time course for 
the electrical activity is thought to be much shorter than 
the time course for the synaptic stabilization process. 

These approximations lead to a nonlinear stochastic 
differential equation for the connection density, which 
describes a winner-take-all process of synapses within a 
small region in the target layer. The area of this small 
region is determined by the diffusion length of the 
postsynaptic factor, since synapses compete strongly 
with one another in this region. 

From the detailed mathematical discussion on local 
and global stability of solutions to the basic equation 
(Tanaka 1990a), we find that the equilibrium synaptic 
connection density pj, k. v can be expressed in terms of 
the total synaptic connection density #tot and a variable 
aj, k, ~, as follows: 

Pj, k,l~ = Ptot" ffj, k , ~ ,  (AI.1) 

where if the neuron specified by k and # in the presy- 
naptic layer sends the axon to position j in the target 
layer, trj, k, , = 1, and if not, try, k, ~ = 0. That is, the value 
of this variable for only one combination of k and/z for 
any j is 1 and the others are 0. These properties are the 
same as those for the Potts spin variable (Wu 1982). 
Thus, we c/m look upon the equilibrium solution of the 
equation as a set of Potts spin variables. As discussed 
previously (Tanaka 1990a), the problem can be reduced 
to the thermodynamics in the Potts spin system. 
Namely, the equilibrium behavior of the modifiable 
nerve terminals can be described in terms of the ther- 
modynamics in this spin system in which the Hamilto- 
nian H and effective temperature T are given by 

H = - s g n ( (  Av)~', E tpk,~aj, k,v 
j , l ~ k e B j . ~  

- -q  ~-, E Vj, j, Fk,~,,k,,u,a/,k, uaj.,k,,~,,, (A1.2) 
J,# kEBj u 

j ' ,p "  k" eB:; , ,  u, 

T = - ~ -  74  ~ , (A1.3) 

where ~Ok,~, in the first term of (A1.2) is the averaged 
firing frequency which is normalized such that the value 
is of the order of 1, and y is a rough estimate for the 
ratio of the standard deviation of the firing frequency 
to the averaged firing frequency. Vj, j, describes the 
interaction between synapses in the target layer. B: ~, is 
a set of possible neurons specified by the neuronal [ype 
/z which send axonal terminals to position j in the target 
layer (Tanaka 1990a). q is the ratio of the averaged 
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membrane potential induced through the modifiable 
synapses (sAc v to the absolute value of the total averaged 
membrane potential That is, 

q = I av I . ( A 1 . 4 )  

Fk. ~; k', ~" represents the normalized correlation strength 
between the firings elicited from two cell bodies which 
are specified by (k, #) and (k', g'). z~ is the correlation 
time of the electrical activities and L is the time course 
for the synaptic stabilization process. 

In this theory, the type of pattern segregated from a 
uniform structure is mainly determined by the correla- 
tion function. This function is determined by the statis- 
tical properties of  neural activity in the modality and/or 
submodality. 

Appendix 2: reduction to the Ising spin system 

In order to obtain an appropriate Hamiltonian describ- 
ing ODC formation, the correlation function and re- 
lated parameters should be determined. 

In deriving the function which describes the correla- 
tion between firing frequencies from RGC in the left 
retina and in the right retina, it is assumed that the 
dLGN plays only the role of a relay nucleus which 
transmits neural activity from RGCs to the primary 
visual cortex without any additional information pro- 
cessing. 

We can obtain an appropriate mathematical de- 
scription for the correlation function of RGC activity, 
by considering the following presumptions: (i) there are 
two types of  firings, spontaneous and visually stimu- 
lated, which are stochastically independent of each 
other; (ii) the spontaneous firing in one retina does not 
correlate with that in the other retina, since the two 
firings are spatially separated; (iii) the visually stimu- 
lated firings in both retinas can be correlated if the two 
firings occur at retinotopically corresponding positions, 
since the same light stimulus falls on these two posi- 
tions; and (iv) spatial correlation between two distant 
RGCs within a single retina may be realized by mutual 
horizontal connections due to horizontal cells and 
amacrine cells; (v) finally, the property of the spatial 
correlation for the spontaneous firings within one retina 
is assumed to be the same as that for the visually 
stimulated firings. 

From the presumptions concerning properties of the 
correlation function of RGC activity, we obtain a 
mathematical form of the correlation function: 

1 
~,~,'6~,,~,')Ck, k ' ,  (A2.1) 

where ~ v and e s are the standard deviations of the 
visually stimulated firing frequency and that of the 
spontaneous firing frequency, respectively. 6,, 0, is Kro- 
necker's delta. The spatial correlation is represented by 
C k ,  k ' .  

Now we define a parameter which describes the 
correlation of firings elicited from the left and right 
RGCs as follows: 

= , (A2.2) 

v 2 S 2 where ~, = ~ / ( ~ )  + ( ~ ) .  If  there are only spon- 
taneous firings v ( ~  = 0), there is no correlation between 
the left and right RGC firings (r = 0). On the other 
hand, in the presence of visual stimulation, firings from 
the left and right retinas correlate (0 < r ~< l), since, in 
normal animals, the two RGCs which have retinotopic 
correspondence to each other on the respective retinas 
receive almost the same images. For simplicity, it is 
assumed that r + l = r  l = 7f/�9 

Next, let ~5+i and ~5_ l denote the normalized aver- 
age firing frequencies of ipsilateral and contralateral 
RGCs. Using these we can define another important 
parameter ~ as follows: 

~+,-r  
0t (A2.3) 

0 . t + 0 - t "  
stands for the degree of imbalance in firing activity 

between the left and right RGCs. 
We adopt the following factorization in order to 

separate ocular dominance and retinotopic order: 

__R ~ O O  (A2.4) 
~ j , k , #  ~ ~  ll " 

where R and on Oj, k Oj,~, are the Potts spin variable for 
retinotopic order and that for ocular dominance, re- 
spectively. 

The ocular dominance in anatomical connections to 
position j in the visual cortex can be specified by the 
Ising spin defined by 

sj = ~ ~aj, k,~,. (A2.5) 
k , #  

sj takes only + 1 or - 1 ,  according to ipsilateral or 
contralateral dominance. S i n c e  ~j, ktr~k = 1, it is also 
represented as follows: 

sj = ~', oD (A2.6) g O ' j ,  # , 
p ~  + 1 ,  --1 

By the use of this Ising spin variable, the Hamiltonian 
of this system can be reduced to 

-E JE - 2 j , ,~  E Uj.,,~sysj~, (A2.7) 
J f 

where terms independent of the spin variables are omit- 
ted since they are irrelevant to ODC formation, hj 
stands for the external bias applied to sj, while Uj, s is 
the interaction between two Ising spins, sj and s s. That 
is, the first term of (A2.7) reflects the ocular dominance 
shift, while the second term is essential to ODC segre- 
gation, hj and Uj, j. include the effect of retinotopic order 
as follows: 

hj �89 E R = #(Ok, ~, trj, k, (A2.8) 
g , k  



 v,,iX X " = C k ,  k, f f j ,  k(Tj ,  k, �9 Uj ,  f 2 
k~Bjk'~Bj. 

J in (A2.7) can be expressed in terms of  r: 

(A2.9) 

J = q(1 -- r ) .  (A2.10) 

I f  ~_~ok. #o'jR, k is weakly dependent upon j,  it turns out 

to be the normalized average firing frequency ~ which 
satisfies t~ + ~ + ~ _  ~ = 2. In this case, h: is reduced to a 
constant h independent of  j. It  is written by the use of  
~t as follows: 

h = ~t �9 sgn(r (A2.11) 

As can be seen from (A2.11), the external bias repre- 
sented by the first term of  the reduced Hamiltonian 
(A2.7) takes the same sign as ~t does when the cell 
membranes of  the cortical neurons are, on the average, 
depolarized ( e a r >  0). On the other hand, it takes the 
opposite sign when the membranes are hyperpolarized 
( r  0). In this paper, only the case for (Av> 0 was 
discussed. 

There can be two types of  excitatory interactions 
between synapses. One is the interaction between 
synapses attached to the dendrites of  the same neuron. 
The other is the interaction between synapses attached 
to the dendrites of  different neurons via the lateral 
axonal connection between these neurons. The first 
term in (3.4) includes these two types of  the excitatory 
interactions. Because of  this unification of  the interac- 
tions, the parameter  q seen in (3.2) and (A2.10) should 
be defined by q = ( ~ v + ~ v ) / l ~ A v  I. Therefore, the 

A V  definition o f q  is different from that in (A1.4), q = ~ s e /  

Appendix 3: occular dominance distribution 

I t  is convenient to introduce "ocular  dominance distri- 
but ion" which represents the distribution of  neurons to 
ocular dominance in their response to monocular  light 
stimuli. Hubel and Wiesel (1962) used the so-called 
ocular dominance histogram in which ocular domi- 
nance is divided into 7 bins in the horizontal axis. For  
the purpose of  introduction of  such distribution func- 
tions, we define the degree of  ocular dominance for the 
response of  the nth neuron at position in, On, by 

O~ = ~j~(# = + l )  - ~:~(# = - -1 )  

= F0(Ej.,(# = +1))  -Fo(Ejn(# = - 1 ) ) ,  (A3.1) 

where tb~(# = + 1) or tb,(~ = - 1 )  means the firing fre- 
quency of  the neuron at position j~ when the light 
stimulus is presented to either the ipsilateral or con- 
tralateral retina. Fo is the nonlinear t ransformation 
function from the membrane potential to the firing 
frequency with the threshold potential 0. I f  the mem- 
brane potential at the cell body becomes larger than the 
value of  0, the neuron fires. 

Next, we use the same approximation for the firings 
in the cortical neurons, as in the previous paper 
(Tanaka  1990a), in deriving the general Hamiltonian. 
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Then we obtain the following formula: 

On = (~jn(# = + 1) -- ~Jn(# = -- 1))h(~'-  0) 

= h(E- 0) vjo,j,  j, 
j ' , k .  l.* 

# h ( E -  o) E vj.,j,sj,. (A3.2) 
j, 

h(~'--0)  can be expressed by the integration of  the 
error function (Tanaka  1990a). We can calculate the 
degree of  ocular dominance related to neuronal 
response by using the last equation in (A3.2) and 
the Ising spin which represents anatomical  ocular 
dominance. 

Ocular dominance distribution D(e) is defined by 

, 

where N stands for the number  of  sampled neurons, 6 
is Dirac 's  delta function, and Om,x is the maximum 
value of  all the On's. ~ = 0 means a complete binocular 
response. ~ = + 1 and --1 corresponds to completely 
ipsilateral dominance and contralateral dominance, 
respectively. It  is straightforward to rewrite (A3.3) in 
the form of  the ocular dominance histogram. Ocular 
dominance is divided into 7 groups according to the 
definition by Hubel and Wiesel (1962). I f  a neuron 
responds specifically to stimulus to the contralateral 
retina, it falls into group 1. I f  it responds only to 
stimulus to the ipsilateral retina, it falls into group 7. 
The neuron in group 4 responds to stimuli to both 
retinas with equal strength. Therefore, the response of  
neurons in groups 1 and 7 are monocular,  and those in 
group 4 are binocular. 
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